JPH11209124A - Production of fine lithium oxide sintered particulates - Google Patents

Production of fine lithium oxide sintered particulates

Info

Publication number
JPH11209124A
JPH11209124A JP10021597A JP2159798A JPH11209124A JP H11209124 A JPH11209124 A JP H11209124A JP 10021597 A JP10021597 A JP 10021597A JP 2159798 A JP2159798 A JP 2159798A JP H11209124 A JPH11209124 A JP H11209124A
Authority
JP
Japan
Prior art keywords
particles
powder
sintered
granules
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10021597A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawamura
河村  弘
Kunihiko Tsuchiya
邦彦 土谷
Katsuhiro Fuchinoue
克宏 淵之上
Junpei Ohashi
準平 大橋
Hiroshi Sawada
博司 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nuclear Fuel Industries Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP10021597A priority Critical patent/JPH11209124A/en
Publication of JPH11209124A publication Critical patent/JPH11209124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolling granulation method by which high purity fine Li2 O sintered particulates are obtd. SOLUTION: Lithium carbonate powder as powdery starting material, together with a carrier material which is thermally decomposed at a specified temp., is rolled in a rotating drum to obtain mixed granules of the carrier material and Li2 CO3 powder. The mixed granules are heated to remove the carrier material. The resultant Li2 CO3 granules are further heated to form Li2 O granules by thermal decomposition. The Li2 O granules are sintered to obtain the objective fine Li2 O sintered particulates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化リチウム微小焼結
粒の製造方法に関するものである。
The present invention relates to a method for producing lithium oxide fine sintered particles.

【0002】[0002]

【従来の技術】従来より、酸化リチウム(Li2O)の微小焼
結粒(以後、Li2O焼結粒と記す。)を製造する方法の一
つとして転動造粒が知られている。この転動造粒法は、
酸化リチウム(Li2O)粉末を原料粉末として用い、この原
料粉末を傾斜させた回動ドラム内で転動させることによ
り粒状化し、得られた粒状物を加熱し、焼結させてLi2O
焼結粒を得るという方法である。
2. Description of the Related Art Rolling granulation has been conventionally known as one of the methods for producing fine sintered particles of lithium oxide (Li 2 O) (hereinafter referred to as sintered Li 2 O particles). . This tumbling granulation method
Lithium oxide (Li 2 O) powder is used as a raw material powder, and the raw material powder is granulated by rolling in a tilted rotating drum, and the obtained granules are heated and sintered to be Li 2 O
This is a method of obtaining sintered grains.

【0003】以下、転動造粒法について、図2を参照し
て簡単に説明する。まず、Li2O粉末を回動ドラム内に搬
入して転動させ粒状とする(図2(a))。この時、造粒
を容易にするため、ポリビニルアルコール等の増粘材を
添加する場合もある。
Hereinafter, the rolling granulation method will be briefly described with reference to FIG. First, the Li 2 O powder is carried into a rotating drum and rolled to be granular (FIG. 2A). At this time, a thickener such as polyvinyl alcohol may be added in order to facilitate granulation.

【0004】上記の転動により形成されたLi2O粒を取り
出して真空中で約 800℃で加熱し焼成する(図2
(b))。なお、ポリビニルアルコールはこの加熱により
取り除かれる。その後、更に真空中で約1100℃で加熱し
て焼結させ、Li2O微小焼結粒を得る(図2(c))。
The Li 2 O particles formed by the above rolling are taken out, heated at about 800 ° C. in a vacuum, and fired (FIG. 2).
(b)). The polyvinyl alcohol is removed by this heating. Then, it is further heated and sintered at about 1100 ° C. in vacuum to obtain Li 2 O fine sintered particles (FIG. 2C).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな転動造粒法において原料として用いるLi2Oは、化学
的に不安定で空気中の水分と徐々に反応して水酸化リチ
ウム(LiOH)やその水和物となりやすい。そのため、Li2O
粉末の造粒中に水酸化リチウム(LiOH)やその水和物が生
成してしまい、これがそのまま造粒されてLi2O粒中に混
入してしまう。
However, Li 2 O used as a raw material in such a tumbling granulation method is chemically unstable and gradually reacts with moisture in the air to produce lithium hydroxide (LiOH). Or its hydrate. Therefore, Li 2 O
During the granulation of the powder, lithium hydroxide (LiOH) or a hydrate thereof is generated, which is granulated as it is and mixed into the Li 2 O particles.

