JPH11201982A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH11201982A
JPH11201982A JP788098A JP788098A JPH11201982A JP H11201982 A JPH11201982 A JP H11201982A JP 788098 A JP788098 A JP 788098A JP 788098 A JP788098 A JP 788098A JP H11201982 A JPH11201982 A JP H11201982A
Authority
JP
Japan
Prior art keywords
sensor element
rod
acceleration sensor
opening
semiconductor acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP788098A
Other languages
Japanese (ja)
Inventor
Hiroyuki Muramatsu
博之 村松
Kenji Shiraki
健二 白木
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SII R&D Center Inc
Original Assignee
SII R&D Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII R&D Center Inc filed Critical SII R&D Center Inc
Priority to JP788098A priority Critical patent/JPH11201982A/en
Publication of JPH11201982A publication Critical patent/JPH11201982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor acceleration sensor capable of preventing breakage by excessive acceleration at the time of a falling impact or the like and being easily manufactured. SOLUTION: The sensor element 10 of the cantilever needle of a silicon rectangular parallelepiped is provided with a distortion sensitive part 60 for detecting acceleration near a fixed end. To the free end part of the sensor element 10, a rectangular parallelepiped weight 20 provided with a rectangular parallelepiped opening part 30 is attached. A bar 40 for controlling the movement of the sensor element 10 is attached to a supporting part 50 and inserted to the opening part 30 of the weight 20 and formation is performed. By the abutting of the opening part 30 and the bar 40, the breakage of the sensor element 10 is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車やロボット
等に搭載され、梁に設けたピエゾ抵抗の抵抗値の変化で
衝撃、傾斜等の加速度を測定する加速度センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor mounted on an automobile, a robot, or the like, for measuring acceleration such as impact, inclination, and the like by changing the resistance value of a piezo resistor provided on a beam.

【0002】[0002]

【従来の技術】 従来の半導体加速度センサにおいて
は、たとえば特開平1-10665に記載されているものがあ
る。図6は従来の加速度センサの平面図である。図6に
おいて、感歪部60を有するシリコンのセンサ素子10の一
端に、重り20を取り付け、規制部材21及び22によってセ
ンサ素子10の動きを規制する。図6において紙面上下方
向の加速度を検出する。落下衝撃時等においてセンサ素
子10に過大な加速度が加わった場合、シリコンのセンサ
素子10の変位が破壊変位に達しないように、傾斜面21a
及び22aを設けた前記規制部材21及び22によってセンサ
素子10の紙面上下方向の動きを規制し、センサ素子10
が過大に変位しない構造となっており、落下衝撃時等に
おけるセンサ素子10の破損を防止している。
2. Description of the Related Art A conventional semiconductor acceleration sensor is disclosed, for example, in Japanese Patent Laid-Open No. 1-10665. FIG. 6 is a plan view of a conventional acceleration sensor. 6, a weight 20 is attached to one end of a silicon sensor element 10 having a strain-sensitive portion 60, and the movement of the sensor element 10 is regulated by regulating members 21 and 22. In FIG. 6, the acceleration in the vertical direction on the paper is detected. If an excessive acceleration is applied to the sensor element 10 at the time of a drop impact or the like, the inclined surface 21a is used so that the displacement of the silicon sensor element 10 does not reach the breaking displacement.
The movement of the sensor element 10 in the vertical direction on the paper is regulated by the regulating members 21 and 22 provided with
Is not excessively displaced, thereby preventing the sensor element 10 from being damaged at the time of a drop impact or the like.

【0003】また、図7は特開平4-106766に記載されて
いる従来の半導体加速度センサの平面図である。紙面で
上下方向の加速度を受けてセンサ素子10がたわむことで
センサ素子10に取り付けた感歪部60の拡散抵抗の値が
変化し、加速度を検出する。図7において、感歪部60を
有するシリコンのセンサ素子10に対し、パッケージ300
および、台座200にはセンサ素子10の動きを規制する規
制部材310および210が取り付けてあり、前記規制部材31
によってセンサ素子10の変位を規制し、落下衝撃時等に
おいてセンサ素子10が大きな変位とならないような構造
としている。
FIG. 7 is a plan view of a conventional semiconductor acceleration sensor described in Japanese Patent Application Laid-Open No. 4-106766. When the sensor element 10 bends in response to vertical acceleration on the paper, the value of the diffusion resistance of the strain-sensitive section 60 attached to the sensor element 10 changes, and the acceleration is detected. In FIG. 7, a package 300 is attached to a silicon sensor element 10 having a strain-sensitive portion 60.
Further, regulating members 310 and 210 for regulating the movement of the sensor element 10 are attached to the pedestal 200.
The structure restricts the displacement of the sensor element 10 so that the sensor element 10 does not undergo a large displacement at the time of a drop impact or the like.

