JPH11204098A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH11204098A
JPH11204098A JP10006695A JP669598A JPH11204098A JP H11204098 A JPH11204098 A JP H11204098A JP 10006695 A JP10006695 A JP 10006695A JP 669598 A JP669598 A JP 669598A JP H11204098 A JPH11204098 A JP H11204098A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium secondary
negative electrode
aqueous silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10006695A
Other languages
Japanese (ja)
Other versions
JP4055024B2 (en
Inventor
Kenichiro Kami
謙一郎 加美
Hiroshi Ueshima
啓史 上嶋
Tokuichi Hosokawa
徳一 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00669598A priority Critical patent/JP4055024B2/en
Publication of JPH11204098A publication Critical patent/JPH11204098A/en
Application granted granted Critical
Publication of JP4055024B2 publication Critical patent/JP4055024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery of a high capacity excellent in load characteristics and an output density characteristic. SOLUTION: This lithium secondary battery comprises a positive electrode 1 capable of emitting lithium ion, a negative electrode 2 capable of storage and releasing lithium ion emitted out of the positive electrode 1, and an electrolyte capable of moving the lithium ion between the positive electrode 1 and the negative electrode 2. Such a lithium secondary battery is provided with at least one of a positive electrode 1 molded from a positive electrode mix obtained by mixing a powdered positive electrode active material with an aqueous silane emulsion produced by dispersing a finely granular aqueous silane polymer resin having alkoxysilyl group is an aqueous solution or a negative electrode 2 molded from a negative electrode mix obtained by mixing a powdered negative electrode active material with an aqueous silane emulsion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ノート型コンピュ
ーターや小型携帯機器などの電子機器や自動車のバッテ
リーに利用できるリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery which can be used for a battery of an electronic device such as a notebook computer or a small portable device or a vehicle.

【0002】[0002]

【従来の技術】近年、ノート型コンピューターや小型携
帯機器などの電子機器、あるいは自動車のクリーンなエ
ネルギー源として利用できる高性能な二次電池の開発が
盛んである。こうした二次電池には、小型、軽量であり
ながら大容量・高出力をもつ、すなわち高エネルギー密
度・高出力密度をもつ二次電池が求められている。こう
した性能が得られる二次電池として、リチウム二次電池
が特に注目されている。
2. Description of the Related Art In recent years, the development of high-performance secondary batteries that can be used as electronic devices such as notebook computers and small portable devices or as clean energy sources for automobiles has been actively pursued. Such a secondary battery is required to have a large capacity and a high output while being small and lightweight, that is, a high energy density and a high output density. As a secondary battery capable of obtaining such performance, a lithium secondary battery has been particularly attracting attention.

【0003】リチウム二次電池は、リチウムイオンを放
出できる正極と、該正極活物質から放出された該リチウ
ムイオンを吸蔵および放出できる負極と、該正極と該負
極との間で該リチウムイオンを移動させる電解質と、を
備える電池である。従来より、その正極の多くは、Li
Mn24など粉末状の正極活物質がポリビニリデンフロ
ライド(PVDF)やポリテロラフルオロエチレンなど
の結着剤とともにN−メチル−2−ピロリドン(NM
P)などの溶剤に混合されて調製された合剤より成形さ
れている。
[0003] A lithium secondary battery has a positive electrode capable of releasing lithium ions, a negative electrode capable of storing and releasing the lithium ions released from the positive electrode active material, and moving the lithium ions between the positive electrode and the negative electrode. And an electrolyte to be formed. Conventionally, most of the positive electrodes are Li
A powdered positive electrode active material such as Mn 2 O 4 is used together with a binder such as polyvinylidene fluoride (PVDF) or polytellorafluoroethylene to form N-methyl-2-pyrrolidone (NM
It is molded from a mixture prepared by mixing with a solvent such as P).

【0004】一方、負極の多くは、黒鉛など粉末状の炭
素質の負極活物質がPVDFなどの結着剤とともにNM
Pなどの溶剤に混合されて調製された合剤より成形され
ている。しかしながら、PVDFのように溶媒に対して
溶解性をもつ結着剤は、活物質の表面を被覆してしま
い、電極のリチウムイオンの放出及び吸蔵を阻害してし
まう。それゆえ、電池の負荷特性や出力密度特性を低下
させてしまう問題があった。
[0004] On the other hand, many of the negative electrodes are composed of a powdery carbonaceous negative electrode active material such as graphite together with a binder such as PVDF.
It is molded from a mixture prepared by mixing with a solvent such as P. However, a binder that is soluble in a solvent, such as PVDF, covers the surface of the active material and inhibits the release and occlusion of lithium ions in the electrode. Therefore, there has been a problem that load characteristics and output density characteristics of the battery are reduced.

【0005】一方、ポリテロラフルオロエチレンは、微
粒子の形態でディスパージョン状、あるいはエマルジョ
ン状、ラテックス状の結着剤とされて用いられる。この
ようなフッ素樹脂などと無反応性の官能基をもつ微粒子
状ポリマー樹脂を含む結着剤は、先の溶媒に対して溶解
性をもつ結着剤のように活物質の表面を被覆してしまう
ことはないが、十分な結着性が得られない。そこで結着
性を向上させるため、その結着の使用量を増加すると、
電極にもたせることのできる活物質の量、すなわち電池
内に収容できる活物質量が低減するとともに、電池の容
量が低減するという問題があった。
On the other hand, polytellorafluoroethylene is used in the form of fine particles as a dispersion, emulsion, or latex binder. A binder containing a particulate polymer resin having a functional group that is non-reactive with such a fluororesin covers the surface of the active material like the binder having solubility in the previous solvent. Although it does not happen, sufficient binding properties cannot be obtained. Therefore, in order to improve the binding property, if the usage of the binding is increased,
There has been a problem that the amount of active material that can be provided on the electrode, that is, the amount of active material that can be accommodated in the battery is reduced, and the capacity of the battery is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたものであり、負荷特性及び出力密度特性に
優れた高容量なリチウム二次電池を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a high capacity lithium secondary battery having excellent load characteristics and output density characteristics.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明のリチウム二次電池は、リチウムイオンを放出できる
正極と、該正極から放出された該リチウムイオンを吸蔵
および放出できる負極と、該正極と該負極との間で該リ
チウムイオンを移動させる電解質と、を備えるリチウム
二次電池において、粉末状の正極活物質と、アルコキシ
シリル基をもつ微粒子状の水性シラン系ポリマー樹脂が
水性液中に分散してなる水性シラン系エマルジョンと、
が混合されてなる合剤より成形された該正極、並びに粉
末状の負極活物質と該水性シラン系エマルジョンとが混
合されてなる合剤より成形された該負極の少なくとも一
方を備えることを特徴とする。
According to the present invention, there is provided a lithium secondary battery comprising: a positive electrode capable of releasing lithium ions; a negative electrode capable of storing and releasing the lithium ions released from the positive electrode; And an electrolyte for transferring the lithium ions between the negative electrode, and a lithium secondary battery comprising: a powdery positive electrode active material; and a fine-particle aqueous silane-based polymer resin having an alkoxysilyl group in an aqueous liquid. An aqueous silane-based emulsion dispersed,
Characterized in that it comprises at least one of the positive electrode formed from a mixture obtained by mixing and the negative electrode formed from a mixture obtained by mixing a powdered negative electrode active material and the aqueous silane-based emulsion. I do.

