JPH11207144A - Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor - Google Patents

Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor

Info

Publication number
JPH11207144A
JPH11207144A JP10012650A JP1265098A JPH11207144A JP H11207144 A JPH11207144 A JP H11207144A JP 10012650 A JP10012650 A JP 10012650A JP 1265098 A JP1265098 A JP 1265098A JP H11207144 A JPH11207144 A JP H11207144A
Authority
JP
Japan
Prior art keywords
flow rate
oxidizing air
absorption tower
air flow
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10012650A
Other languages
Japanese (ja)
Inventor
Satoshi Kimura
訓 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10012650A priority Critical patent/JPH11207144A/en
Publication of JPH11207144A publication Critical patent/JPH11207144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method and device for controlling the flow rate of oxidizing air of a desulfurizer for stack gas by which an appropriate amt. of oxidizing air is supplied to a liq. reservoir of an absorption tower, neither too much nor too less, the formation of oxidizing matter is suppressed, the function of a waste water treating device is not lowered, and the lowering of the desulfurizing performance is prevented. SOLUTION: The amt. 14 of inflow SO2 is obtained from the detected flow rate A of a gas to be desulfurized and SO2 concn. B at the inlet of an absorption tower, the amt. 25 of SO2 to be naturally oxidized obtained from the flow rate A and the O2 concn. D of the waste gas introduced into the tower, the amt. 25 of SO2 to be naturally oxidized is subtracted from the amt. 14 of the inflow SO2 to obtain the amt. 14' of the SO2 to be forcedly oxidized, the set flow rate 16 of oxidizing air is obtained from the amt. 14' of the SO2 to be forcedly oxidized, and the actual amt. C of oxidizing air supplied to the liq. reservoir of the tower is equalized to the set flow rate 16 of oxidizing air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排煙脱硫装置の酸
化空気流量制御方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling an oxidizing air flow rate of a flue gas desulfurization apparatus.

【0002】[0002]

【従来の技術】吸収剤として炭酸カルシウム(CaCO
3)を用いた排煙脱硫装置は、一般に図4に示されるよ
うに、下部に吸収液1の液溜部1aが形成され且つ上部
に多数のスプレーノズル2が配設された吸収塔3と、該
吸収塔3の液溜部1aの吸収液1を汲み上げ前記スプレ
ーノズル2から噴霧させて循環させる複数台の循環ポン
プ4と、前記吸収塔3の液溜部1aに酸化空気を供給す
る酸化空気ブロワ5とを備えてなる構成を有している。
2. Description of the Related Art Calcium carbonate (CaCO) is used as an absorbent.
As shown in FIG. 4, a flue gas desulfurization apparatus using 3 ) generally has an absorption tower 3 in which a liquid reservoir 1a for absorbing liquid 1 is formed in a lower part and a number of spray nozzles 2 are arranged in an upper part. A plurality of circulating pumps 4 for pumping up the absorbing liquid 1 in the liquid reservoir 1a of the absorption tower 3 and spraying and circulating the same from the spray nozzle 2, and oxidizing air for supplying the oxidizing air to the liquid reservoir 1a of the absorption tower 3. An air blower 5 is provided.

【0003】前述の如き排煙脱硫装置の場合、吸収液1
が循環ポンプ4の作動によりスプレーノズル2から噴霧
されつつ循環しており、図示していない石炭焚ボイラ等
から吸収塔3に送り込まれた排ガスは、前記スプレーノ
ズル2から噴霧される吸収液1と接触することにより、
SO2(硫黄酸化物)が吸収除去された後、外部へ排出
される。
[0003] In the case of the above-mentioned flue gas desulfurization apparatus, the absorption liquid 1
Is circulated while being sprayed from the spray nozzle 2 by the operation of the circulation pump 4, and the exhaust gas sent to the absorption tower 3 from a coal-fired boiler or the like (not shown) is mixed with the absorbent 1 sprayed from the spray nozzle 2. By contacting
After SO 2 (sulfur oxide) is absorbed and removed, it is discharged to the outside.

【0004】一方、前記排ガスからSO2を吸収した吸
収液1は、液溜部1aに滴下し、酸化空気ブロワ5の作
動によって液溜部1a内へ供給される酸化空気により強
制的に酸化され、石膏(硫酸カルシウム(CaC
4))が生成され、該石膏を含む液溜部1a内の吸収
液1は、吸収塔3の底部から石膏スラリーとして抜き出
され、該石膏スラリーから水分が除去され石膏が回収さ
れるようになっており、又、前記吸収塔3には、必要に
応じて適宜、所要量の吸収剤スラリーが供給されるよう
になっている。
On the other hand, the absorbing liquid 1 having absorbed SO 2 from the exhaust gas drops into the liquid reservoir 1a and is forcibly oxidized by the oxidizing air supplied into the liquid reservoir 1a by the operation of the oxidizing air blower 5. , Plaster (calcium sulfate (CaC
O 4 )) is generated, and the absorbent 1 in the liquid reservoir 1 a containing the gypsum is extracted as a gypsum slurry from the bottom of the absorption tower 3, and water is removed from the gypsum slurry to recover gypsum. The absorption tower 3 is supplied with a required amount of an absorbent slurry as needed.