【0004】[0004]

【発明が解決しようとする課題】従来の半導体加速度セ
ンサにあっては以上のように構成されており、たとえば
図6では、センサ素子10の動きを規制するために、21
a、22aのような面を作らねばならず、複雑な構造になっ
ている。さらに重り部20と規制部材21および22の当接面
21a及び22aの距離はセンサ素子10の破壊変位以内に制限
する必要がある。例えば図6の例でシリコンのセンサ素
子10の長さが1mm、重り部20の重さが40mg、センサ素子1
の断面が300μm×300μm程度の場合、センサ素子10に落
下衝撃時等において破壊限界応力が加わると、センサ素
子10は紙面上下方向で200〜300μmたわむため、図6に
おいてセンサ素子1とストッパ21a、22aとの距離もこの
値以下に抑える必要があり、重り部20と規制部材21及び
22の当節面21a及び22aの隙間を200μm程度に制御しな
ければならならず加工が複雑になるため、製造コストが
高くなってしまうという問題点があった。
The conventional semiconductor acceleration sensor is configured as described above. For example, in FIG.
A surface like a, 22a must be made, and it has a complicated structure. Further, the contact surface between the weight portion 20 and the regulating members 21 and 22
The distance between 21a and 22a must be limited to within the breaking displacement of the sensor element 10. For example, in the example of FIG. 6, the length of the silicon sensor element 10 is 1 mm, the weight of the weight 20 is 40 mg, and the sensor element 1
When the cross-section of is approximately 300 μm × 300 μm, when a breaking limit stress is applied to the sensor element 10 at the time of a drop impact or the like, the sensor element 10 bends 200 to 300 μm in the vertical direction on the paper, and thus the sensor element 1 and the stopper 21a, It is necessary to keep the distance from 22a to this value or less.
Since the gap between the joint surfaces 21a and 22a of 22 must be controlled to about 200 μm, the processing becomes complicated, and there is a problem that the manufacturing cost increases.

【0005】さらに、図7の例では、パッケージの上蓋
300に規制部材310を取り付け、さらに土台200にも規制
部材210を取り付け、落下衝撃時等においてセンサ素子1
0に過大な加速度が加わり、センサ素子10が破壊変位以
上に変形するのを、センサ素子10と規制部材210及び310
との当接によってセンサ素子10の動きを破壊変位以内に
規制することで、センサ素子10が破壊しない構造にして
いる。図7のように部品を組み立てることで製造する場
合、パッケージ300および、台座200、さらにセンサ素子
10の位置決めと以上の部品加工を正確に行う必要があ
り、部品点数が多く、さらに製造が困難であるという問
題点があった。
[0005] Further, in the example of FIG.
A regulating member 310 is attached to 300, and a regulating member 210 is further attached to the base 200.
When excessive acceleration is applied to 0 and the sensor element 10 is deformed beyond the breaking displacement, the sensor element 10 and the regulating members 210 and 310
By restricting the movement of the sensor element 10 within the breaking displacement by contact with the sensor element 10, the sensor element 10 is not broken. When manufacturing by assembling parts as shown in FIG. 7, the package 300, the pedestal 200, and the sensor element
There is a problem that it is necessary to accurately perform the positioning of 10 and the above-described parts processing, the number of parts is large, and the manufacturing is difficult.

