JPH1120217A - Manufacture of composite structure and composite structure - Google Patents

Manufacture of composite structure and composite structure

Info

Publication number
JPH1120217A
JPH1120217A JP18780397A JP18780397A JPH1120217A JP H1120217 A JPH1120217 A JP H1120217A JP 18780397 A JP18780397 A JP 18780397A JP 18780397 A JP18780397 A JP 18780397A JP H1120217 A JPH1120217 A JP H1120217A
Authority
JP
Japan
Prior art keywords
substance
supplying
manufacturing
composite structure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18780397A
Other languages
Japanese (ja)
Inventor
Katsumi Yamaguchi
勝美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIIBETSUKU INTERNATL CORP KK
Original Assignee
JIIBETSUKU INTERNATL CORP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIIBETSUKU INTERNATL CORP KK filed Critical JIIBETSUKU INTERNATL CORP KK
Priority to JP18780397A priority Critical patent/JPH1120217A/en
Publication of JPH1120217A publication Critical patent/JPH1120217A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sufficiently uniform a material without limiting the material to certain kinds of resin and even when metallic particles are set by a binder, by supplying at least one substance of a plurality of kinds of substances in the form of particles and supplying another substance different from the substance constituting the particles to an area other than the particles. SOLUTION: A particle generation means sequentially moves while supplying a particulate body, when a first formation process is completed. A substance of a difference characteristic from that of the particulate body is supplied to an area other than an area coated with structures 21A-21E, so that the periphery of the structures 21A-21E is surrounded with a piled substance 41. Thereafter the particulate body is supplied from the particle generation means to layer the structures 21A-21D between structures 21 of a first layer. A first scan line 22A through a fourth scan line 22D are completely formed in this manner. The formation process and supply process are repeated sequentially, whereby a composite structure without an internal void is completed. A boundary of piled substances is eliminated because of different supply processes and a characteristic of the piled substances becomes uniform.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば導電性物質
と絶縁性物質、導電性物質と抵抗性物質、透明物質と不
透明物質等のような機能を異にする複数種類の物質から
なる複合構造体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite structure comprising a plurality of materials having different functions, for example, a conductive material and an insulating material, a conductive material and a resistive material, and a transparent material and an opaque material. It relates to a method for producing a body.

【0002】[0002]

【従来の技術】機能を異にする複数種類の物質の複合構
造体としては、導電性物質と絶縁性物質とを用いた例え
ば配線基板、導電性物質と抵抗性物質とを用いた例えば
発熱素子、透明物質と不透明物質とを用いた例えば光学
フィルタまたは造形物等多種多様な構造体がある。
2. Description of the Related Art As a composite structure of a plurality of kinds of substances having different functions, for example, a wiring board using a conductive substance and an insulating substance, for example, a heating element using a conductive substance and a resistive substance There are a wide variety of structures using transparent and opaque materials, such as optical filters or shaped objects.

【0003】[0003]

【発明が解決しようとする課題】上記複合構造体の内配
線基板には、絶縁性基板に印刷またはメッキにより導電
性物質を所定のパターンに形成するいわゆるプリント基
板と称される配線基板、または絶縁性セラミックに導電
性インキを所定のパターンに印刷して得られるセラミッ
ク配線基板等がある。なお、これら配線基板の表裏に形
成された導電パターンを導通させるには、プリント基板
では無電界メッキ法が適用され、セラミック配線基板で
は導電性インキを充填した後焼結する手法が取り入れら
れている。また、上記複合構造体の内発熱素子には、印
字等を行うために電気信号を熱信号にエネルギー変換す
るサーマルヘッドと称されるデバイスがあり、サ−マル
ヘッドには蒸着またはスパッタにより成膜する薄膜型
と、印刷により成膜する厚膜型とがある。その中で薄膜
型サーマルヘッドの作製方法は、例えば酸化アルミニウ
ム等の絶縁性基板の上に、フォトレジストを塗布後所定
のマスクを介して当該フォトレジストを露光・現像する
ことによってフォトレジストのパターンを形成し、当該
パターンを介して例えば鉄・ニッケル・クロム等の抵抗
成分をスパッタ成膜し抵抗性薄膜を得、レジストパタ−
ンを除去した後共通電極と個別電極のパターンをフォト
レジストにより形成した後、金等の導電材料を蒸着等の
手法で成膜して作成されている。
The inner wiring board of the above-mentioned composite structure includes a wiring board called a so-called printed board in which a conductive substance is formed in a predetermined pattern by printing or plating on an insulating board, or an insulating board. There is a ceramic wiring board obtained by printing conductive ink in a predetermined pattern on a conductive ceramic. In order to make the conductive patterns formed on the front and back of the wiring board conductive, an electroless plating method is applied to the printed circuit board, and a method of sintering after filling the conductive ink with the ceramic wiring board is adopted. . Further, among the heat generating elements in the composite structure, there is a device called a thermal head which converts an electric signal into a heat signal for performing printing or the like, and a thermal head is formed by vapor deposition or sputtering. There are a thin film type and a thick film type formed by printing. Among them, a method of manufacturing a thin-film thermal head is to apply a photoresist on an insulating substrate such as aluminum oxide, and then expose and develop the photoresist through a predetermined mask to form a pattern of the photoresist. And a resistive component such as iron, nickel, or chromium is sputtered through the pattern to obtain a resistive thin film.
After removing the electrodes, the patterns of the common electrode and the individual electrodes are formed by photoresist, and then a conductive material such as gold is formed into a film by a method such as vapor deposition.

【0004】また、厚膜型サ−マルヘッドの作製方法
は、例えば酸化アルミニウム等の絶縁性基板の上に、有
機金属抵抗性物質を分散したインキ及び導電性物質を分
散したインキをスクリーン印刷法により所定パタ−ンに
印刷し、熱処理によりインキ中の有機成分を除去した
後、当該パタ−ンの間隙部及び保護膜としてスパッタ等
により絶縁性物質を充填して作成されている。これら配
線基板または発熱素子は何れも絶縁性物質の上に導電性
物質または抵抗性物質のパターンを形成する技術である
ため、薄膜型ではフォトマスク工程は必須であり、フォ
トマスク工程はマスク合わせが必要であるため多大な時
間を要すると共に、マスク合わせに不備があると歩留り
を大幅に悪くする課題がある。厚膜型では、マスク工程
は軽減されるものの、絶縁性物質の充填に際してはやは
りマスク工程が必要であり、薄膜型と同様の課題があ
る。
In addition, a method of manufacturing a thick film type thermal head is to screen an ink containing an organometallic resistive substance and an ink containing a conductive substance by screen printing on an insulating substrate such as aluminum oxide. It is formed by printing on a predetermined pattern, removing the organic components in the ink by heat treatment, and then filling the gap with the pattern and an insulating material as a protective film by sputtering or the like. Each of these wiring boards or heating elements is a technology of forming a pattern of a conductive substance or a resistive substance on an insulating substance. Therefore, a thin film type requires a photomask process, and the photomask process requires mask alignment. Since it is necessary, it takes a lot of time, and there is a problem that the yield is greatly deteriorated if the mask alignment is defective. In the case of the thick film type, although the masking step is reduced, a masking step is still required for filling the insulating material, and thus has the same problem as the thin film type.

【0005】また、プリント基板において導電パタ−ン
を形成する手法に専らメッキが適用され、その上表裏を
導通させるために適用する無電界メッキは、予め下地層
をメッキした後導電性材料をメッキする等の2度手間が
通常あり、メッキ処理を行うため作業上の手間は多大な
ものがある。さらに、セラミック配線基板ではセラミッ
ク基板に設けた孔を通常ビアと称される導電材料で表裏
の導通をとるが、ビアの形成方法は導電性材料を分散し
たインキを印刷により孔に充填した後、焼結し導電性に
するため、表裏の導電パターン形成とビア部の形成とが
同一工程では実施し難い、また印刷であるため導電パタ
−ン以外の領域にはみ出し部分が生じ易い等で工程ロス
があった。
In addition, plating is exclusively applied to a method of forming a conductive pattern on a printed circuit board. Electroless plating applied to electrically connect the upper and lower surfaces is performed by plating an underlayer in advance and then plating a conductive material. It is usually troublesome to carry out the plating process twice, and there is a great deal of work in performing the plating process. Further, in the case of a ceramic wiring board, the hole provided in the ceramic substrate is electrically connected to the front and back with a conductive material usually called a via, but the via forming method is to fill the hole with an ink dispersed with a conductive material by printing, The formation of the conductive pattern on the front and back sides and the formation of the via portion are difficult to perform in the same process because of sintering to make it conductive. In addition, since printing is performed, a protruding portion is easily generated in a region other than the conductive pattern. was there.