【0008】この水性シラン系エマルジョンでは、水性
シラン系ポリマー樹脂がアルコキシシリル基を官能基と
してもっている。この水性シラン系ポリマー樹脂のアル
コキシシリル基は、正極用の合剤あるいは負極用の合剤
の調製過程において加水分解され、シラノール基が形成
される。こうしたシラノール基は、正極用の合剤あるい
は負極用の合剤が集電体に塗布されて乾燥される過程で
互いに架橋し合う。この架橋し合ったシラノール基は、
合剤中に含まれる活物質の表面に存在する水酸基と結合
する。それゆえ、活物質どうしの結着性において、結着
剤の含有量が少なくても優れた結着性を得ることができ
る。結着剤の含有量を少なくすれば、電池の容量を増加
させることができる。
In this aqueous silane emulsion, the aqueous silane polymer resin has an alkoxysilyl group as a functional group. The alkoxysilyl group of the aqueous silane-based polymer resin is hydrolyzed in the process of preparing the mixture for the positive electrode or the mixture for the negative electrode to form a silanol group. These silanol groups crosslink with each other during the process of applying the mixture for the positive electrode or the mixture for the negative electrode to the current collector and drying the mixture. The crosslinked silanol groups are
It binds to hydroxyl groups present on the surface of the active material contained in the mixture. Therefore, in the binding property between active materials, excellent binding property can be obtained even if the content of the binder is small. If the content of the binder is reduced, the capacity of the battery can be increased.

【0009】また、微粒子状の水性シラン系ポリマー樹
脂は水性シラン系エマルジョン中に点在した状態で存在
するため、活物質表面を被覆することがなく、かつリチ
ウムイオンの移動を妨げることがない。それゆえ、リチ
ウム二次電池の負荷特性及び出力密度特性が向上する。
Further, since the finely divided aqueous silane-based polymer resin is present in a dispersed state in the aqueous silane-based emulsion, it does not cover the active material surface and does not hinder the movement of lithium ions. Therefore, load characteristics and output density characteristics of the lithium secondary battery are improved.

【0010】[0010]

【発明の実施の形態】前記水性シラン系ポリマー樹脂
は、架橋性アルコキシシランを含むポリマーの少なくと
も一種であることが好ましい。架橋性アルコキシシラン
を含むポリマーは強い接着性をもつため、活物質どうし
の結着性を向上させることができる。前記水性液は、
水、アルコール及びグリコールの少なくとも一種である
ことが好ましい。これらの水性液は、水性シラン系ポリ
マー樹脂を分散性良く分散させることができる。
DETAILED DESCRIPTION OF THE INVENTION The aqueous silane-based polymer resin is preferably at least one polymer containing a crosslinkable alkoxysilane. Since a polymer containing a crosslinkable alkoxysilane has strong adhesiveness, the binding property between active materials can be improved. The aqueous liquid,
It is preferably at least one of water, alcohol and glycol. These aqueous liquids can disperse the aqueous silane-based polymer resin with good dispersibility.

【0011】特に、前記グリコールはプロピレングリコ
ール及びエチレングリコールの少なくとも一種であるこ
とが好ましい。プロピレングリコールは揮発性に優れる
ため、電極体の成形時において、比較的低い温度の加熱
により合剤から容易に除去することができる。前記水性
シラン系ポリマー樹脂は1μm以下の粒径をもつことが
好ましい。このような水性シラン系ポリマー樹脂は、十
分に小さな粒径をもつため、水性シラン系エマルジョン
中の水性シラン系ポリマー樹脂の分散性が向上する。そ
の結果、リチウムイオンの移動性がさらに向上する。
In particular, the glycol is preferably at least one of propylene glycol and ethylene glycol. Propylene glycol has excellent volatility, and can be easily removed from the mixture by heating at a relatively low temperature during molding of the electrode body. The aqueous silane-based polymer resin preferably has a particle size of 1 μm or less. Since such an aqueous silane-based polymer resin has a sufficiently small particle size, the dispersibility of the aqueous silane-based polymer resin in the aqueous silane-based emulsion is improved. As a result, the mobility of lithium ions is further improved.

【0012】また、前記水性シラン系エマルジョンは、
水性シラン系ポリマー樹脂とともにフッ素系ディスパー
ジョン、SBRラテックス及びNBRラテックスの少な
くとも一種を含むことが好ましい。このような添加剤
は、活物質の膨張・収縮を吸収することができ、シート
状電極の可撓性を向上させることができる。このとき、
前記フッ素系ディスパージョンは、ポリテトラフルオロ
エチレン、テトラフルオロエチレン−ヘキサフルオロプ
ロピレン共重合体、テトラフルオロエチレン−パーフル
オロアルキルビニルエーテル共重合体の少なくとも一種
であることが好ましい。これらの物質は、電極の耐薬品
性及び耐熱性を向上させることができる。
Further, the aqueous silane-based emulsion includes:
It is preferable to include at least one of a fluorine-based dispersion, an SBR latex, and an NBR latex together with the aqueous silane-based polymer resin. Such an additive can absorb expansion and contraction of the active material, and can improve the flexibility of the sheet electrode. At this time,
The fluorine-based dispersion is preferably at least one of polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and tetrafluoroethylene-perfluoroalkylvinyl ether copolymer. These substances can improve the chemical resistance and heat resistance of the electrode.