【0006】また、図6、図7の場合の両方で落下衝撃
時等における、センサ素子10への過大な加速度による紙
面上下方向の曲げによる破損の防止はなされているが、
紙面に垂直な方向についても同様の構造を設けないと紙
面垂直方向の破損の防止を行えないという問題点があっ
た。また、センサ素子が単純な曲げによって破壊すると
きのみ有効であって、センサ素子がセンサ素子まわりの
ねじれによって破壊する場合の対策はなされていないと
いう問題点があった。
[0006] In both cases of FIGS. 6 and 7, damage due to bending in the vertical direction of the paper due to excessive acceleration of the sensor element 10 at the time of a drop impact or the like is prevented.
Unless a similar structure is provided in the direction perpendicular to the paper surface, there is a problem that damage in the direction perpendicular to the paper surface cannot be prevented. Further, this method is effective only when the sensor element is broken by simple bending, and there is a problem that no measure is taken when the sensor element is broken by twisting around the sensor element.

【0007】[0007]

【課題を解決するための手段】本発明の半導体加速度セ
ンサは、落下衝撃時等において印加加速度方向にセンサ
素子が大きく変位しないようにセンサ素子の一端に取り
付けた重りに設けた開口部に棒を一定の隙間を設けて挿
入するという単純な構造により、センサ素子の動きを開
口部と棒との当接によって規制し、耐衝撃性の高い加速
度センサを安易に製造することができる。また、上記の
ような開口部と棒の構造を二つ以上配置することによ
り、落下衝撃時等でのセンサ素子まわりのねじれによる
センサ素子の破壊を防止できるようになる。
According to the semiconductor acceleration sensor of the present invention, a rod is attached to an opening provided in a weight attached to one end of the sensor element so that the sensor element is not greatly displaced in the direction of applied acceleration at the time of a drop impact or the like. With a simple structure in which a certain gap is provided and inserted, the movement of the sensor element is restricted by the contact between the opening and the rod, and an acceleration sensor having high shock resistance can be easily manufactured. Further, by arranging two or more structures of the opening and the rod as described above, it becomes possible to prevent the sensor element from being broken due to a twist around the sensor element at the time of a drop impact or the like.

【0008】[0008]

【発明の実施の形態】以下にこの発明の実施例を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】[0009]

【実施例1】図1はこの発明の1実施例に係る半導体加速
度センサの構造を示す斜視図である。図2は図1の実施
例の断面図である。この実施例の構造を図1、図2を用
いて説明する。シリコンの直方体のセンサ素子10は、加
速度を検出するための感歪部60を固定端付近に有し、素
子支持部70により一端を固定されている。感歪部60は拡
散抵抗をホイートストンブリッジ回路に組んで形成され
る。前記センサ素子10の自由端部に直方体の開口部30を
有する直方体の重り20を取り付ける。開口部30は重り20
の開口面31の中央付近に位置し、センサ素子10の長手方
向に対し、重り20の中心部分まで開口面31に対し、垂直
に開口している。
Embodiment 1 FIG. 1 is a perspective view showing the structure of a semiconductor acceleration sensor according to one embodiment of the present invention. FIG. 2 is a sectional view of the embodiment of FIG. The structure of this embodiment will be described with reference to FIGS. The silicon rectangular sensor element 10 has a strain-sensitive portion 60 for detecting acceleration near a fixed end, and one end is fixed by an element supporting portion 70. The strain sensing part 60 is formed by assembling a diffusion resistor into a Wheatstone bridge circuit. A rectangular parallelepiped weight 20 having a rectangular parallelepiped opening 30 is attached to the free end of the sensor element 10. Opening 30 is weight 20
It is located near the center of the opening surface 31 of the sensor element 10 and opens perpendicularly to the opening surface 31 up to the center of the weight 20 in the longitudinal direction of the sensor element 10.