【0006】さらに、光学的特性が異なる材料を組み合
わせ不透明成分を粒状または層状にして積層し光学フィ
ルタまたは光記録媒体等を作成する際には、当該不透明
成分の粒径または層の厚みが不揃いであったり、粒状物
の分散または層形成の面精度が不均一であり、しばしば
設計通りの光学特性が得られないと言う課題がある。ま
た、上記課題に加えて、複数種類からなる例えば合金等
を、蒸着あるいはスパッタ等のいわゆる気相堆積法で成
膜する従来の製造方法によれば、各構成要素を原子状態
で成膜するため、成膜後の薄膜の組成が蒸着源と異なる
場合がしばしばあり、薄膜の組成制御が困難であるとい
う課題もある。
Further, when an optical filter or an optical recording medium or the like is manufactured by combining materials having different optical characteristics and laminating opaque components in the form of granules or layers, the particle size of the opaque components or the thickness of the layers is not uniform. In addition, there is a problem that the surface precision of the dispersion or layer formation of the granular material is not uniform, and the optical characteristics as designed are often not obtained. In addition to the above problems, according to a conventional manufacturing method in which a plurality of types of alloys, for example, are formed by a so-called vapor deposition method such as evaporation or sputtering, each component is formed in an atomic state. In addition, the composition of a thin film after film formation is often different from that of a deposition source, and there is also a problem that it is difficult to control the composition of the thin film.

【0007】また、近年設計図またはコンピューター情
報に基づいて各種三次元構造体形状を作り出すプロトタ
イピングが各種試みられ、光感光性樹脂を感光させ積層
する方法、薄板をレーザで切断し重ね合わせる方法、ま
たは粉末にレーザを照射し当該粉末を固める手法等が提
案されている。しかしながら、当該三次元構造体の製造
方法に適用できる材料は一部の樹脂に限定され、例えば
金属粉を結合材で固める場合でも充分な強度は得難く、
更に例えば下層よりも上層が拡大した構造を実現するこ
とは困難である等の課題がある。
In recent years, various types of prototyping for producing various three-dimensional structure shapes based on design drawings or computer information have been attempted, and a method of exposing and laminating a photosensitive resin, a method of cutting and superposing thin plates with a laser, Alternatively, a method of irradiating a powder with a laser to solidify the powder has been proposed. However, the material applicable to the method of manufacturing the three-dimensional structure is limited to some resins, and it is difficult to obtain sufficient strength even when, for example, solidifying metal powder with a binder,
Further, for example, it is difficult to realize a structure in which the upper layer is larger than the lower layer.

【0008】そこで本発明は、上記課題を解決した複合
構造体の製造方法を提供することを目的とする。また、
本発明は特性が相異なる複数種類の物質で構成した複合
構造体を提供することを目的とする。
Therefore, an object of the present invention is to provide a method of manufacturing a composite structure which has solved the above-mentioned problems. Also,
An object of the present invention is to provide a composite structure composed of a plurality of types of substances having different properties.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の本発明
の複合構造体の製造方法は、電気的特性または光学的特
性の少なくとも何れか一方が異なる複数種類の物質で構
成した構造体の製造法であって、前記複数種類の物質の
内少なくとも1つの物質を、粒状物発生手段から粒状に
供給し粒状物を形成する形成工程と、前記複数種類の物
質の内前記粒状物を構成する物質とは異なる他の物質
を、少なくとも前記粒状物以外の領域に供給する供給工
程とを含むことを特徴とする。また、請求項2に記載の
本発明の複合構造体の製造方法は、電気的特性または光
学的特性の少なくとも何れか一方が異なる複数種類の物
質で構成した構造体の製造法であって、前記複数種類の
物質の内少なくとも1つの物質を、粒状物発生手段から
粒状に供給し紐状または面状の連続構造体を形成する形
成工程と、前記複数種類の物質の内前記連続構造体を構
成する物質とは異なる他の物質を、少なくとも前記連続
構造体以外の領域に供給する供給工程とを含むことを特
徴とする。また、請求項3に記載の本発明の複合構造体
の製造方法は、電気的特性または光学的特性の少なくと
も何れか一方が異なる第一の物質と第二の物質とを含む
構造体の製造方法であって、前記第一の物質を適量ずつ
吐出し第一の構造体を形成する形成工程と、前記第二の
物質を前記第一の物質の周辺に供給し第二の物質を供給
する供給工程とを有する。また、請求項4に記載の本発
明の複合構造体の製造方法は、電気的特性または光学的
特性の少なくとも何れか一方が異なる第一の物質と第二
の物質とを含む構造体の製造方法であって、前記第一の
物質を粒状で供給し第一の構造体を形成する形成工程
と、前記第二の物質を液状態で供給する供給工程とを含
むことを特徴とする。また、請求項5に記載の本発明の
複合構造体の製造方法は、請求項1〜4の何れかに記載
の複合構造体の製造方法において、前記供給工程が、前
記他の物質を前記粒状物、前記連続構造体または前記第
一の構造体の何れかの厚みにほぼ等しく蓄積する工程を
含むことを特徴とする。また、請求項6に記載の本発明
の複合構造体の製造方法は、請求項1〜3、または5の
何れかに記載の複合構造体の製造方法において、前記供
給工程が、液状の物質を流入する工程であることを特徴
とする。また、請求項7に記載の本発明の複合構造体の
製造方法は、請求項1〜6の何れかに記載の複合構造体
の製造方法において、前記形成工程が、前記粒状物、前
記連続構造体または前記第一の構造体の何れかに対し、
前記複数種類の物質の内の1種の物質を、前記形成工程
の形成方向または前記供給工程の蓄積方向の少なくとも
何れか一方の方向に粒状に成長させる工程を含むことを
特徴とする。また、請求項8に記載の本発明の複合構造
体の製造方法は、請求項1〜7の何れかに記載の複合構
造体の製造方法において、前記形成工程と前記供給工程
とをくり返すことを特徴とする。また、請求項9に記載
の本発明の複合構造体の製造方法は、請求項1〜8の何
れかに記載の複合構造体の製造方法において、前記形成
工程または前記供給工程で用いる物質の少なくとも一方
が金属または合金の少なくとも何れかであることを特徴
とする。また、請求項10に記載の本発明の複合構造体
の製造方法は、請求項1〜9の何れかに記載の複合構造
体の製造方法において、前記形成工程または前記供給工
程で用いる物質の少なくとも一方が誘電体であることを
特徴とする。また、請求項11に記載の本発明の複合構
造体の製造方法は、請求項10記載の複合構造体の製造
方法において、前記誘電体がエネルギー線照射で三次元
硬化する樹脂を含むことを特徴とする。また、請求項1
2に記載の本発明の複合構造体は、請求項1〜11何れ
かに記載の複合構造体の製造方法によって製造されたこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a composite structure comprising a plurality of types of substances having different electrical characteristics or optical characteristics. A manufacturing method, in which at least one substance of the plurality of types of substances is supplied in a granular form from a granular substance generating means to form a granular substance; and the granular substance of the plurality of types of substances is formed. A supplying step of supplying another substance different from the substance to at least a region other than the particulate matter. Further, the method for producing a composite structure according to the present invention according to claim 2 is a method for producing a structure composed of a plurality of types of substances different in at least one of electrical characteristics or optical characteristics, Forming a string-shaped or planar continuous structure by supplying at least one substance of the plurality of types of substances from the particulate matter generating means in a granular form; and forming the continuous structure of the plurality of types of substances. And supplying at least a region other than the continuous structure with a substance different from the substance to be formed. According to a third aspect of the present invention, there is provided a method of manufacturing a composite structure including a first substance and a second substance, each of which has at least one of an electrical property and an optical property different from each other. Forming a first structure by discharging the first substance in appropriate amounts, and supplying the second substance to the periphery of the first substance and supplying a second substance And a process. According to a fourth aspect of the present invention, there is provided a method for manufacturing a composite structure including a first substance and a second substance having at least one of electrical characteristics and optical characteristics different from each other. And a forming step of supplying the first substance in a granular form to form a first structure, and a supplying step of supplying the second substance in a liquid state. According to a fifth aspect of the present invention, in the method of manufacturing a composite structure according to any one of the first to fourth aspects, the supplying step includes the step of adding the other substance to the granular material. A step of accumulating substantially equal to the thickness of any one of the object, the continuous structure, and the first structure. According to a sixth aspect of the present invention, in the method for manufacturing a composite structure according to any one of the first to third or fifth aspects, the supplying step includes the step of supplying a liquid substance. It is a step of flowing in. According to a seventh aspect of the present invention, in the method of manufacturing a composite structure according to any one of the first to sixth aspects, the forming step includes the step of forming the granular structure, the continuous structure, For either the body or the first structure,
The method includes a step of growing one kind of the plurality of kinds of substances in a granular manner in at least one of the forming direction of the forming step and the accumulation direction of the supplying step. In the method of manufacturing a composite structure according to the present invention described in claim 8, the forming step and the supplying step are repeated in the method of manufacturing a composite structure according to any one of claims 1 to 7. It is characterized by. The method for producing a composite structure according to the present invention according to claim 9 is the method for producing a composite structure according to any one of claims 1 to 8, wherein at least one of the substances used in the forming step or the supplying step is used. One is at least one of a metal and an alloy. A method for manufacturing a composite structure according to the present invention described in claim 10 is the method for manufacturing a composite structure according to any one of claims 1 to 9, wherein at least one of the substances used in the forming step or the supplying step is used. It is characterized in that one is a dielectric. In the method of manufacturing a composite structure according to the present invention, the dielectric may include a resin which is three-dimensionally cured by irradiation with energy rays. And Claim 1
A composite structure of the present invention described in Item 2 is characterized by being manufactured by the method for manufacturing a composite structure according to any one of Claims 1 to 11.