【0013】一方、前記正極用合剤及び前記負極用合剤
の少なくとも一方は、分散媒が添加されてなることが好
ましい。この分散媒により正極活物質あるいはまた負極
活物質がさらに合剤中に分散される。このとき、正極用
合剤では、前記正極活物質と前記水性シラン系エマルジ
ョンとを分散媒中で混合することができる。また、負極
用合剤では、前記負極活物質と前記水性シラン系エマル
ジョンとを分散媒中で混合することができる。
On the other hand, it is preferable that at least one of the positive electrode mixture and the negative electrode mixture has a dispersion medium added thereto. The positive electrode active material or the negative electrode active material is further dispersed in the mixture by the dispersion medium. At this time, in the positive electrode mixture, the positive electrode active material and the aqueous silane-based emulsion can be mixed in a dispersion medium. In the negative electrode mixture, the negative electrode active material and the aqueous silane-based emulsion can be mixed in a dispersion medium.

【0014】前記正極用合剤及び前記負極用合剤の少な
くとも一方は、増粘剤、消泡剤、分散剤、表面調製剤、
界面活性剤の少なくとも一種を含むことが好ましい。こ
れらの添加剤により、均一な合剤の塗布面を得ることが
できる。これらの添加剤としては特に、活物質及び水性
シラン系エマルジョンなどと反応性が低く、かつ少ない
添加量でも効果のあるフッ素系化合物及びシリコン系化
合物などを用いることが好ましい。
At least one of the positive electrode mixture and the negative electrode mixture comprises a thickener, an antifoaming agent, a dispersant, a surface preparation agent,
It is preferable to include at least one surfactant. With these additives, a uniform mixture-coated surface can be obtained. As these additives, it is particularly preferable to use a fluorine-based compound and a silicon-based compound which have low reactivity with the active material and the aqueous silane-based emulsion and are effective even with a small amount of addition.

【0015】前記正極用合剤は、前記水性シラン系エマ
ルジョンが合剤全体に対して0.5〜5重量%混合され
てなることが好ましい。このように混合量を限定するこ
とにより、優れた結着性と高い電池容量とを得ることが
できる。このとき、水性シラン系エマルジョンの混合量
が0.5%未満であると優れた結着性が容易に得られ
ず、5%を超えると高い放電容量が容易に得られなくな
る。
The positive electrode mixture is preferably prepared by mixing the aqueous silane-based emulsion in an amount of 0.5 to 5% by weight based on the whole mixture. By limiting the mixing amount in this way, excellent binding properties and high battery capacity can be obtained. At this time, if the amount of the aqueous silane-based emulsion is less than 0.5%, excellent binding properties cannot be easily obtained, and if it exceeds 5%, a high discharge capacity cannot be easily obtained.

【0016】一方、前記負極用合剤は、前記水性シラン
系エマルジョンが合剤全体に対して1〜10重量%混合
されてなることが好ましい。このように混合量を限定す
ることにより、前記正極用合剤と同様に優れた結着性と
高い電池容量とを得ることができる。前記正極活物質
は、導電材とともに水性シラン系エマルジョンと混合さ
れることが好ましい。この導電材により、正極活物質の
電子授受の効率を向上させることができ、電池の放電効
率を向上させることができる。この導電材としては黒鉛
材料などを用いることができる。水性シラン系エマルジ
ョン中の水性シラン系ポリマー樹脂に形成されたシラノ
ール基は、導電材の表面に存在する水酸基とも結合す
る。その結果、活物質と導電材との結着性において、結
着剤の含有量が少なくても優れた結着性を得ることがで
きる。
On the other hand, the negative electrode mixture is preferably formed by mixing the aqueous silane-based emulsion in an amount of 1 to 10% by weight based on the whole mixture. By limiting the mixing amount in this way, excellent binding properties and high battery capacity can be obtained as in the case of the positive electrode mixture. The positive electrode active material is preferably mixed with an aqueous silane emulsion together with a conductive material. With this conductive material, the efficiency of electron transfer of the positive electrode active material can be improved, and the discharge efficiency of the battery can be improved. As the conductive material, a graphite material or the like can be used. Silanol groups formed in the aqueous silane-based polymer resin in the aqueous silane-based emulsion also bind to hydroxyl groups present on the surface of the conductive material. As a result, in the binding property between the active material and the conductive material, an excellent binding property can be obtained even if the content of the binder is small.

【0017】前記負極活物質は炭素材料よりなることが
好ましい。このような負極活物質からなる負極を用いる
ことにより、電池の寿命を長くすることができるととも
に、電池の安全性を向上させることができる。この炭素
材料には、公知の粉末性の炭素材料を用いることができ
るが、結晶性の高い天然黒鉛や人造黒鉛などからなるも
のを用いることが好ましい。このような結晶性の高い炭
素材料を用いることにより、負極のリチウムイオンの授
受効率を向上させることができる。このとき、炭素材料
の粒子形状については特に限定されるものではなく、球
状、鱗片状及び繊維状などの形状をもつものを用いるこ
とができる。また、炭素材料の粒度分布についても特に
限定されるものではない。この炭素材料には、例えば、
黒鉛結晶構造の結晶性の高い球状の炭素粒子であるメソ
フェーズマイクロビーズ(MCMB)を用いることがで
きる。
The negative electrode active material is preferably made of a carbon material. By using the negative electrode made of such a negative electrode active material, the life of the battery can be prolonged, and the safety of the battery can be improved. As the carbon material, a known powdery carbon material can be used, but it is preferable to use a material made of natural graphite or artificial graphite having high crystallinity. By using such a highly crystalline carbon material, the lithium ion transfer efficiency of the negative electrode can be improved. At this time, the particle shape of the carbon material is not particularly limited, and those having a shape such as a sphere, a scale, and a fiber can be used. Further, the particle size distribution of the carbon material is not particularly limited. In this carbon material, for example,
Mesophase microbeads (MCMB), which are spherical carbon particles having a high crystallinity in a graphite crystal structure, can be used.