【0010】さらにセンサ素子10の動きを規制する棒40
を棒支持部50に取り付け、前記重り20の開口部30に挿入
し形成する。開口部30の内径に対し、棒40の外径はわず
かに小さくなっており、棒40を開口部30に対し所定の位
置に挿入すると、一定の隙間が形成される構造となって
いる。重り20及びセンサ素子10が加速度を受けて、それ
によってセンサ素子10がたわみ、感歪部60に曲げ応力が
生じる。曲げによる拡散抵抗の抵抗値変化ΔRは以下の
ように、曲げ応力σに比例する。 ΔR∝σ σ:曲げ応力 またセンサ素子10上で拡散抵抗を取り付ける位置によっ
て、生じる曲げ応力は異なるため、前記式のよると拡散
抵抗を取り付けた位置によって抵抗値変化が異なり、セ
ンサ素子10がたわむことでブリッジ回路が崩れ、これに
よって加速度を検出する。
Further, a rod 40 for regulating the movement of the sensor element 10
Is attached to the rod support 50, and is inserted into the opening 30 of the weight 20 to form. The outer diameter of the rod 40 is slightly smaller than the inner diameter of the opening 30. When the rod 40 is inserted into a predetermined position with respect to the opening 30, a constant gap is formed. The weight 20 and the sensor element 10 are subjected to acceleration, whereby the sensor element 10 bends and a bending stress is generated in the strain-sensitive portion 60. The change in resistance value ΔR of the diffusion resistance due to bending is proportional to the bending stress σ as follows. ΔR∝σ σ: bending stress The bending stress that occurs differs depending on the position where the diffusion resistance is mounted on the sensor element 10. Therefore, according to the above equation, the resistance value changes depending on the position where the diffusion resistance is mounted, and the sensor element 10 bends. As a result, the bridge circuit collapses, and thereby the acceleration is detected.

【0011】次に、本実施例の加速度センサの各要素の
製造方法について説明する。シリコンのセンサ素子10
は、通常の半導体プロセスにおいて不純物注入法により
拡散抵抗を形成して感歪部60を設け、エッチング、ダイ
シング等の加工方法で所定の形状に加工する。重り20
は、直方体の金属から開口部30をくり貫いて生成するこ
ともできるし、プラスチックの射出成型で製造すること
もできる。棒40は金属を削り出して製造することも可能
であるし、また重り20との当接時の衝撃を低減するため
にプラスチック等を用いることもできる。棒支持部50と
棒40とは一体で加工してもよいし、別々に加工して接着
あるいは溶接してもよい。
Next, a method of manufacturing each element of the acceleration sensor according to the present embodiment will be described. Silicon sensor element 10
In the conventional semiconductor process, a strain-sensitive portion 60 is formed by forming a diffusion resistor by an impurity implantation method in an ordinary semiconductor process, and is processed into a predetermined shape by a processing method such as etching and dicing. Weight 20
Can be formed from a rectangular parallelepiped metal through the opening 30, or can be manufactured by injection molding of plastic. The rod 40 can be manufactured by shaving a metal, or a plastic or the like can be used to reduce an impact at the time of contact with the weight 20. The rod support 50 and the rod 40 may be integrally processed, or may be separately processed and bonded or welded.

【0012】次に本実施例の加速度センサの組み立て方
法について説明する。図2において、tは開口部30と棒4
0との隙間を表す。 前述のように開口部30と棒40に一定
の隙間tを設ける必要がある。センサ素子10の破損を防
止するために、重り20を取り付けたセンサ素子10と棒40
との位置決めによって開口部30と棒40の隙間tをセンサ
素子10の破壊限界以内に抑えて製造する。あるいは、開
口部30と棒40の間に厚さが既知の板状の金属等を挿入し
て、隙間tを一定に保って重り20を取り付けたセンサ素
子10及び、棒支持部50を固定し、その後前記板状の金属
等を取り除くことで隙間tを一定に保って製造すること
もできる。また、フィルム状の物体を開口部30と棒40の
隙間に挿入し、重り20を取り付けたセンサ素子10及び、
棒40の棒支持部50を固定した後、前記フイルムを溶剤等
で溶解させ、隙間tを一定に保って組み立てることも可
能である。
Next, a method of assembling the acceleration sensor according to this embodiment will be described. In FIG. 2, t is the opening 30 and the rod 4
Indicates a gap with 0. As described above, it is necessary to provide a constant gap t between the opening 30 and the rod 40. To prevent damage to the sensor element 10, the sensor element 10 with the weight 20 attached and the rod 40
The manufacturing is performed with the gap t between the opening 30 and the rod 40 kept within the breaking limit of the sensor element 10 by positioning. Alternatively, a plate-shaped metal or the like having a known thickness is inserted between the opening 30 and the rod 40, and the sensor element 10 having the weight 20 attached thereto while keeping the gap t constant, and the rod support 50 are fixed. Thereafter, by removing the plate-like metal or the like, it is possible to manufacture the semiconductor device while keeping the gap t constant. Further, a film-shaped object is inserted into the gap between the opening 30 and the rod 40, and the sensor element 10 having the weight 20 attached thereto, and
After fixing the rod supporting portion 50 of the rod 40, the film can be dissolved with a solvent or the like to assemble with the gap t kept constant.