【0010】[0010]

【発明の実施の形態】本発明は、電気的特性または光学
的特性の少なくとも何れか一方が異なる複数種類の物質
の内、少なくとも1つの物質を断続的または連続的に吐
出供給し、粒状物、連続構造体または第一の構造体(以
下構造体と称す)を形成する形成工程と、この構造体の
物質とは異なる他の物質を供給する供給工程とを含む製
造方法である。当該形成工程の粒状物の供給時間を制御
することにより、各独立した粒状物から物質を連続吐出
供給した連続構造体まで自由に形成することが出来る。
また、前記形成工程の粒状物の粒径または連続吐出量を
制御することにより、形成される粒状物の粒径または紐
状の連続構造体または面状構造体の形成幅または/及び
厚み等を自由に設定できる。但し、本願発明における紐
状構造体または面状構造体とは、単に物質を連続吐出供
給した構造体のみならず粒状物が連続している状態を含
み、当該構造体の厚み、幅、外見等を規定するものでは
なく、これらは上述したように、物質の供給時間及び/
または物質の供給量を制御することで自由に設定できる
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a method for intermittently or continuously discharging and supplying at least one of a plurality of types of substances having at least one of electrical characteristics and optical characteristics different from each other. This is a manufacturing method including a forming step of forming a continuous structure or a first structure (hereinafter, referred to as a structure), and a supplying step of supplying another material different from the material of the structure. By controlling the supply time of the granular material in the forming step, it is possible to freely form a material from each independent granular material to a continuous structure to which the substance is continuously discharged and supplied.
In addition, by controlling the particle diameter or the continuous discharge amount of the granular material in the forming step, the particle width of the granular material to be formed or the formation width and / or thickness of the string-like continuous structure or the planar structure is controlled. Can be set freely. However, the string-like structure or the planar structure in the present invention includes not only a structure in which a substance is continuously discharged and supplied but also a state in which particulate matter is continuous, and the thickness, width, appearance, etc. of the structure. Which do not prescribe, as noted above, the delivery time of the substance and / or
Alternatively, it can be set freely by controlling the supply amount of the substance.

【0011】さらに、前記形成工程を二次元的に走査す
ると二次元粒状物あるいは面状連続構造体が形成でき、
三次元的に走査すると三次元粒状物あるいは連続構造体
を形成することが出来る。そのため、形成工程と供給工
程とに各々適用する材料を適宜選択することにより、例
えば光記録材料が光学的に透明な材料中に分散あるいは
光記録材料と光学的に透明な材料とが積層した光記録媒
体、例えば光学的に透明な材料中に光遮蔽性の材料が分
散した光学フィルタ、例えば電気絶縁性の材料中に分散
した導電材料の構成により誘電特性を制御できる複合材
料、例えば導電材料上あるいは導電材料中に電気絶縁性
材料が分散した二次元または三次元導電異方性複合材
料、例えば導電性材料が絶縁性材料上または絶縁材料中
に形成された二次元または三次元配線基板、例えば導電
性材料及び抵抗性材料が電気絶縁性材料に形成した発熱
デバイス等を始め、様々な機能性の複合構造体を製造で
きる。
Further, when the forming step is two-dimensionally scanned, a two-dimensional granular material or a planar continuous structure can be formed.
When three-dimensionally scanned, three-dimensional particles or continuous structures can be formed. Therefore, by appropriately selecting the material to be applied to each of the forming step and the supplying step, for example, the optical recording material is dispersed in an optically transparent material or the optical recording material and the optically transparent material are laminated. A recording material, for example, an optical filter in which a light-shielding material is dispersed in an optically transparent material, for example, a composite material in which the dielectric properties can be controlled by the configuration of a conductive material dispersed in an electrically insulating material, for example, on a conductive material Alternatively, a two-dimensional or three-dimensional conductive anisotropic composite material in which an electrically insulating material is dispersed in a conductive material, for example, a two-dimensional or three-dimensional wiring board in which a conductive material is formed on or in an insulating material, for example, A composite structure having various functions can be manufactured, such as a heating device or the like in which a conductive material and a resistive material are formed on an electrically insulating material.

【0012】本発明の形成工程は粒状に供給するため、
例えばスパッタ法、蒸着法等のように通常の気相堆積法
のような原子状態での成膜方法とは異なり、合金等複数
の成分からなる物質の組成が均一に供給でき、複合構造
体中の粒状物、連続構造体または第一の構造体の何れの
微視的な特性も均一化できる。本発明の複合構造体の製
造方法において、供給工程の蓄積厚みを形成工程による
形成厚みにほぼ等しくすれば、形成した構造体の表面以
外は機能が異なる物質が蓄積する(以下蓄積物と称す)
ため、例えば相隣合う構造体同士を機能が異なる物質で
隔離でき、蓄積方向には構造体の表面が露出するため、
例えば構造体の露出部分に粒状物を積み重ねた三次元複
合構造体、または、露出部分の構造体あるいは蓄積物の
何れかの独立した機能を利用できる複合構造体が簡単に
製造できる。但し、蓄積物の蓄積厚みを構造体の厚みよ
り多くすると、蓄積物で包まれた構造体を有する複合構
造体が出来ることは勿論である。なお、供給工程に適用
する物質が、少なくとも供給工程の雰囲気で液状であれ
ば、当該液状の物質を流す等の簡単な手法で供給工程が
出来るため、工程が簡略化できる。
In the forming step of the present invention, since the powder is supplied in a granular form,
For example, unlike a film forming method in an atomic state such as a normal vapor deposition method such as a sputtering method or a vapor deposition method, the composition of a substance including a plurality of components such as an alloy can be uniformly supplied to the composite structure. The microscopic characteristics of any granular material, continuous structure or first structure can be uniformed. In the method of manufacturing a composite structure according to the present invention, if the accumulated thickness in the supply step is made substantially equal to the thickness formed in the forming step, substances having different functions accumulate except for the surface of the formed structure (hereinafter referred to as accumulated matter).
Therefore, for example, adjacent structures can be separated by substances having different functions, and the surface of the structures is exposed in the accumulation direction,
For example, a three-dimensional composite structure in which granules are stacked on the exposed portion of the structure, or a composite structure that can utilize the independent function of either the structure or the accumulation of the exposed portion can be easily manufactured. However, if the accumulation thickness of the accumulation is greater than the thickness of the structure, a composite structure having a structure wrapped with the accumulation can of course be formed. Note that if the substance applied to the supply step is liquid at least in the atmosphere of the supply step, the supply step can be performed by a simple method such as flowing the liquid substance, so that the step can be simplified.