【0018】ところで、本発明のリチウム二次電池で
は、活物質及び水性シラン系エマルジョンなどの混合方
法については特に限定されるものではなく、超音波分
散、ホモジナイザー、プラネタリーミキサー、ボールミ
ル、ニーダ、インペラーミル及び乳鉢などを用いること
ができる。また、本発明のリチウム二次電池では、正極
及び負極の成形方法は特に限定されるものではないが、
前記正極用合剤及び前記負極用合剤の少なくとも一方
は、導電性をもつ集電体に塗布されて電極体を成すこと
が好ましい。この集電体により、活物質で生じた電気エ
ネルギー(電流)を電池外部へ効率良く流すことができ
る。正極の集電体の材料には、アルミニウムなどを用い
ることができる。負極の集電体の材料には、銅などを用
いることができる。水性シラン系エマルジョン中の水性
シラン系ポリマー樹脂に形成されたシラノール基は、集
電体の表面に存在する水酸基とも結合する。その結果、
活物質と集電体との結着性において、結着剤の含有量が
少なくても優れた結着性を得ることができる。
In the lithium secondary battery of the present invention, the method of mixing the active material and the aqueous silane-based emulsion is not particularly limited. A mill and a mortar can be used. In the lithium secondary battery of the present invention, the method for forming the positive electrode and the negative electrode is not particularly limited,
At least one of the positive electrode mixture and the negative electrode mixture is preferably applied to a conductive current collector to form an electrode body. With this current collector, electric energy (current) generated by the active material can be efficiently flowed outside the battery. Aluminum or the like can be used as a material of the current collector of the positive electrode. Copper or the like can be used as a material of the current collector of the negative electrode. Silanol groups formed in the aqueous silane-based polymer resin in the aqueous silane-based emulsion also bind to hydroxyl groups present on the surface of the current collector. as a result,
In the binding property between the active material and the current collector, excellent binding property can be obtained even when the content of the binder is small.

【0019】例えば、合剤を板状の集電体に塗布して電
極体を成す場合、次のようにして電極体を成形すること
ができる。先ず、ブレードコーター、ロールコーター、
ナイフコーター及びダイコーターなどの塗布方法を用い
て合剤を集電体に塗布する。続いて、恒温槽、熱風乾燥
機及び真空乾燥機などを用いて合剤中の水分など液体成
分を除去し、合剤を固化する。こうして電極体を得るこ
とができるが、ロールプレス及び平板プレスなどのプレ
ス成形をさらに施せば、所定の電極膜厚及び合剤密度を
正確に得ることができる。
For example, when an electrode is formed by applying the mixture to a plate-shaped current collector, the electrode can be formed as follows. First, blade coater, roll coater,
The mixture is applied to the current collector using an application method such as a knife coater and a die coater. Subsequently, liquid components such as water in the mixture are removed using a thermostat, a hot air dryer, a vacuum dryer, or the like, and the mixture is solidified. The electrode body can be obtained in this manner, but if further press forming such as a roll press and a flat plate press is performed, a predetermined electrode film thickness and a mixture density can be accurately obtained.

【0020】一方、前記電解質は、有機溶媒にリチウム
塩を溶解してなることが好ましい。このような電解質を
用いることにより、電極間のリチウムイオンの移動性を
向上させることができる。それゆえ、電池の放電効率を
向上させることができる。このとき、有機溶媒にはエチ
レンカーボネートなどのカーボネート系の有機溶媒を用
いることができる。また、リチウム塩には、LiP
6、LiBF4、LiClO4及びLiAsF6などを用
いることができる。
On the other hand, the electrolyte is preferably formed by dissolving a lithium salt in an organic solvent. By using such an electrolyte, the mobility of lithium ions between the electrodes can be improved. Therefore, the discharge efficiency of the battery can be improved. At this time, a carbonate-based organic solvent such as ethylene carbonate can be used as the organic solvent. In addition, the lithium salt includes LiP
F 6 , LiBF 4 , LiClO 4, LiAsF 6 and the like can be used.

【0021】本発明のリチウム二次電池は、公知のコイ
ン型電池、ボタン型電池、円筒型電池及び角型電池等の
電池と同じ構造形態をもつことができる。
The lithium secondary battery of the present invention can have the same structural form as known batteries such as coin batteries, button batteries, cylindrical batteries, and square batteries.

【0022】[0022]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)本実施例のリチウム二次電池は、図1に模
式的に示すように、リチウムイオンを放出できる正極1
と、正極1から放出されたリチウムイオンを吸蔵及び放
出できる炭素材料よりなる負極2と、電解液3、3とを
備えるコイン型のリチウムイオン二次電池である。この
電池では、正極1、負極2及び非水電解液3がステンレ
スよりそれぞれなる正極ケース4および負極ケース5内
にポリプロピレンよりなるガスケット6、6を介して密
封されている。正極1と負極2との間にはポリエチレン
製のフィルムよりなるセパレータ7が介在している。
The present invention will be described below in detail with reference to examples. (Example 1) A lithium secondary battery of this example has a positive electrode 1 capable of releasing lithium ions as schematically shown in FIG.
And a negative electrode 2 made of a carbon material capable of occluding and releasing lithium ions released from the positive electrode 1, and electrolytic solutions 3 and 3. In this battery, a positive electrode 1, a negative electrode 2, and a non-aqueous electrolyte 3 are sealed in a positive electrode case 4 and a negative electrode case 5 made of stainless steel via gaskets 6, 6 made of polypropylene. A separator 7 made of a polyethylene film is interposed between the positive electrode 1 and the negative electrode 2.

【0023】正極1は、アルミニウムよりなる正極集電
体1aの表面上にLiMn24を正極活物質としてもつ
ものである。正極1は次のようにして形成した。先ず、
LiMn24粉末、鱗片状黒鉛粉末、及び架橋性アルコ
キシシランを含むポリマー(PC−100、東亜合成
(株)製)をそれぞれ89重量部、10重量部及び1重
量部の割合で所定量用意した。この水性シラン系ポリマ
ー樹脂を所定量のプロピレングリコールに懸濁して水性
シラン系エマルジョンを得た。これらLiMn24
末、鱗片状黒鉛粉末及び水性シラン系エマルジョンを混
合してペースト状の正極用合剤を得た。
The positive electrode 1 has LiMn 2 O 4 as a positive electrode active material on the surface of a positive electrode current collector 1a made of aluminum. The positive electrode 1 was formed as follows. First,
Predetermined amounts of LiMn 2 O 4 powder, flaky graphite powder, and a polymer containing crosslinkable alkoxysilane (PC-100, manufactured by Toa Gosei Co., Ltd.) are prepared in 89 parts by weight, 10 parts by weight and 1 part by weight, respectively. did. This aqueous silane-based polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane-based emulsion. These LiMn 2 O 4 powder, flaky graphite powder and aqueous silane-based emulsion were mixed to obtain a paste-like positive electrode mixture.