【0013】次にこの加速度センサの機能について説明
する。重り20には例えば真鍮を用いると、形状が2.8mm
×3.0mm×1.0mmの場合、重量は60mgで、センサ素子10の
長さが1mm、断面がw:150μm×h:525μmの場合、曲げ
による破壊応力はシリコンの降伏応力の3.0×108[N/m2]
程度で、これはセンサ素子10にh方向で200G程度、w方
向で700G程度の衝撃加速度が加わった場合にセンサ素子
10が受ける応力の値であり、この値のときセンサ素子10
はh方向で300μm、w方向で500μm程度たわむ。
Next, the function of the acceleration sensor will be described. For example, if brass is used for the weight 20, the shape is 2.8 mm
In the case of × 3.0 mm × 1.0 mm, the weight is 60 mg, the length of the sensor element 10 is 1 mm, and the cross section is w: 150 μm × h: 525 μm, the breaking stress due to bending is 3.0 × 108 [N / m2]
When an impact acceleration of about 200 G is applied to the sensor element 10 in the h direction and about 700 G in the w direction, the sensor element 10
This is the value of the stress applied to the sensor element 10.
Deflects about 300 μm in the h direction and about 500 μm in the w direction.

【0014】そのため、開口部30と棒40との距離tはこ
の値以下に押さえる必要がある。上記の製造方法で、こ
の隙間tを破壊限界以内に制限して加速度センサを製造
する。また、棒40が真鍮の場合、上記のような加速度セ
ンサにおいて、断面が0.5mm×0.5mm、長さは1.5mm程度
で十分にセンサ素子10の動きを規制できる。上記のよう
な構造では、ブリッジ回路に5V程度の電圧を印可する
と、1Gの加速度に対し、2.5mV程度の感度が得られる。
さらに、本実施例の加速度センサを専用の治具に取り付
け電気的に接続し、衝撃時のセンサの出力を測定しなが
ら落下衝撃試験を行った結果、棒40を取り付けないもの
は、0.1m程度で破壊したが、本実施例のように棒40を取
り付けたものは約1mの落下試験に耐えうることが確認さ
れた。
Therefore, it is necessary to keep the distance t between the opening 30 and the bar 40 below this value. With the above-described manufacturing method, the acceleration sensor is manufactured by limiting the gap t to within the breaking limit. When the rod 40 is made of brass, in the above-described acceleration sensor, the cross section is about 0.5 mm × 0.5 mm and the length is about 1.5 mm, so that the movement of the sensor element 10 can be sufficiently regulated. In the above-described structure, when a voltage of about 5 V is applied to the bridge circuit, a sensitivity of about 2.5 mV can be obtained with respect to 1 G of acceleration.
Furthermore, the acceleration sensor of this embodiment was attached to a dedicated jig and electrically connected, and a drop impact test was performed while measuring the output of the sensor at the time of impact. However, it was confirmed that the one with the rod 40 attached as in this example can withstand a drop test of about 1 m.

【0015】[0015]

【実施例2】図3は実施例2の斜視図である。図3におい
て、素子支持部は省略する。実施例2は、図3のように実
施例1の加速度センサを、重り20を円筒にし、さらに応
力集中を低減するための薄肉部80をセンサ素子10に設た
ものである。感歪部60をセンサ素子10上に長手方向で薄
肉部80の位置に、薄肉部80に対してセンサ素子10の裏面
に設けたセンサ素子10を組み合わせて構成される。その
他の構成及び、製造方法は実施例1と同じである。
Second Embodiment FIG. 3 is a perspective view of a second embodiment. In FIG. 3, the element support is omitted. In the second embodiment, as shown in FIG. 3, the acceleration sensor of the first embodiment is different from the acceleration sensor of the first embodiment in that the weight 20 has a cylindrical shape, and a thin portion 80 for reducing stress concentration is provided on the sensor element 10. The strain-sensitive part 60 is formed by combining the sensor element 10 provided on the back surface of the sensor element 10 with respect to the thin part 80 at the position of the thin part 80 on the sensor element 10 in the longitudinal direction. Other configurations and a manufacturing method are the same as those in the first embodiment.