【0005】前記酸化空気ブロワ5の作動によって液溜
部1a内へ供給される酸化空気の流量は、流量調整ダン
パ7の開度を調節することによって制御されるようにな
っているが、その制御系は、脱硫ガス流量Aを検出する
脱硫ガス流量計9と、吸収塔入口SO2濃度Bを検出す
る吸収塔入口SO2濃度計10と、酸化空気ブロワ5の
作動によって液溜部1a内へ供給される酸化空気流量C
を検出する酸化空気流量計11とを備えると共に、前記
脱硫ガス流量計9で検出された脱硫ガス流量Aと、前記
吸収塔入口SO2濃度計10で検出された吸収塔入口S
2濃度Bと、酸化空気流量計11で検出された酸化空
気流量Cとに基づき、前記流量調整ダンパ7へ開度指令
20を出力する制御器6を備えてなる構成を有してい
る。
The flow rate of the oxidizing air supplied into the liquid reservoir 1a by the operation of the oxidizing air blower 5 is controlled by adjusting the opening of the flow rate adjusting damper 7. system, desulfurization gas flowmeter 9 for detecting the desulfurized gas flow a, the absorption tower inlet SO 2 concentration meter 10 for detecting the absorption tower inlet SO 2 concentration B, the reservoir portion 1a by the operation of the oxidation air blower 5 Oxidation air flow rate C to be supplied
Oxidizing air flow meter 11 for detecting the flow rate of desulfurization gas detected by the desulfurization gas flow meter 9 and the inlet S of the absorption tower detected by the SO 2 concentration meter 10 for the absorption tower.
A controller 6 is provided which outputs an opening command 20 to the flow rate adjusting damper 7 based on the O 2 concentration B and the oxidizing air flow rate C detected by the oxidizing air flow meter 11.

【0006】前記制御器6は、図5に示される如く、前
記脱硫ガス流量計9で検出された脱硫ガス流量Aに対し
て前記吸収塔入口SO2濃度計10で検出された吸収塔
入口SO2濃度Bを掛けることにより、排ガス中から除
去すべき流入SO2量14を求めて出力する乗算器15
と、該乗算器15から出力される流入SO2量14に基
づき強制酸化に必要な設定酸化空気流量16を求めて出
力する関数発生器17と、該関数発生器17から出力さ
れる設定酸化空気流量16と前記酸化空気流量計11で
検出された実際の酸化空気流量Cとの差を求め、酸化空
気流量偏差18を出力する減算器19と、該減算器19
から出力される酸化空気流量偏差18を比例積分処理し
て該酸化空気流量偏差18をなくすための流量調整ダン
パ7の開度指令20を出力する比例積分調節器21とを
備えてなる構成を有している。
[0006] As shown in FIG. 5, the controller 6 adjusts the desulfurization gas flow rate A detected by the desulfurization gas flow meter 9 to the absorption tower entrance SO 2 concentration meter 10 detected by the absorption tower entrance SO 2 concentration meter 10. Multiplier 15 that calculates and outputs inflow SO 2 amount 14 to be removed from exhaust gas by multiplying by 2 concentration B
A function generator 17 for obtaining and outputting a set oxidized air flow rate 16 required for forced oxidation based on the inflow SO 2 amount 14 output from the multiplier 15; and a set oxidized air output from the function generator 17. A subtracter 19 for calculating a difference between the flow rate 16 and the actual oxidizing air flow rate C detected by the oxidizing air flow meter 11 and outputting an oxidizing air flow rate deviation 18;
And a proportional-integral adjuster 21 for outputting an opening command 20 of the flow rate adjusting damper 7 for eliminating the oxidizing air flow rate deviation 18 by performing a proportional integration process on the oxidizing air flow rate deviation 18 output from the controller. doing.

【0007】尚、前記関数発生器17には、図6に示さ
れるような関数が入力されており、該関数は、流入SO
2量14の増減に対し略比例させて設定酸化空気流量1
6を増減させることを表わしている。
The function generator 17 receives a function as shown in FIG.
2 Set the oxidizing air flow rate 1 in proportion to the increase / decrease of the quantity 14.
6 is increased or decreased.

【0008】前記排煙脱硫装置の運転時には、脱硫ガス
流量計9で検出された脱硫ガス流量Aと、吸収塔入口S
2濃度計10で検出された吸収塔入口SO2濃度Bと、
酸化空気流量計11で検出された酸化空気流量Cとが制
御器6へ入力され、該制御器6の乗算器15において前
記脱硫ガス流量計9で検出された脱硫ガス流量Aに対し
て前記吸収塔入口SO2濃度計10で検出された吸収塔
入口SO2濃度Bを掛けることにより、排ガス中から除
去すべき流入SO2量14が求められて関数発生器17
へ出力され、該関数発生器17において前記乗算器15
から出力される流入SO2量14に基づき設定酸化空気
流量16が求められて減算器19へ出力され、該減算器
19において設定酸化空気流量16と前記酸化空気流量
計11で検出された酸化空気流量Cとの差が求められ、
酸化空気流量偏差18が比例積分調節器21へ出力さ
れ、該比例積分調節器21において前記減算器19から
出力される酸化空気流量偏差18が比例積分処理され該
酸化空気流量偏差18をなくすための開度指令20が流
量調整ダンパ7へ出力され、該流量調整ダンパ7の開度
が調節され、前記酸化空気流量Cが設定酸化空気流量1
6と等しくなるよう制御が行われる。
During operation of the flue gas desulfurization apparatus, the desulfurization gas flow rate A detected by the desulfurization gas flow meter 9 and the absorption tower inlet S
An absorption tower inlet SO 2 concentration B detected by an O 2 concentration meter 10;
The oxidizing air flow rate C detected by the oxidizing air flow meter 11 and the oxidizing air flow rate C are input to the controller 6, and the multiplier 15 of the controller 6 absorbs the desulfurizing gas flow rate A detected by the desulfurizing gas flow meter 9 into the absorption amount. By multiplying the SO 2 concentration B detected by the SO 2 concentration meter 10 at the inlet of the absorption tower, the inflow SO 2 amount 14 to be removed from the exhaust gas is obtained, and the function generator 17
Is output to the multiplier 15 in the function generator 17.
A set oxidizing air flow rate 16 is obtained based on the inflow SO 2 amount 14 output from the oxidizing air flow rate 16 and the oxidizing air flow rate detected by the oxidizing air flow meter 11. The difference from the flow rate C is determined,
The oxidizing air flow deviation 18 is output to a proportional-integral controller 21, and the oxidizing air flow deviation 18 output from the subtractor 19 is proportionally integrated in the proportional-integral controller 21 to eliminate the oxidizing air flow deviation 18. The opening degree command 20 is output to the flow rate adjusting damper 7, the opening degree of the flow rate adjusting damper 7 is adjusted, and the oxidizing air flow rate C is set to the set oxidizing air flow rate 1
Control is performed so as to be equal to 6.