【0013】また、形成工程と供給工程とを複数回くり
返すことにより、蓄積物と構造体とがくり返し回数に応
じて積層できるため、例えば下層の構造体の直上に上層
の構造体を備えた構成、下層の構造体の投影面以外の領
域に上層の構造体を備えた構成、または下層の構造体の
投影面を一部重なる領域に上層の構造体を備えた構成の
何れかの構成を適宜自由に選択できる。なお、形成工程
を構造体に対し、形成工程の形成方向または供給工程の
蓄積方向の少なくとも何れか一方の方向に粒状に成長さ
せる場合に適用する物質は、形成工程または供給工程の
何れかで用いた物質であってもよく、またはそれ以外の
物質であってもよい。
In addition, by repeating the forming step and the supplying step a plurality of times, the accumulation and the structure can be laminated according to the number of times of repetition. For example, the upper structure is provided immediately above the lower structure. Any one of a configuration, a configuration including an upper-layer structure in a region other than the projection plane of the lower-layer structure, and a configuration including an upper-layer structure in a region partially overlapping the projection surface of the lower-layer structure. It can be freely selected as appropriate. The substance applied when the formation process is performed on the structure in a granular manner in at least one of the formation direction of the formation process and the accumulation direction of the supply process is performed in either the formation process or the supply process. Or another substance.

【0014】例えば、形成工程と同一物質を供給工程の
蓄積方向に成長させると三次元的広がりを有する同一機
能の構造体が作成でき、また、例えば導電性材料に抵抗
性材料を連続的に成長させた後再び導電性材料を連続的
に成長させると、発熱素子が製造できる。本発明に適用
できる複数種類の物質は、少なくとも電気的特性または
光学的特性の何れかが異なるため、金属と誘電体、合金
と誘電体等の組合せが挙げられる。これらの組合せ以外
でも、例えば金属と抵抗性物質、色調が異なる複数種の
金属、あるいは誘電特性が異なる複数種の誘電体等屡々
挙げられる。その中でも、本発明の特徴の一つとして、
金属または合金を適用する点が挙げられ、特に粒状に供
給する形成工程に用いる物質に金属または合金を適用す
る製造方法に顕著な特徴を有する。上記複数種類の物質
の内の一つは誘電体であることが好ましく、誘電体の材
料としては無機材料、有機材料を問わず適用できるが、
特に、紫外線、X線等のエネルギー線の照射で三次元硬
化するいわゆる光硬化型樹脂と称される樹脂の適用が、
作業性の上で好ましい。
For example, if the same substance as in the forming step is grown in the direction of accumulation in the supply step, a structure having the same function having a three-dimensional spread can be formed. For example, a resistive material is continuously grown on a conductive material. When the conductive material is continuously grown after the heating, a heating element can be manufactured. Since a plurality of kinds of substances applicable to the present invention are different in at least one of an electric property and an optical property, a combination of a metal and a dielectric, an alloy and a dielectric, and the like are given. Other than these combinations, for example, a metal and a resistive substance, a plurality of kinds of metals having different color tones, or a plurality of kinds of dielectrics having different dielectric properties are often used. Among them, as one of the features of the present invention,
The method is characterized in that a metal or an alloy is applied, and in particular, there is a remarkable feature in a manufacturing method in which a metal or an alloy is applied to a substance used in a forming step of supplying particles. One of the plurality of types of substances is preferably a dielectric, and as the material of the dielectric, an inorganic material or an organic material can be applied,
In particular, the application of a so-called photo-curable resin that is three-dimensionally cured by irradiation of energy rays such as ultraviolet rays and X-rays,
It is preferable in terms of workability.

【0015】[0015]

【実施例】まず、本発明の製造方法により作製される複
合構造体の基本構造の概念を、性質が相異なる2種類の
物質を適用した場合を例にとり図面を用いて説明する。
図1〜図4は、その製造方法を説明する概念工程図、図
5はこの方法によって製造された複合構造体を示す斜視
部分断面図である。本発明は、粒状物発生手段10から
一旦液状にした物質を粒状体20として支持体30に供
給し、構造体(21A〜21E)として支持体30に固
着する第1の形成工程を行う。第1の形成工程が終了し
た後、構造体(21A〜21E)が被着した領域以外の
領域に、粒状体20とは異なる性質を有する物質40を
供給手段50から供給し、構造体(21A〜21E)の
周囲に物質40の蓄積物41を設け第1の供給工程を行
う。第1の供給工程の後、構造体(21A〜21E)の
上に第1の形成工程と同様に粒状発生手段10から粒状
体20を供給し、構造体(22A〜22D)を積層する
第2の形成工程を行い、第2の形成工程の後に第1の供
給工程と同様な手法を用いて構造体(22A〜22D)
の周囲に物質40の蓄積物42を設ける第2の供給工程
を行い、この様に形成工程と供給工程とをくり返すこと
で複合構造体を作製する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the concept of the basic structure of a composite structure manufactured by the manufacturing method of the present invention will be described with reference to the drawings, taking as an example a case where two kinds of substances having different properties are applied.
1 to 4 are conceptual process diagrams illustrating the manufacturing method, and FIG. 5 is a perspective partial sectional view showing a composite structure manufactured by the method. In the present invention, a first forming step is performed in which the substance once liquefied from the particulate matter generation means 10 is supplied to the support 30 as the granular material 20 and is fixed to the support 30 as a structure (21A to 21E). After the first forming step is completed, a substance 40 having a property different from that of the granular material 20 is supplied from a supply unit 50 to a region other than the region where the structures (21A to 21E) are attached, and the structure (21A) is formed. 21E), an accumulation 41 of the substance 40 is provided and a first supply step is performed. After the first supply step, the granular body 20 is supplied from the granularity generation means 10 onto the structures (21A to 21E) in the same manner as in the first formation step, and the second structure (22A to 22D) is stacked. Is formed, and after the second forming step, the structures (22A to 22D) are formed using the same method as in the first supplying step.
A second supply step of providing an accumulation 42 of the substance 40 around the substrate is performed, and the formation step and the supply step are repeated in this manner to produce a composite structure.

【0016】粒状物発生手段10から供給する物質を液
状にする手法は、当該物質を加熱溶融する、当該物質の
良溶媒に溶解する、当該物質を溶媒に分散する等の手法
があるが、その中でも加熱溶融の手法が粒状体を支持体
30または構造体(21や22等)に固着後単に冷却す
るだけで済み、溶媒を除去する必要がないため好まし
い。なお、物質の加熱手段としては、ヒ−タ等による直
接または間接加熱、放電によるスパーク加熱等が利用で
きる。また、物質の液化の状態は、必ずしも完全に液化
させる必要はなく、粒状物発生手段10から粒状体20
として粒状に供給できる程度で良く、粒状発生手段10
の孔中の物質の粘度、圧力、孔の径等を一定にすれば、
粒状体20の体積を一定に出来る。粒状物発生手段10
の圧力印加手段としては、電気信号に応じて電歪素子を
動作するいわゆる圧電素子、基体の流力、重力等があ
り、その組合せ等についても適宜選択できる。
The material supplied from the particulate matter generating means 10 can be made into a liquid state by heating and melting the material, dissolving the material in a good solvent, or dispersing the material in a solvent. Above all, the method of heating and melting is preferable since it is only necessary to cool the granules after fixing the granules to the support 30 or the structure (21 or 22), and it is not necessary to remove the solvent. As a means for heating the substance, direct or indirect heating by a heater or the like, spark heating by electric discharge, and the like can be used. The state of liquefaction of the substance does not necessarily have to be completely liquefied.
It is sufficient that it can be supplied in the form of granules.
If the viscosity of the substance in the pores, the pressure, the diameter of the pores, etc. are kept constant,
The volume of the granular material 20 can be made constant. Granular material generating means 10
Examples of the pressure applying means include a so-called piezoelectric element that operates an electrostrictive element according to an electric signal, a fluid force of a base, gravity, and the like, and a combination thereof can be appropriately selected.