【0016】この様な構造の場合、センサ素子10の加工
は複雑となるが、落下衝撃時等にセンサ素子10に大きな
応力が加わり、実施例1における破壊限界変位量に達し
ても、薄肉部80を設けたため、応力集中が起こらず破壊
しにくい。そのため、隙間tは実施例1の様なセンサ素子
10が直方体のような構造より大きく設定することがで
き、組立は容易になる。さらに、開口部はくり貫き、棒
は旋盤などの比較的単純な加工方法で製造できるため、
低コストで製造可能である。
In the case of such a structure, the processing of the sensor element 10 becomes complicated. However, even when a large stress is applied to the sensor element 10 at the time of a drop impact or the like and the breaking limit displacement amount in the first embodiment is reached, the thin-walled portion is not formed. Since 80 is provided, stress concentration does not occur and it is hard to break. Therefore, the gap t is the sensor element as in the first embodiment.
10 can be set larger than a structure like a rectangular parallelepiped, and assembling becomes easy. Furthermore, since the opening can be cut through and the bar can be manufactured by a relatively simple processing method such as a lathe,
It can be manufactured at low cost.

【0017】[0017]

【実施例3】図4に実施例3の斜視図を示す。図4におい
て、素子支持部は省略する。図4は実施例1の加速度セン
サの開口部30、及び棒40を円筒形状に変えたものであ
る。その他の構成及び、製造方法は実施例1と同一であ
る。機能について図4、図8、図9を用いて詳細に説明す
る。図9は図4で、図4中でA方向から見た平面図である。
この図9で棒40の棒支持部50は図示しない。同様に図8は
開口部30、棒40が直方体の場合(実施例1)を同様にA方
向から見た平面図である。図8のように、センサ素子10
と棒40の固定時にセンサ素子10まわりに傾きが生じる
と、隙間tは一定とならないが、図8のように開口部3
0、及び棒40を円筒形状にすると、固定時に重り20と棒4
0の取り付け角度がずれても、隙間tは一定となるため、
センサ素子10及び棒40の固定時にセンサ10周りの取り付
け角度の精度を要求されず、製造し易くなる。
Third Embodiment FIG. 4 is a perspective view of a third embodiment. In FIG. 4, the element support is omitted. FIG. 4 shows the acceleration sensor according to the first embodiment in which the opening 30 and the rod 40 are changed into a cylindrical shape. Other configurations and the manufacturing method are the same as those of the first embodiment. The function will be described in detail with reference to FIGS. 4, 8, and 9. FIG. 9 is a plan view of FIG. 4, as viewed from the direction A in FIG.
In FIG. 9, the rod supporting portion 50 of the rod 40 is not shown. Similarly, FIG. 8 is a plan view of the case where the opening 30 and the bar 40 are rectangular parallelepipeds (Example 1), similarly viewed from the A direction. As shown in FIG. 8, the sensor element 10
When the tilt is generated around the sensor element 10 when the rod 40 and the rod 40 are fixed, the gap t is not constant, but as shown in FIG.
If the rod 40 and the rod 40 are cylindrical, the weight 20 and the rod 4
Even if the mounting angle of 0 is shifted, the gap t is constant,
When the sensor element 10 and the rod 40 are fixed, the accuracy of the mounting angle around the sensor 10 is not required, and the manufacture becomes easy.

【0018】[0018]

【実施例4】図5は開口部30と棒40を二つ配置した実施
例を示す斜視図である。図5において、素子支持部は省
略する。このように開口部30と棒40を二つ以上配置する
と、図中の矢印aのようなセンサ素子10を中心としたね
じれの動きを規制することができ、センサ素子10のねじ
れによる破損を防ぐことができる。
Embodiment 4 FIG. 5 is a perspective view showing an embodiment in which two openings 30 and two bars 40 are arranged. In FIG. 5, the element support is omitted. By arranging two or more openings 30 and two or more rods 40 in this manner, it is possible to regulate the torsional movement around the sensor element 10 as shown by the arrow a in the figure, and prevent the sensor element 10 from being damaged due to torsion. be able to.

【0019】[0019]

【発明の効果】この発明は以上説明したように、半導体
加速度センサ素子に開口部を設けた重りを取り付け、そ
の開口部に棒を挿入し、センサ素子の動きを規制するこ
とで、容易に製造が可能で、落下等によるセンサ素子の
破損を防ぐ効果がある。さらに従来では困難であった、
センサ素子の上下、左右二方向の動きを規制することが
でき、センサ素子の二方向の破損を防止でき、耐衝撃性
を向上させるという効果がある。また、開口部、棒を複
数個配置することで、センサ素子がねじれによって破損
することを防止する効果がある。
As described above, according to the present invention, the semiconductor acceleration sensor element can be easily manufactured by attaching a weight having an opening, inserting a rod into the opening, and regulating the movement of the sensor element. This has the effect of preventing damage to the sensor element due to dropping or the like. Furthermore, it was difficult in the past,
The vertical and horizontal movements of the sensor element can be restricted, so that the sensor element can be prevented from being damaged in two directions and the shock resistance can be improved. In addition, arranging a plurality of openings and bars has an effect of preventing the sensor element from being damaged by twisting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体加速度センサの一実施例を示す
斜視図。
FIG. 1 is a perspective view showing one embodiment of a semiconductor acceleration sensor of the present invention.

【図2】本発明の半導体加速度センサの一実施例を示す
断面図。
FIG. 2 is a sectional view showing one embodiment of the semiconductor acceleration sensor of the present invention.

【図3】本発明の半導体加速度センサの一実施例を示す
斜視図。
FIG. 3 is a perspective view showing one embodiment of the semiconductor acceleration sensor of the present invention.

【図4】本発明の半導体加速度センサの一実施例を示す
斜視図。
FIG. 4 is a perspective view showing one embodiment of the semiconductor acceleration sensor of the present invention.

【図5】本発明の半導体加速度センサの一実施例を示す
斜視図。
FIG. 5 is a perspective view showing one embodiment of the semiconductor acceleration sensor of the present invention.

【図6】従来の半導体加速度センサの一例を示す断面図FIG. 6 is a sectional view showing an example of a conventional semiconductor acceleration sensor.

【図7】従来の半導体加速度センサの一例を示す断面図FIG. 7 is a sectional view showing an example of a conventional semiconductor acceleration sensor.

【図8】本発明の一実施例に関わる平面図FIG. 8 is a plan view according to an embodiment of the present invention.

【図9】本発明の一実施例に関わる平面図FIG. 9 is a plan view according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 センサ素子 20 重り 21 規制部材 21a 傾斜面 22 規制部材 22a 傾斜面 30 開口部 31 開口面 40 棒 50 棒支持部 60 感歪部 70 素子支持部 80 薄肉部 200 台座 210 規制部材 300 パッケージ 310 規制部材 400 リード t 開口部と棒の隙間 10 Sensor element 20 Weight 21 Restriction member 21a Inclined surface 22 Restriction member 22a Inclined surface 30 Opening 31 Opening surface 40 Rod 50 Bar support 60 Strain-sensitive part 70 Element support 80 Thin part 200 Base 210 Restriction member 300 Package 310 Restriction member 400 Lead t Clearance between opening and rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新荻 正隆 千葉県千葉市美浜区中瀬1丁目8番地 株 式会社エスアイアイ・アールディセンター 内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masataka Shinoggi 1-8-1 Nakase, Mihama-ku, Chiba-shi, Chiba SIIR Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 感歪部を有し、加速度を検出する機能を
有する片持ち梁の素子と、前記素子の一端を固定し支持
する支持体と他端に重りを有する半導体加速度センサに
おいて、前記重りに開口部を設け、前記開口部に前記素
子の変位を規制するための前記素子との位置関係が変化
しない棒を、前記開口部内壁と一定の隙間を有して挿入
した構造を特徴とする半導体加速度センサ。
1. A semiconductor acceleration sensor having a cantilever element having a strain-sensitive part and having a function of detecting acceleration, a support for fixing and supporting one end of the element, and a weight at the other end. An opening is provided in the weight, and a rod in which the positional relationship with the element for restricting displacement of the element does not change in the opening is inserted with a certain gap with the inner wall of the opening. Semiconductor acceleration sensor.
【請求項2】 請求項1記載の半導体加速度センサにお
いて、開口部、棒が直方体であることを特徴とする半導
体加速度センサ。
2. The semiconductor acceleration sensor according to claim 1, wherein the opening and the rod are cuboids.
【請求項3】 請求項1記載の半導体加速度センサにお
いて、開口部が円筒、棒も円筒であることを特徴とする
半導体加速度センサ。
3. The semiconductor acceleration sensor according to claim 1, wherein the opening is a cylinder, and the rod is also a cylinder.
【請求項4】 請求項1記載の半導体加速度センサにお
いて、開口部が円錐、棒も円錐である事を特徴とする半
導体加速度センサ。
4. The semiconductor acceleration sensor according to claim 1, wherein the opening has a conical shape and the rod has a conical shape.
【請求項5】 請求項1から4のいずれかに記載の半導
体加速度センサにおいて、開口部、棒をそれぞれ二つ以
上有することを特徴とする半導体加速度センサ。
5. The semiconductor acceleration sensor according to claim 1, wherein the semiconductor acceleration sensor has two or more openings and two or more rods.
【請求項6】 請求項1から5のいずれかに記載の半導
体加速度センサにおいて、開口部と棒の間にフィルム状
の物体を挿入し、素子、棒を固定した後、前記フィルム
状の物体を溶剤等で溶かすことで前記開口部と前記棒の
隙間を一定に保って製造する半導体加速度センサの製造
方法。
6. The semiconductor acceleration sensor according to claim 1, wherein a film-shaped object is inserted between the opening and the rod, and the element and the rod are fixed. A method for manufacturing a semiconductor acceleration sensor, wherein the semiconductor acceleration sensor is manufactured by dissolving with a solvent or the like so as to keep the gap between the opening and the rod constant.
JP788098A 1998-01-19 1998-01-19 Semiconductor acceleration sensor Pending JPH11201982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP788098A JPH11201982A (en) 1998-01-19 1998-01-19 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP788098A JPH11201982A (en) 1998-01-19 1998-01-19 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH11201982A true JPH11201982A (en) 1999-07-30

Family

ID=11677933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP788098A Pending JPH11201982A (en) 1998-01-19 1998-01-19 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH11201982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501242A (en) * 2011-09-28 2012-06-20 华南理工大学 Three-degree-of-freedom flexible manipulator control device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501242A (en) * 2011-09-28 2012-06-20 华南理工大学 Three-degree-of-freedom flexible manipulator control device and method

Similar Documents

Publication Publication Date Title
JP3863168B2 (en) Excitation contact detection sensor
US6955086B2 (en) Acceleration sensor
US20040025591A1 (en) Accleration sensor
US5239870A (en) Semiconductor acceleration sensor with reduced cross axial sensitivity
KR101001775B1 (en) Acceleration sensor
US20070272016A1 (en) Acceleration sensor
JPH07325104A (en) Acceleration sensor
JPS63252257A (en) Acceleration detector
JP2006098321A (en) Semiconductor-type three-axis acceleration sensor
JPH11201982A (en) Semiconductor acceleration sensor
JPH11281665A (en) Semiconductor acceleration sensor
JP2004109114A (en) Semiconductor multiaxial acceleration sensor
JPH05172843A (en) Semiconductor acceleration sensor
US4734671A (en) Strain gage beam having integral overload protection
JP2007003211A (en) Acceleration sensor and its output correction method
JP2006153519A (en) Acceleration sensor
JP3797376B2 (en) Seat load detection device
JP2007256046A (en) Acceleration sensor
US20180074091A1 (en) Piezoresistive sensor
JPH08327656A (en) Semiconductor acceleration sensor
US20240027489A1 (en) Physical Quantity Sensor And Inertial Measurement Unit
US20240118308A1 (en) Physical Quantity Sensor And Inertial Measurement Device
JP2008309667A (en) Triaxial acceleration sensor
JP2010139263A (en) Angular acceleration sensor
JPH0830715B2 (en) Semiconductor acceleration sensor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302