【0009】[0009]

【発明が解決しようとする課題】ところで、前述の如き
従来の排煙脱硫装置の場合、吸収塔3へ導入される排ガ
ス中に含まれる酸素(O2)濃度を全く考慮せずに、乗
算器15から出力される流入SO2量14を強制的に酸
化させるべきSO2量としてそのまま関数発生器17へ
入力し、該流入SO2量14に基づいて設定酸化空気流
量16を求めているため、該設定酸化空気流量16が実
際には過剰であったり、或いは不足していたりすること
があり、前記設定酸化空気流量16が過剰である場合に
は、副反応としてS28(過硫酸)やIO3(ヨウ素
酸)等の酸化性物質が生成されて該酸化性物質の濃度が
高まり、吸収塔3の図示していない排水処理装置の硝化
菌の活性低下が引き起こされたり、或いは硝化菌が死滅
してしまい、排水処理装置の機能が低下する一方、前記
設定酸化空気流量16が不足している場合には、脱硫性
能が低下してしまうという問題を有していた。
In the case of the above-mentioned conventional flue gas desulfurization apparatus, a multiplier is used without considering the concentration of oxygen (O 2 ) contained in the exhaust gas introduced into the absorption tower 3 at all. Since the inflow SO 2 amount 14 output from 15 is input as it is to the function generator 17 as the SO 2 amount to be forcibly oxidized, and the set oxidized air flow rate 16 is obtained based on the inflow SO 2 amount 14, The set oxidizing air flow rate 16 may be actually excessive or insufficient. If the set oxidizing air flow rate 16 is excessive, S 2 O 8 (persulfuric acid) is used as a side reaction. Oxidizing substances such as acetic acid and IO 3 (iodic acid) are generated, and the concentration of the oxidizing substances increases, causing a decrease in the activity of nitrifying bacteria in a wastewater treatment device (not shown) of the absorption tower 3 or causing nitrifying bacteria. Died and the drainage While the function of the device is decreased, when the setting oxidation air flow 16 is insufficient, the desulfurization performance had deteriorated.

【0010】本発明は、斯かる実情に鑑み、過不足なく
適正な量の酸化空気を吸収塔の液溜部へ供給することが
でき、酸化性物質の生成を抑制して排水処理装置の機能
低下を防止し得、且つ脱硫性能の低下を防止し得る排煙
脱硫装置の酸化空気流量制御方法及び装置を提供しよう
とするものである。
[0010] In view of such circumstances, the present invention can supply an appropriate amount of oxidizing air to the liquid storage section of the absorption tower without excess and deficiency, suppress the generation of oxidizing substances, and improve the function of the wastewater treatment apparatus. It is an object of the present invention to provide a method and an apparatus for controlling an oxidizing air flow rate of a flue gas desulfurization device capable of preventing a decrease and preventing a decrease in desulfurization performance.

【0011】[0011]

【課題を解決するための手段】本発明は、検出された脱
硫ガス流量と吸収塔入口SO2濃度とに基づき流入SO2
量を求めると共に、前記脱硫ガス流量と吸収塔へ導入さ
れる排ガスO2濃度とに基づき自然酸化SO2量を求め、
前記流入SO2量から前記自然酸化SO2量を差し引いて
強制酸化SO2量を求め、該強制酸化SO2量に基づき設
定酸化空気流量を求め、吸収塔の液溜部へ供給される実
際の酸化空気流量が前記設定酸化空気流量と等しくなる
よう、制御を行うことを特徴とする排煙脱硫装置の酸化
空気流量制御方法にかかるものである。
According to the present invention, an inflow SO 2 based on a detected desulfurization gas flow rate and an absorption tower inlet SO 2 concentration.
The amount of natural oxidized SO 2 is determined based on the desulfurization gas flow rate and the exhaust gas O 2 concentration introduced into the absorption tower,
Obtains the inlet SO forced oxidation SO 2 amount by subtracting the natural oxidation SO 2 amount from said 2 weight determines the setting oxidation air flow rate based on the forcible oxidation SO 2 amount, the actual supplied to the liquid reservoir of absorption tower The present invention relates to a method for controlling an oxidizing air flow rate of a flue gas desulfurization device, wherein control is performed such that the oxidizing air flow rate is equal to the set oxidizing air flow rate.

【0012】又、本発明は、脱硫ガス流量を検出する脱
硫ガス流量計と、吸収塔入口SO2濃度を検出する吸収
塔入口SO2濃度計と、吸収塔へ導入される排ガスO2
度を検出する排ガスO2濃度計と、吸収塔の液溜部に酸
化空気を供給する酸化空気ブロワと、前記脱硫ガス流量
と吸収塔入口SO2濃度とに基づき流入SO2量を求める
と共に、前記脱硫ガス流量と排ガスO2濃度とに基づき
自然酸化SO2量を求め、前記流入SO2量から前記自然
酸化SO2量を差し引いて強制酸化SO2量を求め、該強
制酸化SO2量に基づき設定酸化空気流量を求め、前記
酸化空気ブロワから吸収塔の液溜部へ供給される実際の
酸化空気流量が前記設定酸化空気流量と等しくなるよ
う、制御を行う制御器とを備えたことを特徴とする排煙
脱硫装置の酸化空気流量制御装置にかかるものである。
[0012] Further, the present invention provides a desulfurizing gas flow meter for detecting the desulfurized gas flow rate, and the absorption tower inlet SO 2 concentration meter for detecting the absorption tower inlet SO 2 concentration, the exhaust gas O 2 concentration is introduced into the absorption tower An exhaust gas O 2 concentration meter to be detected, an oxidizing air blower for supplying oxidizing air to a liquid reservoir of the absorption tower, and an inflow SO 2 amount based on the desulfurization gas flow rate and the absorption tower inlet SO 2 concentration. seeking a natural oxide SO 2 amount based on the gas flow rate and the exhaust gas O 2 concentration, the calculated inflow SO forced oxidation SO 2 amount by subtracting the natural oxidation SO 2 amount from said 2 weight set based on the forcible oxidation SO 2 amount A controller for determining an oxidizing air flow rate and controlling the actual oxidizing air flow rate supplied from the oxidizing air blower to the liquid reservoir of the absorption tower to be equal to the set oxidizing air flow rate. Oxidizing air in flue gas desulfurization equipment In which according to the quantity control device.

【0013】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0014】本発明の排煙脱硫装置の酸化空気流量制御
方法においては、排煙脱硫装置の運転時には、検出され
た脱硫ガス流量と吸収塔入口SO2濃度とに基づき流入
SO2量が求められると共に、前記脱硫ガス流量と吸収
塔へ導入される排ガスO2濃度とに基づき自然酸化SO2
量が求められ、前記流入SO2量から前記自然酸化SO 2
量が差し引かれて強制酸化SO2量が求められ、該強制
酸化SO2量に基づき設定酸化空気流量が求められ、吸
収塔の液溜部へ供給される実際の酸化空気流量が前記設
定酸化空気流量と等しくなるよう、制御が行われる。
[0014] Oxidizing air flow rate control of the flue gas desulfurization apparatus of the present invention
In the method, during the operation of the flue gas desulfurization unit,
Desulfurization gas flow rate and SO at inlet of absorption towerTwoInflow based on concentration
SOTwoAmount and the desulfurization gas flow rate and absorption
Exhaust gas O introduced into the towerTwoNatural oxidation SO based on concentrationTwo
The quantity is determined and said inflow SOTwoFrom the amount of the natural oxidation SO Two
The amount is deducted and forced oxidation SOTwoThe quantity is determined and said
Oxidized SOTwoThe set oxidizing air flow rate is determined based on the
The actual flow rate of oxidizing air supplied to the liquid reservoir of the
Control is performed so as to be equal to the constant oxidation air flow rate.

【0015】又、本発明の排煙脱硫装置の酸化空気流量
制御装置においては、排煙脱硫装置の運転時には、脱硫
ガス流量計で検出された脱硫ガス流量と、吸収塔入口S
2濃度計で検出された吸収塔入口SO2濃度と、酸化空
気流量計で検出された酸化空気流量と、排ガスO2濃度
計で検出された排ガスO2濃度とが制御器へ入力され、
該制御器において、前記脱硫ガス流量と吸収塔入口SO
2濃度とに基づき流入SO2量が求められると共に、前記
脱硫ガス流量と排ガスO2濃度とに基づき自然酸化SO2
量が求められ、前記流入SO2量から前記自然酸化SO2
量が差し引かれて強制酸化SO2量が求められ、該強制
酸化SO2量に基づき設定酸化空気流量が求められ、前
記酸化空気ブロワから吸収塔の液溜部へ供給される実際
の酸化空気流量が前記設定酸化空気流量と等しくなるよ
う、制御が行われる。
Further, in the oxidizing air flow control device of the flue gas desulfurization apparatus of the present invention, when the flue gas desulfurization apparatus is operated, the desulfurization gas flow rate detected by the desulfurization gas flow meter and the absorption tower inlet S
And O 2 concentration meter detected absorption tower inlet SO 2 concentration, and the oxidation air flow rate detected by the oxidation air flow meter, and the exhaust gas O 2 concentration detected by the exhaust gas O 2 concentration meter are inputted to the controller,
In the controller, the desulfurization gas flow rate and absorption tower inlet SO
2 concentration, the amount of inflow SO 2 is determined, and based on the desulfurization gas flow rate and the exhaust gas O 2 concentration, natural oxidized SO 2
The amount is determined, the natural oxidation from the inflow SO 2 amount SO 2
The amount is determined has forced oxidation SO 2 amount is subtracted, set oxidized air flow based on the forcible oxidation SO 2 amount is determined, the actual oxidation air flow supplied from the oxidation air blower to the reservoir of the absorption column Is controlled to be equal to the set oxidizing air flow rate.

【0016】この結果、本発明の排煙脱硫装置の酸化空
気流量制御方法及び装置においては、吸収塔へ導入され
る排ガス中に含まれる排ガスO2濃度を考慮して設定酸
化空気流量が求められる形となるため、該設定酸化空気
流量が適正化され、副反応としてのS28(過硫酸)や
IO3(ヨウ素酸)等の酸化性物質の生成が抑制され、
吸収塔の排水処理装置の硝化菌の活性低下や硝化菌の死
滅が防止され、排水処理装置の機能が低下しなくなると
共に、脱硫性能も低下しなくなる。
As a result, in the method and apparatus for controlling the oxidizing air flow rate of the flue gas desulfurization apparatus according to the present invention, the set oxidizing air flow rate is determined in consideration of the concentration of the exhaust gas O 2 contained in the exhaust gas introduced into the absorption tower. In this case, the set oxidizing air flow rate is optimized, and the generation of oxidizing substances such as S 2 O 8 (persulfuric acid) and IO 3 (iodic acid) as side reactions is suppressed,
The decrease in the activity of the nitrifying bacteria and the death of the nitrifying bacteria in the wastewater treatment device of the absorption tower are prevented, so that the function of the wastewater treatment device does not decrease and the desulfurization performance does not decrease.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1及び図2は本発明を実施する形態の一
例であって、図中、図4及び図5と同一の符号を付した
部分は同一物を表わしており、基本的な構成は図4及び
図5に示す従来のものと同様であるが、本図示例の特徴
とするところは、図1及び図2に示す如く、吸収塔3へ
導入される排ガスO2濃度Dを検出する排ガスO2濃度計
22と、脱硫ガス流量計9で検出された脱硫ガス流量A
に対して前記排ガスO 2濃度計22で検出された排ガス
2濃度Dを掛けることにより、排ガス中に含まれる流
入O2量23を求めて出力する乗算器24と、該乗算器
24から出力される流入O2量23に基づき吸収塔3内
において自然酸化される自然酸化SO2量25を求めて
出力する関数発生器26と、乗算器15から出力される
流入SO2量14から前記自然酸化SO2量25を差し引
いて強制的に酸化すべき強制酸化SO2量14’を求め
て関数発生器17へ出力する減算器27とを追加装備し
た点にある。
FIGS. 1 and 2 show an embodiment of the present invention.
This is an example, in which the same reference numerals as in FIGS. 4 and 5 are used.
The parts represent the same thing, and the basic configuration is shown in FIG.
It is the same as the conventional one shown in FIG.
1 and 2, as shown in FIG. 1 and FIG.
Exhaust gas O to be introducedTwoExhaust gas O for detecting concentration DTwoDensitometer
22, the desulfurization gas flow rate A detected by the desulfurization gas flow meter 9
The exhaust gas O TwoExhaust gas detected by the concentration meter 22
OTwoBy multiplying by the concentration D, the flow contained in the exhaust gas
OTwoA multiplier 24 for obtaining and outputting the quantity 23;
Inflow O output from 24TwoInside the absorption tower 3 based on the quantity 23
Oxidized SO which is naturally oxidized inTwoFor the quantity 25
Function generator 26 for output and output from multiplier 15
Inflow SOTwoFrom the amount 14, the natural oxidized SOTwoDeduct 25
Oxidized SO to be forcibly oxidizedTwoAmount 14 '
And a subtractor 27 for outputting to the function generator 17
It is in the point.

【0019】これにより、前記関数発生器17において
は、従来のように流入SO2量14ではなく強制酸化S
2量14’に基づいて設定酸化空気流量16が求めら
れるようになる(図6参照)。
[0019] Thus, in the function generator 17 is a conventional inlet SO 2 amount 14 rather than forced oxidation S as
The set oxidizing air flow rate 16 is obtained based on the O 2 amount 14 ′ (see FIG. 6).

【0020】尚、前記関数発生器26には、図3に示す
ような関数が入力されており、該関数は、流入O2量2
3の増減に対し略比例させて自然酸化SO2量25を増
減させることを表わしている。
[0020] Incidentally, the function generator 26 is input function as shown in FIG. 3, the function number, the inflow amount of O 2 2
3 indicates that the natural oxidized SO 2 amount 25 is increased or decreased substantially in proportion to the increase or decrease in the amount of natural oxide SO 2 .

【0021】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.

【0022】排煙脱硫装置の運転時には、脱硫ガス流量
計9で検出された脱硫ガス流量Aと、吸収塔入口SO2
濃度計10で検出された吸収塔入口SO2濃度Bと、酸
化空気流量計11で検出された酸化空気流量Cと、排ガ
スO2濃度計22で検出された排ガスO2濃度Dとが制御
器6へ入力され、該制御器6の乗算器15において前記
脱硫ガス流量計9で検出された脱硫ガス流量Aに対して
前記吸収塔入口SO2濃度計10で検出された吸収塔入
口SO2濃度Bを掛けることにより、排ガス中から除去
すべき流入SO2量14が求められて減算器27へ出力
される一方、乗算器24において前記脱硫ガス流量計9
で検出された脱硫ガス流量Aに対して前記排ガスO2
度計22で検出された排ガスO2濃度Dを掛けることに
より、排ガス中に含まれる流入O2量23が求められ関
数発生器26へ出力され、該関数発生器26において前
記乗算器24から出力される流入O2量23に基づき吸
収塔3内において自然酸化される自然酸化SO2量25
が求められて前記減算器27へ出力され、該減算器27
において前記乗算器15から出力される流入SO2量1
4から前記自然酸化SO2量25が差し引かれて強制的
に酸化すべき強制酸化SO2量14’が求められて関数
発生器17へ出力され、該関数発生器17において前記
減算器27から出力される強制酸化SO2量14’に基
づき設定酸化空気流量16が求められて減算器19へ出
力され、該減算器19において設定酸化空気流量16と
前記酸化空気流量計11で検出された酸化空気流量Cと
の差が求められ、酸化空気流量偏差18が比例積分調節
器21へ出力され、該比例積分調節器21において前記
減算器19から出力される酸化空気流量偏差18が比例
積分処理され該酸化空気流量偏差18をなくすための開
度指令20が流量調整ダンパ7へ出力され、該流量調整
ダンパ7の開度が調節され、前記酸化空気流量Cが設定
酸化空気流量16と等しくなるよう制御が行われる。
During operation of the flue gas desulfurization unit, the desulfurization gas flow rate A detected by the desulfurization gas flow meter 9 and the absorption tower inlet SO 2
The controller controls the SO 2 concentration B at the inlet of the absorption tower detected by the concentration meter 10, the oxidizing air flow rate C detected by the oxidizing air flow meter 11, and the exhaust gas O 2 concentration D detected by the exhaust gas O 2 concentration meter 22. is input to 6, the absorption tower inlet SO 2 concentration detected by the absorption tower inlet SO 2 concentration meter 10 for the detected desulfurized gas flow a by the desulfurization gas flowmeter 9 in the multiplier 15 of the controller 6 B, the inflow SO 2 amount 14 to be removed from the exhaust gas is determined and output to the subtractor 27, while the desulfurization gas flow meter 9
Is multiplied by the exhaust gas O 2 concentration D detected by the exhaust gas O 2 concentration meter 22 to the desulfurization gas flow rate A detected by the above, the inflow O 2 amount 23 contained in the exhaust gas is obtained, and is sent to the function generator 26. The naturally oxidized SO 2 amount 25 which is output and is naturally oxidized in the absorption tower 3 based on the inflow O 2 amount 23 output from the multiplier 24 in the function generator 26.
Is output to the subtractor 27, and the subtractor 27
, The inflow SO 2 amount 1 output from the multiplier 15
4 is subtracted from the natural oxidized SO 2 amount 25 to obtain a forced oxidized SO 2 amount 14 ′ to be forcibly oxidized and output to the function generator 17, where the output from the subtractor 27 is output. The set oxidizing air flow rate 16 is obtained based on the forced oxidized SO 2 amount 14 ′ and output to the subtractor 19, where the set oxidizing air flow rate 16 and the oxidized air detected by the oxidizing air flow meter 11 are detected. The difference from the flow rate C is determined, and the oxidizing air flow rate deviation 18 is output to the proportional-integral controller 21. The oxidizing air flow rate deviation 18 output from the subtractor 19 is proportional-integrated in the proportional-integral controller 21. An opening degree command 20 for eliminating the oxidizing air flow rate deviation 18 is output to the flow rate adjusting damper 7, the opening degree of the flow rate adjusting damper 7 is adjusted, and the oxidizing air flow rate C becomes equal to the set oxidizing air flow rate 16 or the like. Kunar so control is performed.

【0023】この結果、吸収塔3へ導入される排ガス中
に含まれる排ガスO2濃度Dを考慮して設定酸化空気流
量16が求められる形となるため、該設定酸化空気流量
16が適正化され、副反応としてのS28(過硫酸)や
IO3(ヨウ素酸)等の酸化性物質の生成が抑制され、
吸収塔3の図示していない排水処理装置の硝化菌の活性
低下や硝化菌の死滅が防止され、排水処理装置の機能が
低下しなくなると共に、脱硫性能も低下しなくなる。
As a result, the set oxidizing air flow rate 16 is determined in consideration of the exhaust gas O 2 concentration D contained in the exhaust gas introduced into the absorption tower 3, so that the set oxidizing air flow rate 16 is optimized. The formation of oxidizing substances such as S 2 O 8 (persulfuric acid) and IO 3 (iodic acid) as side reactions is suppressed,
A decrease in the activity of the nitrifying bacteria and the death of the nitrifying bacteria in the wastewater treatment device (not shown) of the absorption tower 3 are prevented, so that the function of the wastewater treatment device does not decrease and the desulfurization performance does not decrease.

【0024】こうして、過不足なく適正な量の酸化空気
を吸収塔3の液溜部1aへ供給することができ、酸化性
物質の生成を抑制して排水処理装置の機能低下を防止し
得、且つ脱硫性能の低下を防止し得る。
In this manner, an appropriate amount of oxidizing air can be supplied to the liquid storage section 1a of the absorption tower 3 without excess or shortage, and generation of oxidizing substances can be suppressed to prevent deterioration of the function of the wastewater treatment apparatus. In addition, a decrease in desulfurization performance can be prevented.

【0025】尚、本発明の排煙脱硫装置の酸化空気流量
制御方法及び装置は、上述の図示例にのみ限定されるも
のではなく、吸収塔へ導入される排ガスO2濃度を検出
する排ガスO2濃度計は、必ずしも図1に示すように吸
収塔3の入口近傍に設ける必要はなく、吸収塔3の上流
側において既に設けられている場合にはそれを利用して
もよいこと、排ガスを排出するボイラ制御装置の排ガス
2設定値を利用する等、その他、本発明の要旨を逸脱
しない範囲内において種々変更を加え得ることは勿論で
ある。
The method and apparatus for controlling the flow rate of oxidized air in the flue gas desulfurization apparatus according to the present invention are not limited to the above-described example, but the exhaust gas O 2 for detecting the concentration of the exhaust gas O 2 introduced into the absorption tower. 2 The concentration meter does not necessarily need to be provided near the inlet of the absorption tower 3 as shown in FIG. 1, and may be used if it is already provided on the upstream side of the absorption tower 3. etc. utilizing exhaust gas O 2 set value of the boiler control unit for discharging the other, it is a matter of course that within the scope not departing from the gist of the present invention that various changes and modifications may be made.

【0026】[0026]

【発明の効果】以上、説明したように本発明の排煙脱硫
装置の酸化空気流量制御方法及び装置によれば、過不足
なく適正な量の酸化空気を吸収塔の液溜部へ供給するこ
とができ、酸化性物質の生成を抑制して排水処理装置の
機能低下を防止し得、且つ脱硫性能の低下を防止し得る
という優れた効果を奏し得る。
As described above, according to the method and apparatus for controlling the oxidizing air flow rate of a flue gas desulfurization apparatus of the present invention, an appropriate amount of oxidizing air can be supplied to the liquid reservoir of the absorption tower without excess or shortage. Thus, an excellent effect of suppressing the generation of the oxidizing substance to prevent a decrease in the function of the wastewater treatment apparatus and preventing a decrease in the desulfurization performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例の全体概要構成図
である。
FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention.

【図2】本発明を実施する形態の一例の制御ブロック図
である。
FIG. 2 is a control block diagram illustrating an example of an embodiment of the present invention.

【図3】図2に示す関数発生器(26)に設定されてい
る関数を表わす線図である。
FIG. 3 is a diagram showing a function set in a function generator (26) shown in FIG. 2;

【図4】従来例の全体概要構成図である。FIG. 4 is an overall schematic configuration diagram of a conventional example.

【図5】従来例の制御ブロック図である。FIG. 5 is a control block diagram of a conventional example.

【図6】図2及び図5に示す関数発生器(17)に設定
されている関数を表わす線図である。
FIG. 6 is a diagram showing functions set in the function generator (17) shown in FIGS. 2 and 5;

【符号の説明】[Explanation of symbols]

1 吸収液 1a 液溜部 3 吸収塔 5 酸化空気ブロワ 6 制御器 7 流量調整ダンパ 9 脱硫ガス流量計 10 吸収塔入口SO2濃度計 11 酸化空気流量計 14 流入SO2量 14’ 強制酸化SO2量 15 乗算器 16 設定酸化空気流量 17 関数発生器 18 酸化空気流量偏差 19 減算器 20 開度指令 21 比例積分調節器 22 排ガスO2濃度計 23 流入O2量 24 乗算器 25 自然酸化SO2量 26 関数発生器 27 減算器 A 脱硫ガス流量 B 吸収塔入口SO2濃度 C 酸化空気流量 D 排ガスO2濃度1 absorption liquid 1a liquid reservoir 3 absorption tower 5 oxidation air blower 6 controller 7 flow control damper 9 desulfurized gas flowmeter 10 absorption tower inlet SO 2 concentration meter 11 oxidation air meter 14 flows SO 2 amount 14 'forced oxidation SO 2 The amount 15 the multiplier 16 set oxide airflow 17 function generator 18 oxidizing air flow rate difference 19 subtractor 20 opening command 21 proportional integral adjuster 22 exhaust gas O 2 concentration meter 23 flows O 2 amount 24 the multiplier 25 natural oxidation SO 2 amount 26 function generator 27 subtractor A desulfurizing gas flow B absorption tower inlet SO 2 concentration C oxidation air flow D exhaust gas O 2 concentration

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 検出された脱硫ガス流量と吸収塔入口S
2濃度とに基づき流入SO2量を求めると共に、前記脱
硫ガス流量と吸収塔へ導入される排ガスO2濃度とに基
づき自然酸化SO2量を求め、前記流入SO2量から前記
自然酸化SO 2量を差し引いて強制酸化SO2量を求め、
該強制酸化SO2量に基づき設定酸化空気流量を求め、
吸収塔の液溜部へ供給される実際の酸化空気流量が前記
設定酸化空気流量と等しくなるよう、制御を行うことを
特徴とする排煙脱硫装置の酸化空気流量制御方法。
1. Detected desulfurization gas flow rate and absorption tower inlet S
OTwoInflow SO based on concentrationTwoAnd the amount
Sulfur gas flow rate and exhaust gas O introduced into the absorption towerTwoBased on concentration
Natural oxidation SOTwoAnd determine the quantityTwoFrom the quantity
Natural oxidation SO TwoSubtract the amount to force oxidation SOTwoFind the quantity,
The forced oxidation SOTwoObtain the set oxidizing air flow rate based on the amount,
The actual oxidizing air flow rate supplied to the liquid reservoir of the absorption tower is
Perform control so that it is equal to the set oxidizing air flow rate.
A method for controlling an oxidizing air flow rate of a flue gas desulfurization apparatus.
【請求項2】 脱硫ガス流量を検出する脱硫ガス流量計
と、吸収塔入口SO 2濃度を検出する吸収塔入口SO2
度計と、吸収塔へ導入される排ガスO2濃度を検出する
排ガスO2濃度計と、吸収塔の液溜部に酸化空気を供給
する酸化空気ブロワと、 前記脱硫ガス流量と吸収塔入口SO2濃度とに基づき流
入SO2量を求めると共に、前記脱硫ガス流量と排ガス
2濃度とに基づき自然酸化SO2量を求め、前記流入S
2量から前記自然酸化SO2量を差し引いて強制酸化S
2量を求め、該強制酸化SO2量に基づき設定酸化空気
流量を求め、前記酸化空気ブロワから吸収塔の液溜部へ
供給される実際の酸化空気流量が前記設定酸化空気流量
と等しくなるよう、制御を行う制御器とを備えたことを
特徴とする排煙脱硫装置の酸化空気流量制御装置。
2. A desulfurization gas flow meter for detecting a desulfurization gas flow rate.
And the absorption tower entrance SO TwoAbsorption tower inlet SO for detecting concentrationTwoDark
Meter and exhaust gas O introduced into the absorption towerTwoDetect concentration
Exhaust gas OTwoSupply oxidizing air to the concentration meter and the liquid reservoir of the absorption tower
Oxidizing air blower, and the desulfurization gas flow rate and absorption tower inlet SOTwoFlow based on concentration
Enter SOTwoAmount and the desulfurization gas flow rate and exhaust gas
OTwoNatural oxidation SO based on concentrationTwoThe flow rate
OTwoFrom the amount of the natural oxidation SOTwoForced oxidation S by subtracting the amount
OTwoAnd the forced oxidation SOTwoSet oxidizing air based on quantity
Obtain the flow rate from the oxidizing air blower to the liquid reservoir of the absorption tower
The actual oxidizing air flow supplied is equal to the set oxidizing air flow.
And a controller for controlling so as to be equal to
A oxidizing air flow control device for flue gas desulfurization equipment.
JP10012650A 1998-01-26 1998-01-26 Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor Pending JPH11207144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10012650A JPH11207144A (en) 1998-01-26 1998-01-26 Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10012650A JPH11207144A (en) 1998-01-26 1998-01-26 Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor

Publications (1)

Publication Number Publication Date
JPH11207144A true JPH11207144A (en) 1999-08-03

Family

ID=11811253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10012650A Pending JPH11207144A (en) 1998-01-26 1998-01-26 Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor

Country Status (1)

Country Link
JP (1) JPH11207144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043208A (en) * 2018-01-17 2018-05-18 华电滕州新源热电有限公司 Wet desulphurization oxidation wind air quantity control method, control system and wet desulphurization device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043208A (en) * 2018-01-17 2018-05-18 华电滕州新源热电有限公司 Wet desulphurization oxidation wind air quantity control method, control system and wet desulphurization device

Similar Documents

Publication Publication Date Title
JP6660953B2 (en) Wet flue gas desulfurization device and method of operating wet flue gas desulfurization device
JP3968457B2 (en) Wet flue gas desulfurization method
JPH11147020A (en) Method and apparatus for controlling flow rate of absorbent slurry at starting and stop of circulation pump for absorbing column in exhaust gas desulfurization facility
JPH11207144A (en) Method for controlling flow rate of oxidizing air of desulfurizer for stack gas and device therefor
JP4433268B2 (en) Wet flue gas desulfurization method and apparatus
JP3997340B2 (en) Method of controlling the number of absorption tower circulation pumps in flue gas desulfurization equipment
JPH10128053A (en) Stack gas treating device and treatment of stack gas
JPH11244646A (en) Control of flow rate of absorbent slurry of stack gas desulfurizer and device therefor
JP3864566B2 (en) Absorbent slurry concentration control device for flue gas desulfurization equipment
JP3701526B2 (en) Method and apparatus for controlling flue gas desulfurization apparatus
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
JPH1190172A (en) Control method and controller for absorbing liquid level in flue gas desulfurizer
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPH11207143A (en) Desulfurizer for stack gas
JPH0573452B2 (en)
JP3089173B2 (en) Wet flue gas desulfurization equipment
JP3757597B2 (en) Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus
JPH09327616A (en) Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization
JP3414127B2 (en) Oxidizing air supply control method and apparatus for flue gas desulfurization equipment
JP3575502B2 (en) Absorbent flow control device for flue gas desulfurization unit
JPH10249145A (en) Method of controlling number of absorber circulating pumps of flue gas desurfurizer
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JP2000015051A (en) Control method for absorption tower bleed liquid flow rate in flue gas desulfurization apparatus
JPH11147021A (en) Method and device for controlling sludge reception into absorption column of fuel-gas desulfurization device
JPH05228336A (en) Ph controller for desulfurizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131