【0024】次いで、この正極用合剤をアルミニウム箔
にブレードコーターを用いて塗布した。続いて、この塗
布した正極用合剤を80℃の高温槽で乾燥して合剤中の
プロピレングリコールを揮発させて除去し、これを固化
させた。最後に、正極合剤密度が2.7g/ccとなる
ように、この固化させた正極用合剤をロールプレスによ
りプレス成形して正極1を得た。
Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied mixture for a positive electrode was dried in a high-temperature bath at 80 ° C. to volatilize and remove propylene glycol in the mixture, and was solidified. Finally, the solidified positive electrode mixture was press-molded by a roll press to obtain a positive electrode 1 such that the positive electrode mixture density became 2.7 g / cc.

【0025】負極2は、銅よりなる負極集電体2aの表
面上に炭素材料を負極活物質としてもつものである。負
極2は次のようにして形成した。先ず、MCMB粉末及
び架橋性アルコキシシランを含むポリマー(PC−10
0、東亜合成(株)製)をそれぞれ95重量部及び5重
量部の割合で所定量用意した。この水性シラン系ポリマ
ー樹脂を所定量のプロピレングリコールに懸濁して水性
シラン系エマルジョンを得た。これらMCMB粉末及び
水性シラン系エマルジョンを混合してペースト状の負極
用合剤を得た。
The negative electrode 2 has a carbon material as a negative electrode active material on the surface of a negative electrode current collector 2a made of copper. The negative electrode 2 was formed as follows. First, a polymer containing MCMB powder and a crosslinkable alkoxysilane (PC-10)
0, manufactured by Toa Gosei Co., Ltd.) at 95 parts by weight and 5 parts by weight, respectively. This aqueous silane-based polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane-based emulsion. The MCMB powder and the aqueous silane-based emulsion were mixed to obtain a paste-like negative electrode mixture.

【0026】次いで、この負極用合剤を銅箔にブレード
コーターを用いて塗布した。続いて、この塗布した負極
用合剤を80℃の高温槽で乾燥して合剤中のプロピレン
グリコールを揮発させて除去し、これを固化させた。最
後に、負極合剤密度が1.4g/ccとなるように、こ
の固化させた負極用合剤をプレス成形して負極2を得
た。
Next, this negative electrode mixture was applied to a copper foil using a blade coater. Subsequently, the applied mixture for a negative electrode was dried in a high-temperature bath at 80 ° C. to volatilize and remove propylene glycol in the mixture, and was solidified. Finally, the solidified negative electrode mixture was press-molded so that the negative electrode mixture density became 1.4 g / cc, and a negative electrode 2 was obtained.

【0027】非水電解液3は、エチレンカーボネート、
プロピレンカーボネート及びリン酸トリエチルをそれぞ
れ50体積%、25体積%、及び25体積%の割合で混
合して得た溶媒に、電解質としてLiPF6を1モル/
リットルの濃度で溶解して調製した。以上のようにして
得られた正極1、負極2及び非水電解液3を用い、本実
施例のリチウム二次電池を次のようにして作製した。
The non-aqueous electrolyte 3 comprises ethylene carbonate,
LiPF 6 was used as an electrolyte in a solvent obtained by mixing propylene carbonate and triethyl phosphate at 50% by volume, 25% by volume, and 25% by volume, respectively.
It was prepared by dissolving at a concentration of 1 liter. Using the positive electrode 1, the negative electrode 2, and the nonaqueous electrolyte 3 obtained as described above, a lithium secondary battery of this example was manufactured as follows.

【0028】先ず、正極1及び負極2をそれぞれ正極ケ
ース4および負極ケース5に溶接し、これらの溶接体の
間にセパレータ7を挟んで重ね合わせた。続いて非水電
解液3、3を所定場所に注入した後、ガスケット6、6
で密封して本実施例のリチウム二次電池を完成した。 (実施例2)本実施例のリチウム二次電池は、次のよう
にして成形された正極が使用されている他は、実施例1
のリチウム二次電池と同じ電池である。
First, the positive electrode 1 and the negative electrode 2 were welded to the positive electrode case 4 and the negative electrode case 5, respectively, and were overlapped with a separator 7 interposed therebetween. Subsequently, after injecting the non-aqueous electrolytes 3 and 3 into predetermined locations, the gaskets 6 and 6
To complete the lithium secondary battery of this example. (Example 2) The lithium secondary battery of this example is different from that of Example 1 in that a positive electrode formed as follows is used.
This is the same battery as the lithium secondary battery.

【0029】先ず、LiMn24粉末、鱗片状黒鉛粉
末、架橋性アルコキシシランを含むポリマー(PC−1
00、東亜合成(株)製)及びポリテトラフルオロエチ
レンををそれぞれ88重量部、10重量部、1重量部及
び1重量部の割合で所定量用意した。この水性シラン系
ポリマー樹脂を所定量のプロピレングリコールに懸濁し
て水性シラン系エマルジョンを得た。これらLiMn2
4粉末、鱗片状黒鉛粉末、水性シラン系エマルジョン
及びポリテトラフルオロエチレンを混合してペースト状
の正極用合剤を得た。
First, LiMn 2 O 4 powder, flaky graphite powder, polymer containing crosslinkable alkoxysilane (PC-1)
00, manufactured by Toa Gosei Co., Ltd.) and polytetrafluoroethylene were prepared in predetermined amounts at 88 parts by weight, 10 parts by weight, 1 part by weight and 1 part by weight, respectively. This aqueous silane-based polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane-based emulsion. These LiMn 2
O 4 powder, flaky graphite powder, aqueous silane-based emulsion and polytetrafluoroethylene were mixed to obtain a paste-like positive electrode mixture.

【0030】次いで、この正極用合剤をアルミニウム箔
にブレードコーターを用いて塗布した。続いて、この塗
布した正極用合剤を80℃の高温槽で乾燥して合剤中の
プロピレングリコールを揮発させて除去し、これを固化
させた。最後に、正極合剤密度が2.7g/ccとなる
ように、この固化させた正極用合剤をプレス成形して正
極を得た。 (実施例3)本実施例のリチウム二次電池は、次のよう
にして成形された正極が使用されている他は、実施例1
のリチウム二次電池と同じ電池である。
Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied mixture for a positive electrode was dried in a high-temperature bath at 80 ° C. to volatilize and remove propylene glycol in the mixture, and was solidified. Finally, the solidified positive electrode mixture was press-molded so that the positive electrode mixture density became 2.7 g / cc, to obtain a positive electrode. (Example 3) The lithium secondary battery of this example is different from Example 1 in that a positive electrode formed as follows is used.
This is the same battery as the lithium secondary battery.