【0017】粒状体20の外見形状は、粒状発生手段1
0の孔、圧力、物質の粘度等を制御することにより、球
状体から尾引きを有する形状まで自由に設定できる。特
に、物質を溶融することにより粒状体20を発生させる
場合の当該粒状体20の表面状態は、少なくとも支持体
30表面または構造体(21や22等)に固着できる程
度の粘着力を有していれば構造体として単独に積層で
き、積層した構造体の外面形状は固着したときの粒状体
20の温度によって凹凸形状から平面形状まで制御でき
る。なお、構造体が個々の粒状物として独立した場合に
は、粒状体20の表面状態の粘着性は特にこだわらなく
てもよい。
The appearance of the granular material 20 is determined by the granularity generating means 1.
By controlling the zero pore, pressure, viscosity of the substance, etc., it is possible to freely set from a spherical body to a shape having a tail. In particular, when the granular material 20 is generated by melting a substance, the surface state of the granular material 20 has an adhesive force enough to be fixed to at least the surface of the support 30 or a structure (21 or 22 or the like). In this case, the structure can be independently laminated, and the outer surface shape of the laminated structure can be controlled from the uneven shape to the planar shape by the temperature of the granular material 20 when the structure is fixed. In the case where the structures are independent as individual granules, the surface state of the granules 20 does not have to be particularly sticky.

【0018】図1は、第1層目の構造体21を形成して
いる状態を示している。すなわち、同図は、一列目の走
査線21Aから四列目の走査線21Dを形成し終え、五
列目の走査線21Eを形成中の状態を示している。従っ
て、粒状発生手段10は、粒状体20を供給しながら紙
面に垂直な方向に順次移動し、第1の形成工程を終え
る。図2は、第1の形成工程を終えた後、粒状体20と
は異なる性質を有する物質40を供給手段50から、構
造体(21A〜21E)が被着した領域以外の領域に供
給し、構造体21(21A〜21E)の周囲を蓄積物4
1で囲っている状態を示し、所定の領域まで蓄積物41
を供給し、第1の供給工程を終える。図3は、第1の供
給工程の後、第1の形成手段と同様に、粒状発生手段1
0から粒状体20を供給し、第1層目の構造体21の間
に構造体22を積層する工程を示しており、同図は一列
目の走査線22Aから三列目の走査線22Cを形成し終
え、四列目の走査線22Dを形成中の状態を示し、四列
目の走査線22Dを形成し終え第2の形成工程は終了す
る。図4は、第2の形成工程を終えた後、第1の供給工
程と同様に、物質40を供給手段50から、構造体(2
2A〜22D)が固着した領域以外の領域に供給し、構
造体22(22A〜22D)の周囲を蓄積物42で囲っ
ている状態を示し、所定の領域まで蓄積物42を供給
し、第2の供給工程を終える。
FIG. 1 shows a state in which a first-layer structure 21 is formed. That is, this drawing shows a state in which the formation of the scanning line 21A of the fifth column is completed while the formation of the scanning line 21D of the fourth column is completed from the scanning line 21A of the first column. Therefore, the granularity generating means 10 sequentially moves in the direction perpendicular to the paper surface while supplying the granular material 20, and completes the first forming step. FIG. 2 shows that after the first forming step, a substance 40 having a property different from that of the granular material 20 is supplied from the supply means 50 to a region other than the region where the structures (21A to 21E) are applied, The accumulation 4 is formed around the structure 21 (21A to 21E).
1 shows a state surrounded by 1, and the accumulated matter 41 reaches a predetermined area.
Is supplied, and the first supply step is completed. FIG. 3 shows that, after the first supply step, the granularity generating means 1 is similar to the first forming means.
0 shows a step of supplying the granular material 20 from above, and stacking the structures 22 between the structures 21 of the first layer. FIG. This shows a state in which the formation of the fourth row of scanning lines 22D is completed, and the formation of the fourth row of scanning lines 22D is completed, thereby completing the second forming step. FIG. 4 shows that after completing the second formation step, the substance 40 is supplied from the supply means 50 to the structure (2) in the same manner as in the first supply step.
2A to 22D) are supplied to the area other than the area where the structure 22 is fixed, and the structure 22 (22A to 22D) is surrounded by the accumulation 42, and the accumulation 42 is supplied to a predetermined area. Finishes the supply process.

【0019】以下、形成工程及び供給工程を順次繰り返
して、図5に示したような複合構造体を完成する。な
お、上記説明では、形成工程と供給工程とを順番に交互
に繰り返す場合を説明したが、例えば図5に示したよう
に内部に空洞を具備しない連続構造体の場合等で、当該
構造体の回りに蓄積する物質が同一である場合には、形
成工程と供給工程とを順番に交互に繰り返す必要はな
く、形成工程のみを行い所定の形状の構造体を作製した
後、一挙に供給工程を行うことも可能である。このよう
な方法で製造すると、異なる供給工程により蓄積した蓄
積物間の境界がなくなり、蓄積物の特性がより均一化で
きる等の好ましい点がある。また、上記説明では1つの
粒状発生手段を備えた場合であるが、一次元または二次
元に複数の粒状発生手段を備えたマルチタイプにすると
形成工程の時間が短縮され、さらに、粒状発生手段の孔
の径、圧力、加熱温度、物質の種類等に応じて独立した
粒状発生手段を備えた場合でも適用できることも勿論で
ある。さらに、上記説明では、1つの形成工程により形
成した構造体の厚みにほぼ等しい厚みに各蓄積物を形成
したが、各形成工程で形成した構造物の厚みより厚く蓄
積しても良く、その場合には各形成工程で形成した構造
物同士が蓄積物により分断されるだけであり、用途に応
じて適宜選択できる。なお、上記説明では形成工程と供
給工程とに用いた物質は各々1種類であったが、各工程
に用いる物質はそれぞれ独立に複数であっても良いこと
勿論である。
Thereafter, the forming step and the supplying step are sequentially repeated to complete the composite structure as shown in FIG. In the above description, the case where the forming step and the supplying step are alternately repeated in order has been described. However, for example, in the case of a continuous structure having no cavity therein as shown in FIG. When the substances accumulated around the same material are the same, it is not necessary to alternately repeat the forming process and the supplying process in order, and only the forming process is performed to produce a structure having a predetermined shape. It is also possible to do. When manufactured by such a method, there is a preferable point that there is no boundary between the accumulations accumulated by different supply steps, and the characteristics of the accumulations can be made more uniform. Further, in the above description, one grain generating means is provided. However, when a multi-type having a plurality of one-dimensional or two-dimensional grain generating means is used, the time of the forming process is reduced, and It goes without saying that the present invention can be applied to a case where an independent grain generating means is provided according to the hole diameter, the pressure, the heating temperature, the type of the substance, and the like. Further, in the above description, each accumulation is formed to have a thickness substantially equal to the thickness of the structure formed in one formation step. However, the accumulation may be thicker than the thickness of the structure formed in each formation step. In this method, only the structures formed in each forming step are separated from each other by the accumulation, and can be appropriately selected depending on the application. In the above description, one substance was used for each of the formation step and the supply step. However, a plurality of substances may be independently used for each step.