【0006】即ち、Li2O粉末を原料粉末とする転動造粒
法により得られたLi2O粒は水酸化リチウム(LiOH)やその
水和物などの不純物が混入したものとなり、そのような
不純物を完全に取り除くことは困難である。そのため、
高純度のLi2O焼結粒を得るのが難しいという問題があ
る。
Namely, Li 2 O powder Li 2 O particles obtained by rolling granulation method in which the raw material powder becomes that impurities such as lithium hydroxide (LiOH) or its hydrate is mixed, such It is difficult to completely remove such impurities. for that reason,
There is a problem that it is difficult to obtain high-purity Li 2 O sintered particles.

【0007】また、空気中の水分とLi2Oとの反応により
生成される不純物の混入を防ぐ目的で、造粒時の雰囲気
を、例えば、窒素ガス等の水分を全く含まないガスとす
ることも挙げられるが、この場合、回動ドラムを密閉型
のチャンバに格納しなければならないだけでなく、これ
に伴って、原料粉末であるLi2O粉末の供給部や得られた
Li2O粒の取り出し部もグローブボックスとすると共に、
Li2O粉末とLi2O粒とのそれぞれを貯蔵する施設も密閉型
にしなければならない。そのため、設備費及び製造コス
トが高騰し好ましくない。
In order to prevent impurities generated by the reaction between moisture in the air and Li 2 O from being mixed, the atmosphere during granulation is, for example, a gas containing no moisture such as nitrogen gas. In this case, not only the rotating drum must be stored in a closed chamber, but also the supply unit of the raw material powder Li 2 O powder and the obtained
The take-out part of Li 2 O particles is also a glove box,
Facilities for storing each of the Li 2 O powder and the Li 2 O particles must also be sealed. Therefore, the equipment cost and the manufacturing cost are undesirably increased.

【0008】本発明は、高純度のLi2O微小焼結粒が得ら
れる方法を提供することを主目的としている。また、設
備費等がかからず、比較的低コストでLi2O微小焼結粒が
得られる方法を提供することも本発明の別の目的であ
る。
An object of the present invention is to provide a method for obtaining high-purity Li 2 O micro-sintered grains. It is another object of the present invention to provide a method capable of obtaining Li 2 O micro-sintered grains at relatively low cost without requiring equipment costs and the like.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すべく、
請求項1に係る発明は、原料粉末としてLi2CO3粉末を用
い、特定の温度で熱分解する担体物質と共にLi2CO3粉末
を回転ドラム内で転動させ、担体物質とLi2CO3粉末との
混合粒を得る造粒工程と、得られた混合粒を加熱して前
記担体物質を除去しLi2CO3粒とする担体除去工程と、前
記Li2CO3粒をさらに加熱することによりLi2CO3を熱分解
させてLi2O粒とする熱分解工程と、該熱分解工程により
得られたLi2O粒を焼結してLi2O微小焼結粒とする焼結工
程とを含むことを特徴としている。
In order to achieve the above object,
Invention uses a Li 2 CO 3 powder as raw material powder, the Li 2 CO 3 powder with thermally decomposed carrier material is rolled in a rotary drum at a certain temperature, the carrier material and Li 2 CO 3 according to claim 1 A granulating step of obtaining mixed grains with powder, a carrier removing step of heating the obtained mixed grains to remove the carrier substance to form Li 2 CO 3 grains, and further heating the Li 2 CO 3 grains. sintering step of the Li 2 CO 3 and pyrolysis step to be pyrolyzed Li 2 O particles and by sintering the Li 2 O particles obtained by the thermal decomposition process Li 2 O fine sintered particles by And is characterized by including.

【0010】即ち、本発明は、原料粉末としてLi2CO3
末を用いてLi2O微小焼結粒を製造する方法を提案するも
のである。Li2CO3は、化学的に安定であり、空気中の水
分と反応しにくいので転動造粒中に水酸化リチウム(LiO
H)やその水和物が生成されないという利点を有する。
That is, the present invention proposes a method for producing Li 2 O fine sintered particles using Li 2 CO 3 powder as a raw material powder. Li 2 CO 3 is chemically stable and hardly reacts with moisture in the air, so lithium hydroxide (LiO
H) and its hydrate are not produced.

【0011】そのようなLi2CO3粉末を担体物質と共に回
動ドラムに投入して造粒するが、この担体物質として
は、Li2CO3と反応せず、Li2CO3の熱分解反応が開始する
前に焼散してしまうものが好ましい。この条件を満たす
ものとして例えば、メチルアルコール(C2H5OH)と、塩化
メチレン(CH2Cl2)と、HPC(Hydroxypropyl Cellulose)と
の混合物などが挙げられる。
[0011] Such a Li 2 CO 3 powder is granulated by introducing the turning drum with carrier substances, as the carrier material, does not react with Li 2 CO 3, Li 2 CO 3 pyrolysis reaction Is preferred to be burned before the start of the process. For example, a mixture of methyl alcohol (C 2 H 5 OH), methylene chloride (CH 2 Cl 2 ), and HPC (Hydroxypropyl Cellulose) is one that satisfies this condition.

【0012】また、造粒の仕方としては、単にLi2CO3
末と担体物質とを投入して回動とドラムの回動により粒
状となったものを取り出す方法でもよいが、好ましく
は、予め定めた量のLi2CO3粉末と担体物質とを混合した
時点で、篩等により例えば、直径0.3mm以上0.5mm以下の
粒のような極微小な粒のみを選択し、これを核として回
動ドラム内に投入して、さらにLi2CO3粉末と担体物質と
を回動ドラム内に適宜加えて造粒するとよい。これによ
り、最終的に得られる粒の大きさをある程度揃えること
ができ、製造歩留を向上させることができる。
As a method of granulation, a method of simply charging Li 2 CO 3 powder and a carrier substance and taking out the particles formed by rotation and rotation of the drum may be used. At the time when a predetermined amount of Li 2 CO 3 powder and the carrier substance are mixed, only a very small particle such as a particle having a diameter of 0.3 mm or more and 0.5 mm or less is selected by a sieve or the like, and this is used as a core. It is preferable that the powder is charged into a moving drum, and the Li 2 CO 3 powder and the carrier material are added to the inside of the rotating drum as needed to perform granulation. Thereby, the size of the finally obtained grains can be made uniform to some extent, and the production yield can be improved.

【0013】回動ドラム内に担体物質とLi2CO3粉末とを
投入したら、回動ドラムを回動させて造粒を開始する
が、この時、回動ドラムの回転数を約100rpm以上200rpm
以下の範囲内となるように調整して造粒する(造粒工
程)。
When the carrier material and the Li 2 CO 3 powder are charged into the rotating drum, the rotating drum is rotated to start granulation. At this time, the rotating speed of the rotating drum is about 100 rpm or more and 200 rpm.
Granulation is performed so as to be within the following range (granulation step).

【0014】得られた混合粒を篩などによりふるい分け
し、例えば、直径1.6mm以上1.8mm以下の範囲内の粒のみ
を選択する等、粒径の揃ったものを選択的に集める。こ
れを加熱することにより担体物質を焼散させ、Li2CO3
とする(担体除去工程)。
The obtained mixed particles are sieved with a sieve or the like, and those having a uniform particle size are selectively collected, for example, selecting only particles having a diameter of 1.6 mm or more and 1.8 mm or less. By heating this, the carrier substance is burned off to form Li 2 CO 3 particles (carrier removal step).

【0015】この時の温度及び加熱時間は、用いた担体
物質が完全に除去される温度及び加熱時間とし、例え
ば、担体物質として、メチルアルコール(C2H5OH)と、塩
化メチレン(CH2Cl2)と、HPC(Hydroxypropyl Cellulose)
との混合物を用いた場合は、約400 ℃で10時間以上であ
る。
The temperature and the heating time at this time are the temperature and the heating time at which the used carrier substance is completely removed. For example, methyl alcohol (C 2 H 5 OH) and methylene chloride (CH 2 Cl 2 ) and HPC (Hydroxypropyl Cellulose)
When the mixture is used at about 400 ° C. for 10 hours or more.

【0016】以上のような担体除去工程における加熱に
より担体物質は完全に除去されるので、高純度のLi2CO3
粒が得られる。更に、得られたLi2CO3粒を真空中で加熱
することによりLi2CO3を熱分解させてLi2Oとし、Li2O粒
を得る(熱分解工程)。この時の条件として、好ましく
は、10-4Torr台の真空中において、400℃以上700℃以下
の範囲内で30時間以上、さらに好ましくは 700℃で60時
間加熱するとよい。
Since the carrier material is completely removed by heating in the carrier removal step as described above, high purity Li 2 CO 3
Grains are obtained. Further, the obtained Li 2 CO 3 grains with a Li 2 CO 3 is thermally decomposed by heating in vacuo and Li 2 O, obtaining a Li 2 O particles (pyrolysis process). As a condition at this time, it is preferable to heat in a vacuum of the order of 10 −4 Torr within a range of 400 ° C. to 700 ° C. for 30 hours or more, more preferably at 700 ° C. for 60 hours.

【0017】その後、得られたLi2O粒を真空中において
1100℃で4時間加熱することにより焼結する。これによ
り、高密度化すると同時に大きさも小さくなってLi2O微
小焼結粒となる(焼結工程)。この時、好ましくは、毎
時 100℃ずつ昇温するように制御して、温度が1100℃と
なったらそのままの状態で4時間保持して焼結させると
よい。これにより、より密度の高いLi2O微小焼結粒とす
ることができる。
Thereafter, the obtained Li 2 O particles are placed in a vacuum.
Sinter by heating at 1100 ° C for 4 hours. As a result, the density is increased and the size is reduced at the same time, resulting in Li 2 O fine sintered particles (sintering step). At this time, preferably, the temperature is controlled so as to be increased by 100 ° C. per hour, and when the temperature reaches 1100 ° C., the sintering is preferably performed for 4 hours while maintaining the temperature. Thereby, Li 2 O fine sintered particles having higher density can be obtained.

【0018】このように本発明では、原料粉末として化
学的に安定なLi2CO3粉末を用い、これを造粒後、熱分解
してLi2O粒とする方法としているため、造粒中にLi2Oと
の空気中の水分との反応生成物が不純物として混入する
等のようなLi2Oの化学的不安定さに起因する問題が生じ
ない。従って、不純物の混入のない高純度のLi2O微小焼
結粒を得ることができる。
As described above, in the present invention, a chemically stable Li 2 CO 3 powder is used as a raw material powder, which is granulated and then thermally decomposed into Li 2 O particles. There is no problem due to the chemical instability of Li 2 O, such as the reaction product of Li 2 O with moisture in the air as impurities. Therefore, it is possible to obtain high-purity Li 2 O micro-sintered grains free of impurities.

【0019】また、造粒の際に回動ドラム等を密閉した
チャンバ内に格納する等の必要がないので特別な設備費
もかからないという利点もある。
In addition, since there is no need to store the rotating drum or the like in a closed chamber during granulation, there is an advantage that no special equipment cost is required.

【0020】尚、使用済みLi2O微小焼結粒を硝酸に溶か
してソーダ灰と反応させるとLi2CO3が沈殿するため、使
用済みLi2O微小焼結粒を本方法の原料として再利用する
こともできる。
When used Li 2 O micro-sintered particles are dissolved in nitric acid and reacted with soda ash, Li 2 CO 3 precipitates. Therefore, used Li 2 O micro-sintered particles are reused as a raw material in the present method. Can also be used.

【0021】[0021]

【実施例】図1は本発明の一実施例を示すフローチャー
ト図である。尚、本実施例においては、担体物質として
メチルアルコール(C2H5OH)と、塩化メチレン(CH2Cl2)
と、HPC(Hydroxypropyl Cellulose)との混合物を用いて
いる。勿論、本発明で用いることのできる担体物質はこ
れに限定されるものではない。
FIG. 1 is a flow chart showing an embodiment of the present invention. In this example, methyl alcohol (C 2 H 5 OH) and methylene chloride (CH 2 Cl 2 )
And HPC (Hydroxypropyl Cellulose). Of course, the carrier substance that can be used in the present invention is not limited to this.

【0022】造粒工程において、まず、純度99.9%の炭
酸リチウム(Li2CO3)粉末と、メチルアルコール(C2H5OH)
と、塩化メチレン(CH2Cl2)とを混合する。これをふるい
分けして直径0.3mm以上0.5mm以下の極微小な粒のみを集
め、核とした。
In the granulation step, first, lithium carbonate (Li 2 CO 3 ) powder having a purity of 99.9% and methyl alcohol (C 2 H 5 OH)
And methylene chloride (CH 2 Cl 2 ). This was sieved to collect only ultrafine grains having a diameter of 0.3 mm or more and 0.5 mm or less, and used as nuclei.

【0023】得られた核を、図1(a)に示したように、
担体物質としてのメチルアルコール(C2H5OH)と塩化メチ
レン(CH2Cl2)とHPC(Hydroxypropyl Cellulose)との混合
物と共に、約100rpm以上200rpm以下の回転数範囲内とな
るように調整したパン型の転動造粒装置(回動ドラム)
に投入して造粒した。得られた混合粒を篩に通し、直径
1.6mm以上1.8mm以下の範囲内の混合粒のみを選択的に集
めた(造粒工程)。
The obtained nucleus was, as shown in FIG.
A pan adjusted with a mixture of methyl alcohol (C 2 H 5 OH), methylene chloride (CH 2 Cl 2 ) and HPC (Hydroxypropyl Cellulose) as a carrier substance so as to be in a rotation speed range of about 100 rpm or more and 200 rpm or less. Rolling granulator (rotating drum)
And granulated. Pass the obtained mixed particles through a sieve,
Only mixed grains within the range of 1.6 mm or more and 1.8 mm or less were selectively collected (granulation step).

【0024】得られた混合粒を、雰囲気可変炉に入れ、
空気中、約 400℃で10時間加熱し、担体物質である混合
物を焼散させ、Li2CO3粒とした(図1(b))。
The obtained mixed particles are put in a variable atmosphere furnace,
The mixture was heated in air at about 400 ° C. for 10 hours to burn off the mixture as a carrier substance to obtain Li 2 CO 3 particles (FIG. 1 (b)).

【0025】その後、雰囲気可変炉内を10-4Torrの真空
にし、 700℃で30時間の加熱処理を行った(図1
(c))。これによりLi2CO3が熱分解されてLi2Oとなり、
Li2O粒が得られた。
Thereafter, the inside of the variable atmosphere furnace was evacuated to 10 -4 Torr, and heat treatment was performed at 700 ° C. for 30 hours (FIG. 1).
(c)). This thermally decomposes Li 2 CO 3 to Li 2 O,
Li 2 O particles were obtained.

【0026】さらに、雰囲気可変炉内を10-4Torrの真空
のまま毎時 100℃ずつ昇温するように制御し、温度が11
00℃となったらそのままの状態で4時間保持して焼結さ
せ、Li2O微小焼結粒を得た(図1(d))。
Further, the inside of the variable atmosphere furnace is controlled to be heated at a rate of 100 ° C./hour while maintaining a vacuum of 10 −4 Torr, and
When the temperature reached 00 ° C., the powder was held and sintered for 4 hours as it was to obtain Li 2 O fine sintered particles (FIG. 1D).

【0027】この様にして得られたLi2O微小焼結粒は、
直径が0.9mm以上1.1mm以下の範囲内で、密度が83%T.D.
であった。これは、近年要求されているLi2O粒の密度範
囲が80%T.D.以上85%T.D.以下であることから、得られ
たLi2O微小焼結粒は、密度が高く不純物の混入が極端に
少なく、高純度のものであることを示している。
The Li 2 O micro-sintered particles thus obtained are:
83% TD with a diameter in the range of 0.9mm to 1.1mm
Met. This is because the density range of Li 2 O particles required in recent years is 80% TD or more and 85% TD or less, so the obtained Li 2 O fine sintered particles have a high density and extremely It shows that it is of low purity.

【0028】[0028]

【発明の効果】以上のように、本発明の方法によれば、
造粒中にLi2Oとの空気中の水分との反応生成物が不純物
として混入すると言ったLi2Oの化学的不安定さに起因す
る問題が生じないので、不純物の混入のない高純度のLi
2O微小焼結粒を得ることができる。
As described above, according to the method of the present invention,
During the granulation, there is no problem due to the chemical instability of Li 2 O, such as the reaction product of Li 2 O and moisture in the air mixed as impurities, so high purity without impurities Li
2 O fine sintered particles can be obtained.

【0029】また、造粒時の雰囲気調整等を考慮する必
要がないので、施設をすべて密閉型にする等の設備費が
不必要であるという利点がある。さらに、製造歩留も良
好であるため、効率的にLi2O微小焼結粒が得られるとい
う利点もある。
Further, since it is not necessary to consider the adjustment of the atmosphere during granulation, there is an advantage that facility costs such as making all facilities closed are unnecessary. Further, since the production yield is good, there is an advantage that Li 2 O fine sintered particles can be obtained efficiently.

【0030】また、本発明の方法で得られるLi2O微小焼
結粒は高純度であるため、例えば、放射線照射処理を受
けても放射性物質化されにくいという利点を有してい
る。
Further, since the Li 2 O micro-sintered particles obtained by the method of the present invention have high purity, they have an advantage that they are not easily converted into radioactive materials even if they are subjected to, for example, irradiation treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すフローチャート図であ
る。
FIG. 1 is a flowchart illustrating an embodiment of the present invention.

【図2】従来の方法を示すフローチャート図である。FIG. 2 is a flowchart illustrating a conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淵之上 克宏 茨城県那珂郡東海村村松1220−496 (72)発明者 大橋 準平 茨城県ひたちなか市勝田本町18−12−102 (72)発明者 澤田 博司 茨城県那珂郡東海村村松1220−496 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Katsuhiro Fuchinoue 1220-496, Muramatsu, Tokai-mura, Naka-gun, Ibaraki Pref. Hiroshi 1220-496 Muramatsu, Tokai-mura, Naka-gun, Ibaraki

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料粉末としてLi2CO3粉末を用い、特定
の温度で熱分解する担体物質と共にLi2CO3粉末を回転ド
ラム内で転動させ、担体物質とLi2CO3粉末との混合粒を
得る造粒工程と、 得られた混合粒を加熱して前記担体物質を除去し、Li2C
O3粒とする担体除去工程と、 前記Li2CO3粒をさらに加熱することによりLi2CO3を熱分
解させてLi2O粒とする熱分解工程と、 該熱分解工程により得られたLi2O粒を焼結してLi2O微小
焼結粒とする焼結工程とを含むことを特徴とする酸化リ
チウム微小焼結粒の製造方法。
[Claim 1] with Li 2 CO 3 powder as raw material powder, the Li 2 CO 3 powder with thermally decomposed carrier material is rolled in a rotary drum at a certain temperature, the carrier material and Li 2 CO 3 powder and the A granulation step of obtaining mixed particles, heating the obtained mixed particles to remove the carrier substance, and adding Li 2 C
A carrier removal step of forming O 3 particles; a pyrolysis step of thermally decomposing Li 2 CO 3 by further heating the Li 2 CO 3 particles to form Li 2 O particles; A sintering step of sintering the Li 2 O particles to form Li 2 O micro-sintered particles.
JP10021597A 1998-01-20 1998-01-20 Production of fine lithium oxide sintered particulates Pending JPH11209124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10021597A JPH11209124A (en) 1998-01-20 1998-01-20 Production of fine lithium oxide sintered particulates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10021597A JPH11209124A (en) 1998-01-20 1998-01-20 Production of fine lithium oxide sintered particulates

Publications (1)

Publication Number Publication Date
JPH11209124A true JPH11209124A (en) 1999-08-03

Family

ID=12059455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10021597A Pending JPH11209124A (en) 1998-01-20 1998-01-20 Production of fine lithium oxide sintered particulates

Country Status (1)

Country Link
JP (1) JPH11209124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047117A (en) * 2012-09-03 2014-03-17 Toray Fine Chemicals Co Ltd Method of producing lithium oxide
KR101723086B1 (en) * 2015-11-17 2017-04-05 한국원자력연구원 A producing method of metal oxide and apparatus of it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047117A (en) * 2012-09-03 2014-03-17 Toray Fine Chemicals Co Ltd Method of producing lithium oxide
KR101723086B1 (en) * 2015-11-17 2017-04-05 한국원자력연구원 A producing method of metal oxide and apparatus of it

Similar Documents

Publication Publication Date Title
JPH1150163A (en) Production of high purity ruthenium, and high purity ruthenium material for thin film formation
KR102241096B1 (en) Manufacturing method of garnet oxide type solid electrolyte having cubic structrue
KR100555261B1 (en) Method for Producing Lithium Transition Metalates
AU2020103465A4 (en) Method for preparing high-purity spherical ruthenium powder by microwave one-step method
US2761776A (en) Process for the manufacture of particulate metallic niobium
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JP2001220145A (en) Method for manufacturing lithium manganese oxide powder for lithium secondary battery
JPH11209124A (en) Production of fine lithium oxide sintered particulates
EP0313257B1 (en) Production of ceramic nuclear fuel pellets
JPH06183725A (en) Binderless x-type zeolite formed body and production thereof
US20210114103A1 (en) Continuous Producing Method of Beryllium Metal Sphere
JP3013297B2 (en) Method for producing lithium titanate fine sintered particles
US5545360A (en) Process for preparing powders with superior homogeneity from aqueous solutions of metal nitrates
US5151262A (en) Pyrite cathode material for a thermal battery
JPS63288913A (en) Production of zinc oxide
US9908782B2 (en) Method for synthesis of boron suboxide
JP2564493B2 (en) Graphite powder manufacturing method and graphite powder manufacturing apparatus
JPH11228130A (en) Lithium ceramic granule and its production
JP2004123488A (en) Method for manufacturing nickel oxide powder
US3989794A (en) Process of manufacturing ferrite bodies of low porosity
JP4039646B2 (en) Method for producing lithium oxide particles
KR102694923B1 (en) Manufacturing method of lithium sulfide fine powder
JPH05100086A (en) Manufacture of sintered uranium dioxide
JP4051732B2 (en) Method for producing nuclear fuel particles
JPH0693316A (en) Production of extremely fine copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070614