【0031】先ず、LiMn24粉末、鱗片状黒鉛粉
末、架橋性アルコキシシランを含むポリマー(PC−1
00、東亜合成(株)製)及びポリテトラフルオロエチ
レンををそれぞれ88重量部、10重量部、0.5重量
部及び1.5重量部の割合で所定量用意した。この水性
シラン系ポリマー樹脂を所定量のプロピレングリコール
に懸濁して水性シラン系エマルジョンを得た。これらL
iMn24粉末、鱗片状黒鉛粉末、水性シラン系エマル
ジョン及びポリテトラフルオロエチレンを混合してペー
スト状の正極用合剤を得た。
First, LiMn 2 O 4 powder, flaky graphite powder, polymer containing crosslinkable alkoxysilane (PC-1)
A predetermined amount of 88 parts by weight, 10 parts by weight, 0.5 parts by weight, and 1.5 parts by weight of polytetrafluoroethylene was prepared. This aqueous silane-based polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane-based emulsion. These L
iMn 2 O 4 powder, flaky graphite powder, aqueous silane-based emulsion and polytetrafluoroethylene were mixed to obtain a paste-like positive electrode mixture.

【0032】次いで、この正極用合剤をアルミニウム箔
にブレードコーターを用いて塗布した。続いて、この塗
布した正極用合剤を80℃の高温槽で乾燥して合剤中の
プロピレングリコールを揮発させて除去し、これを固化
させた。最後に、正極合剤密度が2.7g/ccとなる
ように、この固化させた正極用合剤をプレス成形して正
極を得た。 (比較例1)本比較例のリチウム二次電池は、次のよう
にして成形された正極が使用されている他は、実施例1
のリチウム二次電池と同じ電池である。
Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied mixture for a positive electrode was dried in a high-temperature bath at 80 ° C. to volatilize and remove propylene glycol in the mixture, and was solidified. Finally, the solidified positive electrode mixture was press-molded so that the positive electrode mixture density became 2.7 g / cc, to obtain a positive electrode. (Comparative Example 1) The lithium secondary battery of this comparative example was the same as that of Example 1 except that a positive electrode formed as follows was used.
This is the same battery as the lithium secondary battery.

【0033】先ず、LiMn24粉末、鱗片状黒鉛粉末
及びPVDFをそれぞれ87重量部、10重量部、3重
量部の割合で所定量用意し、これらを所定量のNMPと
ともに良く混合してペースト状の正極用合剤を得た。次
いで、この正極用合剤をアルミニウム箔にブレードコー
ターを用いて塗布した。続いて、この塗布した正極用合
剤を80℃の高温槽中に放置し、合剤中のNMPを揮発
させて除去し、これを固化させた。最後に、正極合剤密
度が2.7g/ccとなるように、この固化させた正極
用合剤をプレス成形して正極を得た。 [負荷特性の評価]実施例1〜3及び比較例1の各リチ
ウム二次電池について、次のようにして負荷特性試験を
行った。
First, LiMn 2 O 4 powder, flaky graphite powder, and PVDF were prepared in predetermined amounts of 87 parts by weight, 10 parts by weight, and 3 parts by weight, respectively, and mixed well with a predetermined amount of NMP to form a paste. A positive electrode mixture was obtained. Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied mixture for a positive electrode was left in a high-temperature bath at 80 ° C., and NMP in the mixture was volatilized to be removed and solidified. Finally, the solidified positive electrode mixture was press-molded so that the positive electrode mixture density became 2.7 g / cc, to obtain a positive electrode. [Evaluation of Load Characteristics] With respect to each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1, a load characteristic test was performed as follows.

【0034】1mA/cm2 の定電流、4.2Vの定電
圧で4時間充電した後、0.25〜4mA/cm2 の定
電流で終止電圧を3.0Vとする放電を行った。このと
き、所定の放電電流密度に対する放電容量を測定し、放
電電流密度が0.5mA/cm2のときの放電容量を1
として所定の放電電流密度に対する放電容量比を求め
た。各電池について、放電電流密度と放電容量比との関
係を図2に示す。
The constant current of 1 mA / cm 2, were charged 4 hours at a constant voltage of 4.2 V, was discharged to a final voltage and 3.0V at a constant current of 0.25~4mA / cm 2. At this time, the discharge capacity for a predetermined discharge current density was measured, and the discharge capacity when the discharge current density was 0.5 mA / cm 2 was 1
The discharge capacity ratio with respect to a predetermined discharge current density was determined. FIG. 2 shows the relationship between the discharge current density and the discharge capacity ratio for each battery.

【0035】図2からわかるように、いずれの電池も放
電電流密度が増加するにつれて放電容量比が低下してい
るが、実施例1〜3の電池では比較例1の電池より放電
容量比の低下の度合いが小さくなっている。 [出力密度特性の評価]実施例1〜3及び比較例1の各
リチウム二次電池について、次のようにして出力密度特
性試験を行った。
As can be seen from FIG. 2, the discharge capacity ratio of each of the batteries decreases as the discharge current density increases. However, the batteries of Examples 1 to 3 have a lower discharge capacity ratio than the battery of Comparative Example 1. The degree of is smaller. [Evaluation of Output Density Characteristics] Each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 was subjected to an output density characteristic test as follows.

【0036】0.2mA/cm2 の定電流で充電し、最
大充電量に対して30%の充電量とした。続いて、0.
25〜4mA/cm2 の定電流で終止電圧を3.0Vと
する放電を行った。このとき、所定の放電時間に対する
放電出力を測定し、合剤1kg当たりの出力密度を求め
た。各電池について、放電時間と出力密度との関係を図
3に示す。
The battery was charged at a constant current of 0.2 mA / cm 2 , and the charge amount was 30% of the maximum charge amount. Subsequently, 0.
Discharge was performed at a constant current of 25 to 4 mA / cm 2 with a final voltage of 3.0 V. At this time, the discharge output for a predetermined discharge time was measured, and the output density per 1 kg of the mixture was obtained. FIG. 3 shows the relationship between the discharge time and the output density for each battery.