【0020】図6は、本発明の製造方法を用いて製造し
た複合構造体の一実施の形態の相変化型光学情報記録媒
体の構成断面図である。ポリカーボネイト基板601の
一主面をプラズマ処理し表面に水酸基を作成し、テトラ
クロロシラン(SiCl4)を非水溶剤に溶解させた溶
液中にポリカーボネイト基板601を浸漬後水で洗浄
し、プラズマ処理を施した面にシラノール基を作成し
た。その後、両末端にトリクロロシラン(−SiC
3)基を有するシリコン系界面活性材の非水溶媒に溶
解した溶液中にシラノール基を有するポリカーボネイト
基板を浸漬・水処理を繰り返し、所定の厚みを有するシ
ラノール基を含有する蓄積物602の誘電体層を設ける
供給工程を行った。
FIG. 6 is a sectional view showing the structure of a phase change type optical information recording medium according to an embodiment of the composite structure manufactured by using the manufacturing method of the present invention. One main surface of the polycarbonate substrate 601 is subjected to plasma treatment to form a hydroxyl group on the surface, the polycarbonate substrate 601 is immersed in a solution of tetrachlorosilane (SiCl 4 ) dissolved in a non-aqueous solvent, washed with water, and subjected to plasma treatment. Silanol groups were formed on the surface. Then, trichlorosilane (-SiC)
l 3 ) A polycarbonate substrate having a silanol group is repeatedly immersed in a solution of a silicon-based surfactant having a group in a non-aqueous solvent and subjected to water treatment, and the dielectric substance of the silanol group-containing accumulation 602 having a predetermined thickness is repeated. A supply step of providing a body layer was performed.

【0021】次に、図7に示す構造体形成装置を用いた
形成工程を行った。すなわち、Ge・Sb・Te系合金
を物質供給手段701から粒状物発生手段702に供給
し、放電発生回路703で粒状物発生手段702のノズ
ル内で放電させることにより合金を液化させ、粒状体7
04を圧電素子(図示は省略)の圧力により吐出させ、
基板601の上に設けた蓄積物602の上にGe・Sb
・Te系合金の粒状物603を固着した。その後、蓄積
物602と同様な手法で、粒状物603を囲み込むまで
蓄積物604の供給工程を繰り返し、第1の記録層を形
成した。次に第1の記録層と同様な手法で、粒状物60
3と蓄積物604を形成し、第2の記録層を形成した
が、第1の記録層と異なる点は、第1の記録層中の粒状
物603の投影面以外に第2の記録層の粒状物603を
構成したことである。このように複数回の形成工程と供
給工程とを所定の記録層の厚みになるまで繰り返し、最
後に反射層605を図7に示した構造体形成装置と同様
な装置を用い、Al・Cr系合金の連続構造体を作成
し、Ge・Sb・Te系相変化記録材料が粒状に分散し
た記録層を有する記録媒体を得た。なお、上記説明の隣
接する各記録層の粒状物603の投影面が重ならない構
成の場合であるが、これはポリカーボネイト基板601
から入射するレ−ザ光の吸収効率を高めるために採用し
ただけであり、粒状物603の上に重ねる構成も可能で
あること勿論である。また、上記光学記録媒体のGe・
Sb・Te系合金は粒状発生手段により粒状体の吐出に
よる粒状物として形成したため、Ge・Sb・Teの各
組成は粒状物全てに亘り均一であった。
Next, a forming process using the structure forming apparatus shown in FIG. 7 was performed. That is, the Ge / Sb / Te-based alloy is supplied from the material supply means 701 to the granular material generating means 702, and discharged by the discharge generating circuit 703 in the nozzle of the granular material generating means 702 to liquefy the alloy, and
04 is ejected by the pressure of a piezoelectric element (not shown),
Ge · Sb is deposited on the accumulation 602 provided on the substrate 601.
The Te-based alloy particles 603 were fixed. Thereafter, in the same manner as that of the accumulation material 602, the supply step of the accumulation material 604 was repeated until the granular material 603 was surrounded, thereby forming the first recording layer. Next, in the same manner as in the first recording layer, the granular material 60
3 and the accumulation 604 were formed to form the second recording layer. However, the difference from the first recording layer is that the second recording layer other than the projection surface of the granular material 603 in the first recording layer. That is, the granular material 603 is configured. The forming step and the supplying step are repeated a plurality of times until the thickness of the recording layer reaches a predetermined value. Finally, the reflective layer 605 is formed using an Al—Cr-based A continuous structure of an alloy was prepared to obtain a recording medium having a recording layer in which a Ge / Sb / Te phase change recording material was dispersed in a granular form. In the above description, the projection surfaces of the granular materials 603 of the adjacent recording layers do not overlap, but this is the case with the polycarbonate substrate 601.
Of course, it is only used to increase the absorption efficiency of laser light incident from the surface, and it is also possible to adopt a configuration in which the laser light is superimposed on the granular material 603. In addition, the Ge.
Since the Sb / Te-based alloy was formed as granules by discharging the granules by the granulation generating means, each composition of Ge / Sb / Te was uniform over all the granules.

【0022】図8は、本発明の製造方法を用いて製造し
た複合構造体の他の実施の形態のサ−マルヘッドの要部
構成斜視図である。酸化アルミニウムの絶縁基板801
の上に、図7の構造体形成装置と同様な手法により、A
uの連続構造体の共通電極802を設ける第1の形成工
程をし、次にFe・Ni・Cr系の連続構造体の発熱抵
抗体803を所定のピッチで設ける第2の形成工程を行
い、その後発熱抵抗体803と同じピッチでAuの個別
電極804を設ける第3の形成工程を行った。さらに、
絶縁基板801の上の発熱抵抗体803及び個別電極8
04のピッチ間隙を埋めるとともに、共通電極802、
発熱抵抗体803及び個別電極804の上にもポリアミ
ック酸をスピンコ−トにより供給する供給工程を行い、
溶剤を蒸発させた後加熱によりポリアミック酸を熱架橋
させポリイミド絶縁膜805を形成し、サ−マルヘッド
を得た。上記サ−マルヘッドの発熱抵抗体の発熱特性
は、副走査ライン全てに亘り均一な特性であったので、
例えば所定の電圧を印可し発熱体の発熱特性を調整する
いわゆるサ−マルショックを付与する必要がなかった。
FIG. 8 is a perspective view of a main part of a thermal head according to another embodiment of a composite structure manufactured by using the manufacturing method of the present invention. Aluminum oxide insulating substrate 801
On top of the above, by the same method as the structure forming apparatus of FIG.
A first forming step of providing a common electrode 802 of a continuous structure of u is performed, and then a second forming step of providing heating resistors 803 of a continuous structure of Fe.Ni.Cr system at a predetermined pitch is performed. Thereafter, a third forming step of providing Au individual electrodes 804 at the same pitch as the heating resistor 803 was performed. further,
Heating resistor 803 and individual electrode 8 on insulating substrate 801
04, and the common electrode 802,
A supply step of supplying polyamic acid by spin coating on the heating resistor 803 and the individual electrode 804 is also performed.
After evaporating the solvent, the polyamic acid was thermally crosslinked by heating to form a polyimide insulating film 805 to obtain a thermal head. The heating characteristics of the heating resistor of the thermal head were uniform over the entire sub-scanning line.
For example, there is no need to apply a predetermined voltage to apply a so-called thermal shock for adjusting the heat generation characteristics of the heat generating element.

【0023】図9は、本発明の製造方法を用いて製造し
た複合構造体の別の実施の形態のプリント配線の要部構
成斜視図である。その製造方法は、離型性のあるフッ素
系樹脂の支持基板(図示は省略)上に、図7の構造体形
成装置を同様な手法で半田配線901をx方向に設ける
第1の形成工程を行い、半田配線901のz方向の厚み
にほぼ等しい厚みに紫外線硬化型樹脂を流入供給する第
1の供給工程を行い、当該樹脂が硬化する紫外線を照射
し絶縁体902を形成した。次に半田配線901の一端
に上に、供給工程の蓄積方向と同じ方向のz方向に、半
田配線901を形成した構造体形成装置で半田配線90
3を成長させる第2の形成工程の後、半田配線903の
成長分だけ紫外線硬化型樹脂を蓄積させる第2の供給工
程を行い、紫外線を照射し絶縁体902を蓄積した。そ
の後、半田配線903の上を通りy方向、x方向及びz
方法に延びる半田配線904を第1及び第2の形成工程
と同じ装置により連続構造体を作成し、半田配線904
のz方向の厚み分だけ紫外線硬化型樹脂を流入蓄積する
第3の供給工程の後紫外線を照射し絶縁体902を蓄積
し、最後に半田配線906を形成する第4の形成工程を
終え複合構造体を作成し、支持基板から複合構造体を剥
離し、積層プリント配線を得た。
FIG. 9 is a perspective view of a main part of a printed wiring of another embodiment of a composite structure manufactured by using the manufacturing method of the present invention. The manufacturing method includes a first forming step in which the structure forming apparatus of FIG. 7 is provided with a solder wiring 901 in the x direction on a support substrate (not shown) made of a releasable fluororesin by a similar method. Then, a first supply step of inflowing and supplying an ultraviolet curable resin to a thickness substantially equal to the thickness of the solder wiring 901 in the z direction was performed, and an ultraviolet ray for curing the resin was applied to form an insulator 902. Next, the solder wiring 90 is formed on one end of the solder wiring 901 by a structure forming apparatus in which the solder wiring 901 is formed in the z direction which is the same direction as the accumulation direction in the supply step.
After the second formation step for growing the third wiring, a second supply step for storing the ultraviolet-curable resin for the growth of the solder wiring 903 was performed, and the insulator 902 was stored by irradiating ultraviolet rays. After that, it passes over the solder wiring 903, and the
A continuous structure is formed by using the same apparatus as in the first and second forming steps.
After the third supply step of inflowing and accumulating the ultraviolet curable resin by the thickness in the z-direction, ultraviolet rays are irradiated to accumulate the insulator 902, and finally the fourth forming step of forming the solder wiring 906 is completed. A body was formed, and the composite structure was peeled off from the supporting substrate, to obtain a laminated printed wiring.

【0024】図10は、本発明の製造方法を用いて製造
した複合構造体の別の実施の形態の三次元電気回路の要
部構成斜視図である。同図に示すように、絶縁材料10
01及び導電材料1002〜1004で構成され、配線
部1002はCu配線、1003は鉄芯、1004はA
lのコイルを示している。このような三次元電気回路も
図9を用いて説明したプリント配線と同様の手法により
製造できる。また、形成工程によって面状の導電性連続
構造体、連続構造体の上に供給工程によって誘電性物質
の蓄積物を複数回繰り返すことで、二次元導電異方性を
有する複合構造体が製造できる。なお、上述した形成工
程における位置決め、形成工程及び供給工程それぞれの
物質の供給量、粒状物発生手段と構造体との距離等は、
例えばコンピュータと各種センサーを用いれば、所定の
精度は確保できる。
FIG. 10 is a perspective view of a main part of a three-dimensional electric circuit of another embodiment of the composite structure manufactured by using the manufacturing method of the present invention. As shown in FIG.
01 and conductive materials 1002 to 1004, the wiring portion 1002 is a Cu wiring, 1003 is an iron core, and 1004 is A
1 shows a coil. Such a three-dimensional electric circuit can also be manufactured by the same method as the printed wiring described with reference to FIG. In addition, a composite conductive structure having two-dimensional conductive anisotropy can be manufactured by repeating a planar conductive continuous structure by a forming process, and accumulating a dielectric substance a plurality of times by a supply process on the continuous structure. . In addition, the positioning in the forming step described above, the supply amount of the substance in each of the forming step and the supplying step, the distance between the particulate matter generating means and the structure, and the like,
For example, if a computer and various sensors are used, predetermined accuracy can be ensured.

【0025】[0025]

【発明の効果】以上のように、本発明の製造方法によれ
ば、機能が異なる物質を、複雑な形状で組み合わせた複
合構造体を簡単に製造でき、本願発明の製造方法であら
れる複合構造体は、構成する物質それぞれの機能を活か
せる形で各種広く適用できる。
As described above, according to the manufacturing method of the present invention, a composite structure in which substances having different functions are combined in a complicated shape can be easily manufactured. The body can be applied in a wide variety of forms in a form that makes use of the functions of the constituent substances.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合構造体の製造方法の一実施の形態
を説明する第1の形成工程の概念構成図
FIG. 1 is a conceptual configuration diagram of a first forming step illustrating an embodiment of a method of manufacturing a composite structure according to the present invention.

【図2】本発明の複合構造体の製造方法の一実施の形態
を説明する第1の供給工程の概念構成図
FIG. 2 is a conceptual configuration diagram of a first supply step for explaining an embodiment of a method of manufacturing a composite structure according to the present invention.

【図3】本発明の複合構造体の製造方法の一実施の形態
を説明する第2の形成工程の概念構成図
FIG. 3 is a conceptual configuration diagram of a second forming step for explaining an embodiment of a method of manufacturing a composite structure according to the present invention.

【図4】本発明の複合構造体の製造方法の一実施の形態
を説明する第2の供給工程の概念構成図
FIG. 4 is a conceptual configuration diagram of a second supply step for explaining an embodiment of a method of manufacturing a composite structure according to the present invention.

【図5】本発明の複合構造体の製造方法の一実施の形態
で製造された複合構造体の斜視部分断面図
FIG. 5 is a perspective partial cross-sectional view of a composite structure manufactured by one embodiment of a method for manufacturing a composite structure according to the present invention.

【図6】本発明の製造方法で製造される光学記録媒体の
構成断面図
FIG. 6 is a sectional view showing the configuration of an optical recording medium manufactured by the manufacturing method of the present invention.

【図7】本発明の製造方法に用いられる形成工程の装置
の一実施態様の概念構成図
FIG. 7 is a conceptual configuration diagram of an embodiment of an apparatus in a forming step used in the manufacturing method of the present invention.

【図8】本発明の製造方法で製造されるサ−マルヘッド
の要部構成斜視図
FIG. 8 is a perspective view of a main part configuration of a thermal head manufactured by the manufacturing method of the present invention.

【図9】本発明の製造方法で製造されるプリント配線の
要部構成斜視図
FIG. 9 is a perspective view of a main part configuration of a printed wiring manufactured by the manufacturing method of the present invention.

【図10】本発明の製造方法で製造される三次元電気回
路の要部構成斜視図
FIG. 10 is a perspective view of a main part configuration of a three-dimensional electric circuit manufactured by the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

10 粒状物発生手段 20 粒状体 21、22 構造体 30 支持体 41 蓄積物 50 供給手段 DESCRIPTION OF SYMBOLS 10 Granule generating means 20 Granular body 21, 22 Structure 30 Support body 41 Accumulated matter 50 Supply means

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 電気的特性または光学的特性の少なくと
も何れか一方が異なる複数種類の物質で構成した構造体
の製造方法であって、前記複数種類の物質の内少なくと
も1つの物質を、粒状物発生手段から粒状に供給し、粒
状物を形成する形成工程と、前記複数種類の物質の内前
記粒状物を構成する物質とは異なる他の物質を、少なく
とも前記粒状物以外の領域に供給する供給工程とを含む
ことを特徴とする複合構造体の製造方法。
1. A method for manufacturing a structure comprising a plurality of types of substances having at least one of electric characteristics and optical characteristics different from each other, wherein at least one of the plurality of types of substances is a granular material. A step of forming a granular material by supplying the granular material from the generating means, and supplying the other material different from the material constituting the granular material among the plurality of types of materials to at least a region other than the granular material. And a method for producing a composite structure.
【請求項2】 電気的特性または光学的特性の少なくと
も何れか一方が異なる複数種類の物質で構成した構造体
の製造方法であって、前記複数種類の物質の内少なくと
も1つの物質を、粒状物発生手段から粒状に供給し、紐
状または面状の連続構造体を形成する形成工程と、前記
複数種類の物質の内前記連続構造体を構成する物質とは
異なる他の物質を、少なくとも前記連続構造体以外の領
域に供給する供給工程とを含むことを特徴とする複合構
造体の製造方法。
2. A method for manufacturing a structure comprising a plurality of types of substances having at least one of different electrical characteristics or optical characteristics, wherein at least one of the plurality of types of substances is a granular material. A step of forming a continuous structure in the form of a string or a sheet by supplying the material in a granular form from the generating means; And supplying the material to an area other than the structure.
【請求項3】 電気的特性または光学的特性の少なくと
も何れか一方が異なる第一の物質と第二の物質とを含む
構造体の製造方法であって、前記第一の物質を適量ずつ
吐出し第一の構造体を形成する形成工程と、前記第二の
物質を前記第一の物質の周辺に供給する供給工程とを有
することを特徴とする複合構造体の製造方法。
3. A method for manufacturing a structure including a first substance and a second substance having at least one of electrical characteristics and optical characteristics different from each other, wherein the first substance is discharged by an appropriate amount. A method for manufacturing a composite structure, comprising: a forming step of forming a first structure; and a supply step of supplying the second substance to a periphery of the first substance.
【請求項4】 電気的特性または光学的特性の少なくと
も何れか一方が異なる第一の物質と第二の物質とを含む
構造体の製造方法であって、前記第一の物質を粒状で供
給し第一の構造体を形成する形成工程と、前記第二の物
質を液状態で供給する供給工程とを含むことを特徴とす
る複合構造体の製造方法。
4. A method for manufacturing a structure including a first substance and a second substance having at least one of electrical characteristics and optical characteristics different from each other, wherein the first substance is supplied in a granular form. A method for manufacturing a composite structure, comprising: a forming step of forming a first structure; and a supply step of supplying the second substance in a liquid state.
【請求項5】 前記供給工程が、前記他の物質を前記粒
状物、前記連続構造体または前記第一の構造体の何れか
の厚みにほぼ等しく蓄積する工程を含むことを特徴とす
る請求項1〜4の何れかに記載の複合構造体の製造方
法。
5. The method according to claim 1, wherein the supplying step includes a step of accumulating the other substance substantially equal to a thickness of any of the granular material, the continuous structure, and the first structure. A method for producing a composite structure according to any one of claims 1 to 4.
【請求項6】 前記供給工程が、液状の物質を流入する
工程であることを特徴とする請求項1〜3、または5の
何れかに記載の複合構造体の製造方法。
6. The method according to claim 1, wherein the supplying step is a step of flowing a liquid substance.
【請求項7】 前記形成工程が、前記粒状物、前記連続
構造体または前記第一の構造体の何れかに対し、前記複
数種類の物質の内の1種の物質を、前記形成工程の形成
方向または前記供給工程の蓄積方向の少なくとも何れか
一方の方向に粒状に成長させる工程を含むことを特徴と
する請求項1〜6の何れかに記載の複合構造体の製造方
法。
7. The forming step includes forming one of the plurality of types of substances on the granular material, the continuous structure, or the first structure in the forming step. The method for producing a composite structure according to any one of claims 1 to 6, further comprising a step of growing the particles in at least one of a direction and an accumulation direction of the supply step.
【請求項8】 前記形成工程と前記供給工程とをくり返
すことを特徴とする請求項1〜7の何れかに記載の複合
構造体の製造方法。
8. The method of manufacturing a composite structure according to claim 1, wherein the forming step and the supplying step are repeated.
【請求項9】 前記形成工程または前記供給工程で用い
る物質の少なくとも一方が金属または合金の少なくとも
何れかであることを特徴とする請求項1〜8の何れかに
記載の複合構造体の製造方法。
9. The method of manufacturing a composite structure according to claim 1, wherein at least one of the substances used in the forming step or the supplying step is at least one of a metal and an alloy. .
【請求項10】 前記形成工程または前記供給工程で用
いる物質の少なくとも一方が誘電体であることを特徴と
する請求項1〜9の何れかに記載の複合構造体の製造方
法。
10. The method for manufacturing a composite structure according to claim 1, wherein at least one of the substances used in the forming step or the supplying step is a dielectric.
【請求項11】 前記誘電体が、エネルギー線照射で三
次元硬化する樹脂を含むことを特徴とする請求項10記
載の複合構造体の製造方法。
11. The method for manufacturing a composite structure according to claim 10, wherein the dielectric includes a resin that is three-dimensionally cured by irradiation with energy rays.
【請求項12】 請求項1〜11の何れかに記載の複合
構造体の製造方法によって製造されたことを特徴とする
複合構造体。
12. A composite structure manufactured by the method for manufacturing a composite structure according to claim 1. Description:
JP18780397A 1997-06-27 1997-06-27 Manufacture of composite structure and composite structure Withdrawn JPH1120217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18780397A JPH1120217A (en) 1997-06-27 1997-06-27 Manufacture of composite structure and composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18780397A JPH1120217A (en) 1997-06-27 1997-06-27 Manufacture of composite structure and composite structure

Publications (1)

Publication Number Publication Date
JPH1120217A true JPH1120217A (en) 1999-01-26

Family

ID=16212520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18780397A Withdrawn JPH1120217A (en) 1997-06-27 1997-06-27 Manufacture of composite structure and composite structure

Country Status (1)

Country Link
JP (1) JPH1120217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062924A1 (en) * 2003-01-16 2004-07-29 Silverbrook Research Pty Ltd A 3-d product printing system incorporating an electrical connection printhead

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062924A1 (en) * 2003-01-16 2004-07-29 Silverbrook Research Pty Ltd A 3-d product printing system incorporating an electrical connection printhead
US7220115B2 (en) 2003-01-16 2007-05-22 Silverbrook Research Pty Ltd 3-D product printing system incorporating an electrical connection printhead
US7467025B2 (en) 2003-01-16 2008-12-16 Silverbrook Research Pty Ltd Printer system for developing a 3-D product
US7797069B2 (en) 2003-01-16 2010-09-14 Silverbrook Research Pty Ltd Production line incorporating equidistantly spaced apart sets of printheads

Similar Documents

Publication Publication Date Title
JP4741045B2 (en) Electric circuit, manufacturing method thereof and electric circuit manufacturing apparatus
TWI413189B (en) Electrically conductive structure on a semiconductor substrate formed from printing
US20040197493A1 (en) Apparatus, methods and precision spray processes for direct write and maskless mesoscale material deposition
CN1191167C (en) Manufacture process of single ink jet head
KR100643934B1 (en) Method of forming circuit pattern of pcb
US7814862B2 (en) Method of forming structures using drop-on-demand printing
US6176570B1 (en) Printer apparatus wherein the printer includes a plurality of vibrating plate layers
JPH08307038A (en) Method for forming patterned metallic film on surface of substrate
WO1998019188A1 (en) Color filter and its manufacturing method
TW200847032A (en) Method for decimation of images
EP1884146A1 (en) A patterned metal layer using thermal transfer
EP3296901B1 (en) Three-dimensional modeling apparatus, method, and computer program
US5401616A (en) Patterning method employing laser
GB2109411A (en) Printing screens
JPH1120217A (en) Manufacture of composite structure and composite structure
JPH11135916A (en) Print method for electrode and electronic circuit pattern
JPS6299162A (en) Recording head
US5317342A (en) High-density print head
JP2007165362A (en) X-ray mask and its manufacturing method, and gradation mask for ultraviolet ray lithography
TW565513B (en) Re-usable mandrel for fabrication of ink-jet orifice plates
JP5097985B2 (en) Electroforming mold manufacturing method, electroforming mold and electroformed part manufacturing method
US20060209123A1 (en) High density reinforced orifice plate
JP2003131003A (en) Manufacturing method of three dimensional photonic crystal
JP2000216110A (en) Metallic-pattern forming method by optical recording, and electronic and optical elements using the same
JP2005507566A (en) Method for forming a mask on a surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907