【0037】図3からわかるように、実施例1〜3の電
池では、初期の放電出力密度が比較例1の電池のものよ
り極めて高く、かつ放電時間が経過しても放電出力密度
は比較例1の電池のものより高くなっている。
As can be seen from FIG. 3, the initial discharge output densities of the batteries of Examples 1 to 3 are much higher than those of the battery of Comparative Example 1, and the discharge output densities are higher than those of the batteries of Comparative Example 1. 1 is higher than that of the battery.

【0038】[0038]

【効果】本発明のリチウム二次電池は、負荷特性及び出
力密度特性に優れた高容量なリチウム二次電池である。
このリチウム二次電池をノート型コンピューターや小型
携帯機器などの電子機器に利用すれば、電子機器をさら
に性能良くかつ機能性良く作動させることができるよう
になる。あるいは、自動車のクリーンなエネルギー源と
して利用すれば、自動車を性能良く駆動させることがで
きるようになる。
The lithium secondary battery of the present invention is a high capacity lithium secondary battery having excellent load characteristics and output density characteristics.
If this lithium secondary battery is used in an electronic device such as a notebook computer or a small portable device, the electronic device can be operated with better performance and functionality. Alternatively, when used as a clean energy source for a vehicle, the vehicle can be driven with high performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この図は、実施例1のリチウム二次電池の縦断
面図である。
FIG. 1 is a longitudinal sectional view of a lithium secondary battery of Example 1. FIG.

【図2】この図は、実施例1〜3及び比較例1のリチウ
ム二次電池について、各電池の放電電流密度と放電容量
比との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the discharge current density and the discharge capacity ratio of each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1.

【図3】この図は、実施例1〜3及び比較例1のリチウ
ム二次電池について、各電池の放電時間と出力密度との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the discharge time and the output density of each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:非水電解液 4:正極ケース
5:負極ケース 6:ガスケット 7:セパレータ
1: positive electrode 2: negative electrode 3: non-aqueous electrolyte 4: positive electrode case 5: negative electrode case 6: gasket 7: separator

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを放出できる正極と、該
正極から放出された該リチウムイオンを吸蔵および放出
できる負極と、該正極と該負極との間で該リチウムイオ
ンを移動させる電解質と、を備えるリチウム二次電池に
おいて、 粉末状の正極活物質と、アルコキシシリル基をもつ微粒
子状の水性シラン系ポリマー樹脂が水性液中に分散して
なる水性シラン系エマルジョンと、が混合されてなる正
極用合剤より成形された該正極、並びに粉末状の負極活
物質と、該水性シラン系エマルジョンと、が混合されて
なる負極用合剤より成形された該負極の少なくとも一方
を備えることを特徴とするリチウム二次電池。
1. A positive electrode capable of releasing lithium ions, a negative electrode capable of inserting and extracting the lithium ions released from the positive electrode, and an electrolyte for transferring the lithium ions between the positive electrode and the negative electrode. In a lithium secondary battery, a positive electrode mixture obtained by mixing a powdery positive electrode active material and an aqueous silane-based emulsion in which a fine-particle aqueous silane-based polymer resin having an alkoxysilyl group is dispersed in an aqueous liquid. Comprising at least one of the negative electrode formed from a negative electrode mixture obtained by mixing the positive electrode formed from the agent, and the powdery negative electrode active material, and the aqueous silane-based emulsion. Rechargeable battery.
【請求項2】 前記水性シラン系ポリマー樹脂は、架橋
性アルコキシシランを含むポリマーの少なくとも一種で
ある請求項1に記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the aqueous silane-based polymer resin is at least one kind of a polymer containing a crosslinkable alkoxysilane.
【請求項3】 前記水性液は、水、アルコール及びグリ
コールの少なくとも一種である請求項1に記載のリチウ
ム二次電池。
3. The lithium secondary battery according to claim 1, wherein the aqueous liquid is at least one of water, alcohol, and glycol.
【請求項4】 前記グリコールは、プロピレングリコー
ル及びエチレングリコールの少なくとも一種である請求
項3に記載のリチウム二次電池。
4. The lithium secondary battery according to claim 3, wherein the glycol is at least one of propylene glycol and ethylene glycol.
【請求項5】 前記シラン系ポリマー樹脂は1μm以下
の粒径をもつ請求項1に記載のリチウム二次電池。
5. The lithium secondary battery according to claim 1, wherein the silane-based polymer resin has a particle size of 1 μm or less.
【請求項6】 前記水性シラン系エマルジョンは、前記
水性シラン系ポリマー樹脂とともにフッ素系ディスパー
ジョン、SBRラテックス及びNBRラテックスの少な
くとも一種を含む請求項1に記載のリチウム二次電池。
6. The lithium secondary battery according to claim 1, wherein the aqueous silane-based emulsion contains at least one of a fluorine-based dispersion, an SBR latex, and an NBR latex together with the aqueous silane-based polymer resin.
【請求項7】 前記フッ素系ディスパージョンは、テト
ラフルオロエチレン、テトラフルオロエチレン−ヘキサ
フルオロプロピレン、テトラフルオロエチレン−パーフ
ルオロアルキルビニルエーテルの少なくとも一種である
請求項6に記載のリチウム二次電池。
7. The lithium secondary battery according to claim 6, wherein the fluorine-based dispersion is at least one of tetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene, and tetrafluoroethylene-perfluoroalkylvinyl ether.
【請求項8】 前記正極用合剤は、前記正極活物質、前
記水性シラン系エマルジョン及び分散媒が混合されてな
り、前記負極用合剤は、前記負極活物質、前記水性シラ
ン系エマルジョン及び分散媒が混合されてなる請求項1
に記載のリチウム二次電池。
8. The positive electrode mixture comprises the positive electrode active material, the aqueous silane-based emulsion, and a dispersion medium, and the negative electrode mixture comprises the negative electrode active material, the aqueous silane-based emulsion, and a dispersion medium. 2. A mixture comprising a medium.
4. The lithium secondary battery according to 1.
【請求項9】 前記正極用合剤及び前記負極用合剤の少
なくとも一方は、増粘剤、消泡剤、分散剤、表面調製
剤、界面活性剤の少なくとも一種を含む請求項1に記載
のリチウム二次電池。
9. The method according to claim 1, wherein at least one of the positive electrode mixture and the negative electrode mixture contains at least one of a thickener, an antifoaming agent, a dispersant, a surface preparation agent, and a surfactant. Lithium secondary battery.
【請求項10】 前記正極用合剤は、前記水性シラン系
エマルジョンが合剤全体に対して0.5〜5重量%混合
されてなる請求項1に記載のリチウム二次電池。
10. The lithium secondary battery according to claim 1, wherein the positive electrode mixture comprises the aqueous silane-based emulsion mixed in an amount of 0.5 to 5% by weight based on the whole mixture.
【請求項11】 前記負極用合剤は、前記水性シラン系
エマルジョンが合剤全体に対して1〜10重量%混合さ
れてなる請求項1に記載のリチウム二次電池。
11. The lithium secondary battery according to claim 1, wherein the negative electrode mixture comprises the aqueous silane-based emulsion mixed in an amount of 1 to 10% by weight based on the whole mixture.
【請求項12】 前記正極活物質は、導電材とともに前
記水性シラン系エマルジョン及び前記溶剤と混合される
請求項1に記載のリチウム二次電池。
12. The lithium secondary battery according to claim 1, wherein the positive electrode active material is mixed with the aqueous silane-based emulsion and the solvent together with a conductive material.
【請求項13】 前記負極活物質は炭素材料よりなる請
求項1に記載のリチウム二次電池。
13. The lithium secondary battery according to claim 1, wherein the negative electrode active material is made of a carbon material.
【請求項14】 前記正極用合剤及び前記負極用合剤の
少なくとも一方は導電性をもつ集電体に塗布されて電極
体を成す請求項1に記載のリチウム二次電池。
14. The lithium secondary battery according to claim 1, wherein at least one of the positive electrode mixture and the negative electrode mixture is applied to a conductive current collector to form an electrode body.
【請求項15】 前記電解質は有機溶媒にリチウム塩を
溶解してなる請求項1に記載のリチウム二次電池。
15. The lithium secondary battery according to claim 1, wherein the electrolyte is obtained by dissolving a lithium salt in an organic solvent.
JP00669598A 1998-01-16 1998-01-16 Lithium secondary battery Expired - Fee Related JP4055024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00669598A JP4055024B2 (en) 1998-01-16 1998-01-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00669598A JP4055024B2 (en) 1998-01-16 1998-01-16 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11204098A true JPH11204098A (en) 1999-07-30
JP4055024B2 JP4055024B2 (en) 2008-03-05

Family

ID=11645486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00669598A Expired - Fee Related JP4055024B2 (en) 1998-01-16 1998-01-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4055024B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140540A1 (en) * 2007-03-27 2010-06-10 Atsuo Yamada Method For Producing Positive Electrode Material For Secondary Battery
US7883798B2 (en) 2001-07-19 2011-02-08 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
KR101125610B1 (en) 2007-12-17 2012-03-27 주식회사 엘지화학 Negative electrode slurry and lithium secondary battery prepared therewith
WO2012046843A1 (en) * 2010-10-07 2012-04-12 日本ゼオン株式会社 Slurry for secondary battery porous membrane, secondary battery porous membrane, secondary battery electrode, secondary battery separator, and secondary battery
JP5449327B2 (en) * 2009-04-03 2014-03-19 東洋インキScホールディングス株式会社 Nonaqueous secondary battery electrode binder composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883798B2 (en) 2001-07-19 2011-02-08 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
US20100140540A1 (en) * 2007-03-27 2010-06-10 Atsuo Yamada Method For Producing Positive Electrode Material For Secondary Battery
US8349217B2 (en) * 2007-03-27 2013-01-08 Tokyo Institute Of Technology Method for producing positive electrode material for secondary battery
KR101125610B1 (en) 2007-12-17 2012-03-27 주식회사 엘지화학 Negative electrode slurry and lithium secondary battery prepared therewith
JP5449327B2 (en) * 2009-04-03 2014-03-19 東洋インキScホールディングス株式会社 Nonaqueous secondary battery electrode binder composition
WO2012046843A1 (en) * 2010-10-07 2012-04-12 日本ゼオン株式会社 Slurry for secondary battery porous membrane, secondary battery porous membrane, secondary battery electrode, secondary battery separator, and secondary battery
JPWO2012046843A1 (en) * 2010-10-07 2014-02-24 日本ゼオン株式会社 Secondary battery porous membrane slurry, secondary battery porous membrane, secondary battery electrode, secondary battery separator and secondary battery
JP5549739B2 (en) * 2010-10-07 2014-07-16 日本ゼオン株式会社 Secondary battery porous membrane slurry, secondary battery porous membrane, secondary battery electrode, secondary battery separator and secondary battery
US9660238B2 (en) 2010-10-07 2017-05-23 Zeon Corporation Slurry for secondary battery porous membrane, a secondary battery porous membrane, an electrode for secondary battery, a separator for secondary battery and a secondary battery

Also Published As

Publication number Publication date
JP4055024B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
KR100889451B1 (en) Preparation method of electrode active material comprising nano particle with advanced dispersibility
CN111261834A (en) Negative electrode sheet, electrochemical device, and electronic device
KR20160037006A (en) Negative active material, lithium battery including the material, and method for manufacturing the material
JP2000348730A (en) Nonaqueous electrolyte secondary battery
WO2010064755A1 (en) Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
CN102148364A (en) Production method for electrode for battery, electrode produced by production method, and battery including electrode
CN1619861A (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
CN112820869B (en) Negative electrode active material, electrochemical device, and electronic device
JP2009266400A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
KR20180066694A (en) Cathode composite with high power performance and all solid lithium secondary battery comprising the same
JP2013073906A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN110838575A (en) Cathode for improving rate capability of lithium ion energy storage device and application thereof
JP7118139B2 (en) Sulfur-carbon composite, method for producing the same, and lithium secondary battery containing the same
CN110931714A (en) Preparation and application of PEO-based film coated silicon-carbon electrode
JP4055024B2 (en) Lithium secondary battery
JP7267131B2 (en) Positive electrode active material slurry for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP4348771B2 (en) Lithium secondary battery
JP5862490B2 (en) Lithium ion secondary battery
KR102516078B1 (en) Method of manufacturing black phosphorus-carbon nanotube composite synthesized using surfactant
KR20220136146A (en) All solid state battery
CN114229807A (en) Si @ SiOx-TiN/C composite negative electrode material, preparation method and lithium ion battery
JP7130540B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP2013073867A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JPH11339810A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees