JPH11201732A - Measuring method and measuring device of gap between substrates with multi-layer films - Google Patents

Measuring method and measuring device of gap between substrates with multi-layer films

Info

Publication number
JPH11201732A
JPH11201732A JP690498A JP690498A JPH11201732A JP H11201732 A JPH11201732 A JP H11201732A JP 690498 A JP690498 A JP 690498A JP 690498 A JP690498 A JP 690498A JP H11201732 A JPH11201732 A JP H11201732A
Authority
JP
Japan
Prior art keywords
gap
light
substrates
data
multilayer films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP690498A
Other languages
Japanese (ja)
Inventor
Atsushi Otani
篤史 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP690498A priority Critical patent/JPH11201732A/en
Publication of JPH11201732A publication Critical patent/JPH11201732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an accurate measuring method and a measuring device of a gap between multi-layer films provided face to face on both substrates. SOLUTION: When the gap between opposite faces of multi-layer films of both electrode substrates 10, 20 has a large or small gap value, a white light source 60 projects light to both electrode substrates 10, 20. A spectral device 90 measures the interference intensity of the reflected light on each film boundary face of both multi-layer films via the projected light at a large gap value as first spectrometric data in response to the inverse number of the wavelength, and it measures the interference intensity of the reflected light on each film boundary face of both multi-layer films via the projected light at a small gap value as second spectrometrie data in response to the inverse number of the wavelength. An LPF 100 extracts the component other than the interference component of the reflected light on the opposite faces of both multi-layer films in the first spectrometric data, a subtracting device 110 subtracts the extracted component from the second spectrometric data, and a frequency analyzer 120 frequency-analyzes the subtracted data and measures the small gap value as the gap between the opposite faces of both multi-layer films.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶セルの両電極
基板等の多層膜を有する両基板の間のギャップの測定方
法及び測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a gap between two substrates having a multilayer film, such as two electrode substrates of a liquid crystal cell.

【0002】[0002]

【従来の技術】従来、例えば、二枚のガラス板の間のギ
ャップを測定するにあたっては、両ガラス板による各反
射光の間の光路差によって生ずる光の干渉の波長応答を
データとして測定し、上記ギャップを測定する方法があ
る。
2. Description of the Related Art Conventionally, for example, in measuring a gap between two glass plates, a wavelength response of light interference caused by an optical path difference between respective reflected lights by the two glass plates is measured as data, and the gap is measured. There is a way to measure

【0003】[0003]

【発明が解決しようとする課題】ところで、上記ギャッ
プは、両ガラス板のみをもとに測定するから、上記波長
応答データは、ギャップのみの情報を有している。この
ため、当該波長応答データの解析は容易で、測定精度も
良好である。具体的には、両ガラス基板の間のギャップ
をdとし、干渉光の波長及び強度をλ及びIとすれば、
波長応答の変動分ΔDは、次の数1の式により表され
る。
Since the gap is measured based on only the two glass plates, the wavelength response data has information on only the gap. Therefore, the analysis of the wavelength response data is easy and the measurement accuracy is good. Specifically, if the gap between the two glass substrates is d, and the wavelength and intensity of the interference light are λ and I,
The variation ΔD of the wavelength response is expressed by the following equation (1).

【0004】[0004]

【数1】ΔD=Icos(4dπ/λ) ここで、dが両ガラス基板の間のギャップのみに対応す
るため、測定した波長応答データのピーク、周波数や位
相を解析することで、数1の式に基づきギャップdを精
度求めることができる。
ΔD = Icos (4dπ / λ) Here, since d corresponds only to the gap between the two glass substrates, the peak, frequency and phase of the measured wavelength response data are analyzed to obtain The gap d can be determined with accuracy based on the equation.

【0005】しかし、例えば、液晶セルの両電極基板
は、各ガラス板の内表面に、互いに対向するように多層
膜を付加して構成される。この場合、各多層膜の全ての
膜界面の各反射光の光路差による干渉現象が、各対向膜
界面間のギャップに起因して、上記両ガラス基板の各反
射光による干渉現象に加わる。このため、数1の式のd
が各対向膜界面間のギャップをも含み複雑になるから、
結果として得られる波長応答データは、図7にて示すよ
うに複雑になる。よって、このようなデータに基づき両
電極基板の間のギャップ、即ち、両多層膜間のギャップ
のみを抽出して解析することは困難であり、測定精度の
著しい低下を招く。
However, for example, both electrode substrates of a liquid crystal cell are formed by adding a multilayer film to the inner surface of each glass plate so as to face each other. In this case, the interference phenomenon due to the optical path difference of each reflected light at all the film interfaces of each multilayer film is added to the interference phenomenon due to each reflected light of both glass substrates due to the gap between the opposed film interfaces. Therefore, d in the equation (1)
Is complicated, including the gap between the interfaces of the facing films.
The resulting wavelength response data is complicated as shown in FIG. Therefore, it is difficult to extract and analyze only the gap between the two electrode substrates, that is, the gap between the two multilayer films based on such data, which causes a significant decrease in measurement accuracy.

【0006】そこで、本発明は、以上のようなことに対
処するため、両基板に互いに対向して設けた各多層膜の
間のギャップの精度のよい測定方法及び測定装置を提供
することを目的とする。
In view of the above, an object of the present invention is to provide a method and an apparatus for accurately measuring a gap between multilayer films provided on both substrates so as to face each other. And

【0007】[0007]

【課題を解決するための手段】上記の課題の解決にあた
り、請求項1に記載の発明によれば、両基板であってそ
の各多層膜(12乃至14、21乃至25)にて対向す
るように配置してなる両基板(11、21)の各多層膜
の対向面間のギャップが第1のギャップ値のとき両基板
の一方から他方にかけて投光しこの投光により両多層膜
の各膜の界面により反射される光の干渉強度を波長の逆
数に応じて分光測定して第1分光測定データを形成し、
この第1分光測定データ中の両多層膜の対向面による反
射光の干渉成分以外の干渉成分を抽出し、上記対向面間
のギャップが第1のギャップ値とは異なる第2のギャッ
プ値のとき両基板の一方から他方にかけて投光しこの投
光により両多層膜の各膜の界面により反射される光の干
渉強度を波長の逆数に応じ分光測定して第2分光測定デ
ータを形成し、この第2分光測定データから上記抽出干
渉成分を減算して減算データを形成し、この減算データ
を周波数解析して第2のギャップ値を両多層膜の対向面
間のギャップとして測定するようにした多層膜付き基板
間ギャップの測定方法が提供される。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, both substrates are opposed to each other by their respective multilayer films (12 to 14, 21 to 25). When the gap between the opposing surfaces of the respective multilayer films of the two substrates (11, 21) is the first gap value, light is projected from one side to the other of the two substrates, and the light is projected onto the respective films of the both multilayer films. Forming the first spectral measurement data by performing spectral measurement of the interference intensity of light reflected by the interface according to the reciprocal of the wavelength;
When an interference component other than the interference component of the light reflected by the opposing surfaces of both multilayer films in the first spectral measurement data is extracted, and the gap between the opposing surfaces is a second gap value different from the first gap value Light is projected from one of the two substrates to the other, and the interference intensity of the light reflected by the interface between the films of the two multilayer films is spectrally measured according to the reciprocal of the wavelength to form second spectral measurement data. A multilayer in which the extracted interference component is subtracted from the second spectral measurement data to form subtraction data, and the subtraction data is subjected to frequency analysis to measure a second gap value as a gap between opposing surfaces of both multilayer films. A method for measuring a gap between substrates with a film is provided.

【0008】この発明によれば、減算データには、両多
層膜の対向面間のギャップに関する情報、即ち、両多層
膜の各膜界面の反射光の干渉成分のうち両多層膜の対向
面による反射光の干渉成分のみが含まれることとなる。
その結果、両基板が多層膜をそれぞれ有していても、こ
れら多層膜に影響を受けることなく、第2のギャップ
値、即ち、両基板の所望のギャップが、高精度にて測定
され得る。
According to the present invention, the subtraction data contains information on the gap between the opposing surfaces of the two multilayer films, that is, the interference component of the reflected light at the interface between the two multilayer films based on the opposing surfaces of the two multilayer films. Only the interference component of the reflected light will be included.
As a result, even if both substrates have multilayer films, the second gap value, that is, a desired gap between both substrates can be measured with high accuracy without being affected by these multilayer films.

【0009】なお、上記第1及び第2のギャップ値の大
小は特に制限はなく、第2のギャップ値が両基板の所望
のギャップであればよい。また、請求項2に記載の発明
によれば、両基板であってその各多層膜(12乃至1
4、21乃至25)にて対向するように配置してなる両
基板(11、21)の各多層膜の対向面間のギャップが
第1及び第2のギャップ値のとき両基板の一方から他方
にかけてそれぞれ投光する投光手段(60、70、8
0)と、第1のギャップ値のときの投光により両多層膜
の各膜の界面により反射される光の干渉強度を波長の逆
数に応じ分光測定して第1分光測定データを形成し、ま
た、第2のギャップ値のときの投光により両多層膜の各
膜の界面により反射される光の干渉強度を波長の逆数に
応じ分光測定して第2分光測定データを形成する分光測
定データ形成手段(90)と、第1分光測定データ中の
両多層膜の対向面による反射光の干渉成分以外の干渉成
分を抽出する抽出手段(100、120)と、第2分光
測定データから抽出手段にによる抽出干渉成分を減算し
減算データを形成する減算手段(110)と、減算デー
タを周波数解析しこの解析結果に応じて第2のギャップ
値を両多層膜の対向面間のギャップとして測定する周波
数解析手段(120)とを備える多層膜付き基板間ギャ
ップの測定装置が提供される。
The magnitude of the first and second gap values is not particularly limited, and it is sufficient that the second gap value is a desired gap between both substrates. According to the second aspect of the present invention, both the substrates and the respective multilayer films (12 to 1) are provided.
4, 21 to 25) when the gap between the opposing surfaces of the multilayer films of the two substrates (11, 21) is the first and second gap values, from one to the other of the two substrates. Light emitting means (60, 70, 8)
0) and the first gap value, the interference intensity of the light reflected by the interface between the respective films of the two multilayer films is spectroscopically measured according to the reciprocal of the wavelength to form first spectral measurement data, Also, spectrometry data for forming second spectrometry data by spectroscopically measuring the interference intensity of light reflected by the interface of each of the two multilayer films by light projection at the second gap value according to the reciprocal of the wavelength. Forming means (90), extracting means (100, 120) for extracting an interference component other than the interference component of the light reflected by the opposing surfaces of the two multilayer films in the first spectral measurement data, and extracting means from the second spectral measurement data Subtracting means (110) for subtracting the extracted interference component to form subtraction data, and frequency-analyzing the subtraction data to measure a second gap value as a gap between the opposing surfaces of both multilayer films according to the analysis result. Frequency analysis means (12 ) And the measuring device between the multilayer film substrate gap provided is provided.

【0010】これにより、請求項1に記載の発明の作用
効果を達成し得る測定装置の提供が可能となる。
[0010] This makes it possible to provide a measuring device that can achieve the functions and effects of the first aspect of the present invention.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。図1は、本発明の係る測定装置が
液晶セルSのセルギャップの測定に適用される例を示し
ている。当該測定装置は、加熱加圧装置50を備えてお
り、この加熱加圧装置50には、液晶セルSが収容され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an example in which the measuring device according to the present invention is applied to the measurement of the cell gap of the liquid crystal cell S. The measuring device includes a heating and pressing device 50, and the heating and pressing device 50 accommodates the liquid crystal cell S.

【0012】ここで、液晶セルSは、図1及び図2にて
示すごとく、両多層膜付き電極基板10、20を備えて
おり、これら両電極基板10、20は、帯状シール30
及び多数のスペーサ40を介し重ね合わされている。ま
た、両電極基板10、20の間には、液晶は注入されて
おらず、従って、液晶セルSは、空セルの状態にある。
Here, as shown in FIGS. 1 and 2, the liquid crystal cell S includes both electrode substrates 10 and 20 having a multilayer film.
And many spacers 40 are interposed. In addition, no liquid crystal is injected between the two electrode substrates 10 and 20, and the liquid crystal cell S is in an empty cell state.

【0013】電極基板10は、ガラス基板11の内表面
に複数のストライプ状透明導電膜12、絶縁膜13及び
配向膜14が順次積層して形成されている。一方、電極
基板20は、ガラス基板21の内表面に、カラーフィル
タ22、複数のストライプ状透明導電膜23、絶縁膜2
4及び配向膜25を順次積層して形成されている。
The electrode substrate 10 is formed by sequentially laminating a plurality of stripe-shaped transparent conductive films 12, insulating films 13, and alignment films 14 on the inner surface of a glass substrate 11. On the other hand, the electrode substrate 20 includes a color filter 22, a plurality of stripe-shaped transparent conductive films 23, and an insulating film 2 on an inner surface of a glass substrate 21.
4 and the alignment film 25 are sequentially laminated.

【0014】なお、液晶セルSは、電極基板20を電極
基板10の下側にして加熱加圧装置50内に収容され
る。また、当該測定装置は、白色光源60、ハーフミラ
ー70及び対物レンズ80を備えている。白色光源60
の出射白色光は、ハーフミラー70により反射されて対
物レンズ80に入射する。
The liquid crystal cell S is accommodated in the heating and pressing device 50 with the electrode substrate 20 below the electrode substrate 10. The measuring device includes a white light source 60, a half mirror 70, and an objective lens 80. White light source 60
Is reflected by the half mirror 70 and enters the objective lens 80.

【0015】対物レンズ80は、ハーフミラー70から
の光を集光して加熱加圧装置50の上面51を通し液晶
セルSに入射させる。また、対物レンズ80は、液晶セ
ルSからの反射光を集光してハーフミラー70を通し分
光装置90の受光面に干渉光(後述する)として入射す
る。分光装置90は、その受光面への干渉光を分光し
て、この干渉光の強度の波長応答を測定し、ローパスフ
ィルタ100(以下、LPF100という)及び減算装
置110に波長応答測定データとして出力する。
The objective lens 80 condenses the light from the half mirror 70 and makes it incident on the liquid crystal cell S through the upper surface 51 of the heating and pressing device 50. Further, the objective lens 80 condenses the reflected light from the liquid crystal cell S, passes through the half mirror 70, and enters the light receiving surface of the spectroscopic device 90 as interference light (described later). The spectroscopic device 90 disperses the interference light to the light receiving surface, measures the wavelength response of the intensity of the interference light, and outputs the result to the low-pass filter 100 (hereinafter, referred to as LPF 100) and the subtraction device 110 as wavelength response measurement data. .

【0016】LPF100は、上記波長応答測定データ
の周波数成分から光の波長の逆数(1/波長)に応じて
高周波数成分を除去し、残りの周波数成分をフィルタ信
号としてメモリ120に記憶させる。このことは、メモ
リ120は、上記波長応答測定データの強度のうち高周
波数成分に対応する強度以外の強度を記憶することを意
味する。
The LPF 100 removes high frequency components from the frequency components of the wavelength response measurement data according to the reciprocal (1 / wavelength) of the wavelength of light, and stores the remaining frequency components in the memory 120 as filter signals. This means that the memory 120 stores the intensity of the wavelength response measurement data other than the intensity corresponding to the high frequency component.

【0017】メモリ120は、その記憶データを減算装
置110に出力する。減算装置110は、分光装置90
の出力データとメモリ120の記憶データとの差を減算
し減算データとして周波数解析器120に出力する。周
波数解析器120は、減算データを周波数解析し、解析
データとして加熱加圧装置50に出力する。次に、上記
測定装置を用いて液晶セルSのセルギャップ(両電極基
板10、20の各配向膜間のセルギャップ)を測定する
方法について図3乃至図5に基づいて説明する。
The memory 120 outputs the stored data to the subtraction device 110. The subtraction device 110 includes the spectroscopic device 90
Is subtracted from the output data of the memory 120 and output to the frequency analyzer 120 as subtracted data. The frequency analyzer 120 analyzes the frequency of the subtraction data and outputs the result to the heating / pressing device 50 as analysis data. Next, a method of measuring the cell gap of the liquid crystal cell S (the cell gap between the alignment films of the two electrode substrates 10 and 20) using the above-described measuring device will be described with reference to FIGS.

【0018】まず、図3のステップS1にて、加熱加圧
装置50により、液晶セルSの両電極基板10、20の
間のギャップを仮設定する。このとき、両電極基板1
0、20の間のギャップ(以下、仮設定ギャップとい
う)は、液晶セルSのセルギャップ(最終的に必要とさ
れる両電極基板10、20の間のギャップ)よりも大き
く設定する(図4(a)参照)。
First, in step S1 of FIG. 3, the gap between the two electrode substrates 10 and 20 of the liquid crystal cell S is temporarily set by the heating and pressing device 50. At this time, both electrode substrates 1
The gap between 0 and 20 (hereinafter referred to as a temporary setting gap) is set to be larger than the cell gap of the liquid crystal cell S (the gap between the two electrode substrates 10 and 20 finally required) (FIG. 4). (A)).

【0019】また、当該仮設定ギャップは、両電極基板
10、20の各膜の膜厚に比べても十分に大きく設定
し、かつ、電極基板20のガラス基板21の内面の反射
光に対する検出感度が不足しないように、対物レンズ8
0の焦点深度よりも小さく設定する。その後、ステップ
S2において、白色光源60の白色光をハーフミラー7
0及び対物レンズ80を通して液晶セルSに入射させ
る。
The provisionally set gap is set to be sufficiently larger than the thickness of each film of the electrode substrates 10 and 20 and the detection sensitivity to the reflected light from the inner surface of the glass substrate 21 of the electrode substrate 20 is set. Objective lens 8
The depth of focus is set smaller than 0. Thereafter, in step S2, the white light of the white light source 60 is
0 and the liquid crystal cell S through the objective lens 80.

【0020】このとき、液晶セルS内に入射した白色光
は、電極基板10、20の各膜の界面にて反射される。
そして、各反射光は、互いの光路差に基づき、相互に干
渉し合い、干渉光として対物レンズ80に入射する。す
ると、対物レンズ80はその入射干渉光を集光してハー
フミラー70を通し分光装置90の受光面に入射する。
これに伴い、分光装置90がその入射干渉光を分光し
て、この入射干渉光の波長応答を測定し第1分光測定デ
ータ(図5(a)参照)としてLPF100に出力す
る。
At this time, the white light incident on the liquid crystal cell S is reflected at the interface between the films of the electrode substrates 10 and 20.
Then, the respective reflected lights interfere with each other based on the optical path difference therebetween, and enter the objective lens 80 as interference light. Then, the objective lens 80 condenses the incident interference light, passes through the half mirror 70, and enters the light receiving surface of the spectroscopic device 90.
Along with this, the spectroscopic device 90 separates the incident interference light, measures the wavelength response of the incident interference light, and outputs it to the LPF 100 as first spectral measurement data (see FIG. 5A).

【0021】ここで、第1分光測定データにおける図5
(a)での横軸を(1/波長)にとると、ギャップdが
大きいため、両電極基板10、20における各配向膜1
4、25以外の各膜界面での反射光の干渉成分による強
度変化は、数1の式中の(4dπ/λ)中の高周波成分
となって含まれる。このため、LPF100において、
上記各膜界面での反射光の干渉成分と両配向膜での反射
光の干渉成分との間にカットオフ周波数を設定してお
く。
FIG. 5 shows the first spectroscopic measurement data.
When the horizontal axis in (a) is (1 / wavelength), the gap d is large, so that each of the alignment films 1 on both electrode substrates 10 and 20 can be obtained.
The intensity change due to the interference component of the reflected light at each film interface other than 4 and 25 is included as a high-frequency component in (4dπ / λ) in the equation (1). Therefore, in the LPF 100,
A cutoff frequency is set in advance between the interference component of the reflected light at each film interface and the interference component of the reflected light at both alignment films.

【0022】そして、ステップS3にて、上記第1分光
測定データをLPF100を通す。その結果、LPF1
00の出力には、両配向膜以外の各膜による反射光間の
関係で生ずる干渉成分が抽出される(図5(b)参
照)。そこで、このLPF100の抽出出力をステップ
S4にてメモリ120に記憶する。
Then, in step S3, the first spectral measurement data is passed through the LPF 100. As a result, LPF1
At the output of 00, an interference component generated due to the relationship between the light reflected by each film other than the both alignment films is extracted (see FIG. 5B). Therefore, the extracted output of the LPF 100 is stored in the memory 120 in step S4.

【0023】次に、ステップS5において、両電極基板
10、20のギャップを本来のセルギャップに向けて加
熱加圧装置50により両電極基板10、20に対し加熱
加圧処理を施す(図4(b)参照)。このとき、両電極
基板10、20のギャップは、セルギャップ近傍の値と
なる。そして、ステップS6では、上述と同様に白色光
源60からハーフミラー70及び対物レンズ80を通し
光を液晶セルSに入射し、この液晶セルSでの干渉反射
光を対物レンズ80及びハーフミラー70を通し分光装
置90の受光面に入射する。
Next, in step S5, the heating and pressurizing device 50 heats and presses the two electrode substrates 10 and 20 with the gap between the two electrode substrates 10 and 20 toward the original cell gap (FIG. b)). At this time, the gap between the two electrode substrates 10 and 20 has a value near the cell gap. In step S6, the light from the white light source 60 passes through the half mirror 70 and the objective lens 80 to enter the liquid crystal cell S in the same manner as described above, and the interference reflected light from the liquid crystal cell S is transmitted through the objective lens 80 and the half mirror 70. The light enters the light-receiving surface of the through-spectrometer 90.

【0024】これに伴い、分光装置90は、ステップS
6において、ステップS4にてメモリ120に記憶した
第1分光測定データの測定位置と同一の位置にて、再
び、波長応答を測定し第2分光測定データ(図5(c)
参照)として減算装置110に出力する。ここで、上記
第2分光測定データは、セルギャップに関係する干渉成
分とそれ以外の膜との関係の干渉成分とが近い周波数に
て重なり合うため、歪みが発生する。
Accordingly, the spectroscopic device 90 performs step S
At 6, the wavelength response is measured again at the same position as the measurement position of the first spectral measurement data stored in the memory 120 in step S4, and the second spectral measurement data (FIG. 5C)
(See Reference) to the subtraction device 110. Here, in the second spectral measurement data, distortion occurs because the interference component related to the cell gap and the interference component related to the other film overlap at a close frequency.

【0025】なお、上記第2分光測定データを周波数解
析しても、上記歪みのため、ギャップに対応する明確な
ピークが表れない(図5(d)参照)。次に、ステップ
S7において、減算装置110により、上記第2分光測
定データからメモリ120に記憶済みの第1分光測定デ
ータを減算する。これにより、上記第2分光測定データ
から両電極基板10、20の間のギャップに起因する干
渉成分以外の干渉成分を除去することができる。
Even if the second spectral measurement data is subjected to frequency analysis, no clear peak corresponding to the gap appears due to the distortion (see FIG. 5D). Next, in step S7, the first spectral measurement data stored in the memory 120 is subtracted from the second spectral measurement data by the subtraction device 110. Thereby, interference components other than the interference component caused by the gap between the two electrode substrates 10 and 20 can be removed from the second spectral measurement data.

【0026】換言すれば、減算装置110の減算出力の
波形成分は、両電極基板10、20の間のギャップに起
因する干渉成分を主成分とするものとなる(図5(e)
参照)。このことは、減算装置110の減算出力は、数
1の式中のcos(4dπ/λ)に近い波形を有するよ
うに改善されることを意味する。
In other words, the waveform component of the subtraction output of the subtraction device 110 is mainly composed of the interference component caused by the gap between the two electrode substrates 10 and 20 (FIG. 5E).
reference). This means that the subtraction output of the subtraction device 110 is improved to have a waveform close to cos (4dπ / λ) in the equation (1).

【0027】また、ステップS8において、周波数解析
器120により減算装置110の減算出力を周波数解析
した結果では、余分なピークが除去され、両電極基板1
0、20の間のセルギャップに起因する干渉成分のピー
クが現れる(図5(f)参照)。そして、周波数解析器
120は、その周波数解析結果に基づき、ピーク波長、
周波数や位相等を検出し、両電極基板10、20の間の
ギャップ(両配向膜14、25間のギャップ)に換算し
て、加熱加圧装置50による加圧度合を調整すべく当該
加熱加圧装置50にフィードバックする。
In step S8, as a result of frequency analysis of the subtraction output of the subtraction device 110 by the frequency analyzer 120, an extra peak is removed, and the two electrode substrates 1 are removed.
The peak of the interference component due to the cell gap between 0 and 20 appears (see FIG. 5 (f)). Then, based on the frequency analysis result, the frequency analyzer 120 calculates a peak wavelength,
The frequency and the phase are detected and converted into a gap between the two electrode substrates 10 and 20 (a gap between the two alignment films 14 and 25) to adjust the degree of pressurization by the heating and pressurizing device 50. The feedback to the pressure device 50 is provided.

【0028】これにより、両電極基板10、20の間の
ギャップはセルギャップに向け精度よく制御される。そ
の結果、両電極基板10、20の間のギャップ制御がリ
アルタイムで高精度にて可能となる。以上説明したよう
に、本実施形態によれば、上記第1及び第2の分光測定
データに基づき両電極基板10、20の多層膜構造にお
ける両配向膜による反射光以外の各反射光の干渉成分が
適正に除去される。従って、両電極基板10、20の間
のセルギャップを精度よく測定できる。
Thus, the gap between the two electrode substrates 10 and 20 is accurately controlled toward the cell gap. As a result, the gap between the two electrode substrates 10 and 20 can be controlled with high accuracy in real time. As described above, according to the present embodiment, based on the first and second spectral measurement data, the interference components of each reflected light other than the reflected light by both alignment films in the multilayer structure of both electrode substrates 10 and 20. Is properly removed. Therefore, the cell gap between the two electrode substrates 10 and 20 can be accurately measured.

【0029】なお、本発明の実施にあたり、上記実施形
態にて述べた両電極基板10、20の間のギャップがテ
ーパ状に変化している場合について、数1の式により従
来通りの方法及び上記実施形態にて述べた方法で当該ギ
ャップを測定してみた(図6参照)。その結果、従来通
りの方法による測定データ(図6(b)参照)に比べ
て、上記実施形態にて述べた方法による測定データ(図
6(a)参照)の方が、ギャップの測定精度において著
しく向上することが分かった。
In the embodiment of the present invention, when the gap between the two electrode substrates 10 and 20 described in the above embodiment changes in a tapered shape, the conventional method and the above-described method can be used by the equation (1). The gap was measured by the method described in the embodiment (see FIG. 6). As a result, the measurement data by the method described in the above embodiment (see FIG. 6A) is more accurate in measuring the gap than the measurement data by the conventional method (see FIG. 6B). It was found to be significantly improved.

【0030】また、上記実施形態では、第1及び第2の
分光測定データは、液晶セルの同一の位置にて求められ
ているが、液晶セルの多層膜の各膜厚が安定しておれ
ば、分光測定データの測定位置は、液晶セル中の代表点
一点のみでよい。ここで、液晶セルの製造ロット内で多
層膜の各膜厚が安定しておれば、分光測定データの測定
は、ロット毎に行うようにすればよい。
Further, in the above embodiment, the first and second spectroscopic measurement data are obtained at the same position of the liquid crystal cell. However, if the thicknesses of the multilayer films of the liquid crystal cell are stable. The measurement position of the spectral measurement data may be only one representative point in the liquid crystal cell. Here, if the thickness of each multilayer film is stable in the production lot of the liquid crystal cell, the measurement of the spectroscopic measurement data may be performed for each lot.

【0031】また、本発明の実施にあたり、上記実施形
態にて述べた白色光源60を波長掃引光源とし、分光装
置90を光強度検出器としてもよい。また、本発明の実
施にあたり、多層膜を有する液晶セルのセルギャップを
測定する場合に限らず、多層膜をそれぞれ有する両ガラ
ス基板等の基板を各多層膜を介して対向して配置した状
態にて、両多層膜の各対向面の間のギャップを測定する
場合に本発明を適用しても、上記実施形態と実質的に同
様の作用効果を達成できる。
In practicing the present invention, the white light source 60 described in the above embodiment may be a wavelength sweep light source, and the spectrometer 90 may be a light intensity detector. Further, in the practice of the present invention, not only when measuring the cell gap of a liquid crystal cell having a multilayer film, but also in a state where substrates such as both glass substrates each having a multilayer film are arranged to face each other via each multilayer film. Therefore, even when the present invention is applied to the case where the gap between the opposing surfaces of both multilayer films is measured, substantially the same operation and effect as the above embodiment can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る液晶セルのギャップ測定装置の模
式的概略図である。
FIG. 1 is a schematic diagram of a liquid crystal cell gap measuring apparatus according to the present invention.

【図2】図1の液晶セルの概略断面図である。FIG. 2 is a schematic sectional view of the liquid crystal cell of FIG.

【図3】上記ギャップ測定装置により液晶セルのギャッ
プを測定する方法を示す工程図である。
FIG. 3 is a process chart showing a method for measuring a gap of a liquid crystal cell by the gap measuring device.

【図4】(a)は、液晶セルのギャップの仮設定ギャッ
プ状態を示す模式的部分断面図であり、(b)は、液晶
セルのギャップをセルギャップ近傍の値にし状態を示す
模式的部分断面図である。
4A is a schematic partial cross-sectional view showing a temporarily set gap state of a gap of a liquid crystal cell, and FIG. 4B is a schematic partial view showing a state where the gap of the liquid crystal cell is set to a value near the cell gap; It is sectional drawing.

【図5】(a)乃至(c)は、それぞれ、干渉光の反射
強度と波長の逆数との関係を示すグラフであり、(d)
は干渉光のパワーと光の周波数との関係を示すグラフで
あり、(e)干渉光の反射強度と波長の逆数との関係を
示すグラフであり、(f)は干渉光のパワーと光の周波
数との関係を示すグラフである。
FIGS. 5A to 5C are graphs each showing a relationship between the reflection intensity of the interference light and the reciprocal of the wavelength, and FIGS.
Is a graph showing the relationship between the power of the interference light and the frequency of the light, (e) is a graph showing the relationship between the reflection intensity of the interference light and the reciprocal of the wavelength, and (f) is the graph showing the relationship between the power of the interference light and the light. It is a graph which shows the relationship with a frequency.

【図6】(a)は、上記実施形態の変形例を示すギャッ
プの測定位置との間の関係を示すグラフであり、(b)
は、従来の測定方法により測定した場合の当該変形例と
同一のギャップの測定位置との間の関係を示すグラフで
ある。
FIG. 6A is a graph showing a relationship between a gap and a measurement position according to a modification of the embodiment, and FIG.
Is a graph showing the relationship between the modified example and the measurement position of the same gap when measured by a conventional measurement method.

【図7】従来の多層膜の光の反射率と波長の逆数との関
係を示すグラフである。
FIG. 7 is a graph showing the relationship between the light reflectance of a conventional multilayer film and the reciprocal of the wavelength.

【符号の説明】[Explanation of symbols]

S…液晶セル、10、20…電極基板、11、21…ガ
ラス基板、12、23…透明導電膜、13、24…絶縁
膜、14、25…配向膜、50…加熱加圧装置、60…
白色光源70…ハーフミラー、80…対物レンズ、90
…分光装置、100…LPF、120…メモリ、110
…減算装置、120…周波数解析器。
S: liquid crystal cell, 10, 20: electrode substrate, 11, 21: glass substrate, 12, 23: transparent conductive film, 13, 24: insulating film, 14, 25: alignment film, 50: heating and pressing device, 60:
White light source 70: half mirror, 80: objective lens, 90
... Spectroscope, 100 ... LPF, 120 ... Memory, 110
... subtraction device, 120 ... frequency analyzer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 両基板であってその各多層膜(12乃至
14、21乃至25)にて対向するように配置してなる
両基板(11、21)の前記各多層膜の対向面間のギャ
ップが第1のギャップ値のとき前記両基板の一方から他
方にかけて投光しこの投光により前記両多層膜の各膜の
界面により反射される光の干渉強度を波長の逆数に応じ
て分光測定して第1分光測定データを形成し、 この第1分光測定データ中の前記両多層膜の対向面によ
る反射光の干渉成分以外の干渉成分を抽出し、 前記対向面間のギャップが前記第1のギャップ値とは異
なる第2のギャップ値のとき前記両基板の一方から他方
にかけて投光しこの投光により前記両多層膜の各膜の界
面により反射される光の干渉強度を波長の逆数に応じ分
光測定して第2分光測定データを形成し、 この第2分光測定データから前記抽出干渉成分を減算し
て減算データを形成し、 この減算データを周波数解析して前記第2のギャップ値
を前記両多層膜の対向面間のギャップとして測定するよ
うにした多層膜付き基板間ギャップの測定方法。
1. A substrate between two substrates (11, 21) which are arranged so as to be opposed to each other in each of the multilayer films (12 to 14, 21 to 25). When the gap is the first gap value, light is projected from one side of the two substrates to the other, and the interference intensity of the light reflected by the interface between the respective films of the two multilayer films by the projected light is spectrally measured according to the reciprocal of the wavelength. The first spectral measurement data is formed, and an interference component other than the interference component of the light reflected by the facing surfaces of the two multilayer films is extracted from the first spectral measurement data. When the second gap value is different from the gap value, the light is projected from one of the two substrates to the other, and by this light, the interference intensity of the light reflected by the interface between the films of the multilayer films is reciprocal of the wavelength. Spectroscopic measurement and form second spectroscopic measurement data The extracted interference component is subtracted from the second spectral measurement data to form subtraction data. The subtraction data is subjected to frequency analysis to measure the second gap value as a gap between the facing surfaces of the two multilayer films. The method for measuring the gap between substrates with a multilayer film as described above.
【請求項2】 両基板であってその各多層膜(12乃至
14、21乃至25)にて対向するように配置してなる
両基板(11、21)の前記各多層膜の対向面間のギャ
ップが第1及び第2のギャップ値のとき前記両基板の一
方から他方にかけてそれぞれ投光する投光手段(60、
70、80)と、 前記第1のギャップ値のときの投光により前記両多層膜
の各膜の界面により反射される光の干渉強度を波長の逆
数に応じ分光測定して第1分光測定データを形成し、ま
た、前記第2のギャップ値のときの投光により前記両多
層膜の各膜の界面により反射される光の干渉強度を波長
の逆数に応じ分光測定して第2分光測定データを形成す
る分光測定データ形成手段(90)と、 前記第1分光測定データ中の前記両多層膜の対向面によ
る反射光の干渉成分以外の干渉成分を抽出する抽出手段
(100、120)と、 前記第2分光測定データから前記抽出手段にによる抽出
干渉成分を減算し減算データを形成する減算手段(11
0)と、 前記減算データを周波数解析しこの解析結果に応じて前
記第2のギャップ値を前記両多層膜の対向面間のギャッ
プとして測定する周波数解析手段(120)とを備える
多層膜付き基板間ギャップの測定装置。
2. The two substrates (12, 14, 21 to 25), which are arranged so as to face each other, between the opposing surfaces of the respective multilayer films of the two substrates (11, 21). When the gap has the first and second gap values, light projecting means (60, 60) for projecting light from one of the substrates to the other thereof.
70, 80), and first spectral measurement data obtained by spectrally measuring the interference intensity of light reflected by the interface between the two multilayer films by the light projection at the first gap value according to the reciprocal of the wavelength. And the second spectroscopic measurement data obtained by spectrally measuring the interference intensity of light reflected by the interface between the two multilayer films by the light projection at the second gap value according to the reciprocal of the wavelength. A spectrometry data forming means (90) for forming an image; an extraction means (100, 120) for extracting an interference component other than an interference component of light reflected by the opposing surfaces of the multilayer films in the first spectrometry data; Subtraction means (11) for subtracting the interference component extracted by the extraction means from the second spectral measurement data to form subtraction data
0), and a frequency analysis means (120) for frequency-analyzing the subtraction data and measuring the second gap value as a gap between the opposing surfaces of the multilayer films according to the analysis result. Measuring device for gap.
JP690498A 1998-01-16 1998-01-16 Measuring method and measuring device of gap between substrates with multi-layer films Pending JPH11201732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP690498A JPH11201732A (en) 1998-01-16 1998-01-16 Measuring method and measuring device of gap between substrates with multi-layer films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP690498A JPH11201732A (en) 1998-01-16 1998-01-16 Measuring method and measuring device of gap between substrates with multi-layer films

Publications (1)

Publication Number Publication Date
JPH11201732A true JPH11201732A (en) 1999-07-30

Family

ID=11651233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP690498A Pending JPH11201732A (en) 1998-01-16 1998-01-16 Measuring method and measuring device of gap between substrates with multi-layer films

Country Status (1)

Country Link
JP (1) JPH11201732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914661B2 (en) 2000-09-07 2005-07-05 Seiko Epson Corporation Cell gap adjusting device, pressurizing seal device and liquid crystal display device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914661B2 (en) 2000-09-07 2005-07-05 Seiko Epson Corporation Cell gap adjusting device, pressurizing seal device and liquid crystal display device manufacturing method

Similar Documents

Publication Publication Date Title
CN102645741B (en) Variable-wavelength interference filter, optical module and optical analysis equipment
US8513608B2 (en) Coating film inspection apparatus and inspection method
JP4978546B2 (en) Film thickness measuring apparatus and method
US20080309930A1 (en) Calibration for Spectroscopic Analysis
CN104076030A (en) Coloration measuring apparatus
KR101798957B1 (en) Apparatus and method for snapshot interferometric spectro-polarimetry
CN110927121B (en) Phase type SPR detection device and method based on white light interference spectrum
CN107076610A (en) Stable spectroscope and the method for stabilising light splitting instrument
TWI798614B (en) Combined ocd and photoreflectance apparatus, system and method
CN103885109B (en) Variable-wavelength interference filter and its manufacture method, optical module and electronic equipment
TWI458960B (en) White-light interference measuring device and interfere measuring method thereof
CN110207822A (en) Highly sensitive optical time delay estimating system, method and medium
JPH11201732A (en) Measuring method and measuring device of gap between substrates with multi-layer films
WO2016117796A2 (en) Optical frequency and intensity modulation laser absorption spectroscopy apparatus, and optical frequency and intensity modulation laser absorption spectroscopy method
Brodie et al. Single-point detection architecture via liquid crystal modulation for hyperspectral imaging systems
KR20200126558A (en) Method for measuring the light intensity of continuous rotation of a polarizer
JP6306438B2 (en) Circular dichroism measuring method and circular dichroic measuring device
KR20210085945A (en) Thin film thickness measuring device
JP3864719B2 (en) Film thickness measuring method and film thickness measuring apparatus
KR102380250B1 (en) Apparatus for measuring reflectivity and incident light
CN105021574B (en) Optical sensing devices and method for detecting sample properties
JP2003050108A (en) Method and device for measuring film thickness
JP7313221B2 (en) Measuring device and measuring method
Kiyokura et al. Small Fourier transform spectroscope using an integrated prism-scanning interferometer
JP2001041713A (en) Minute region measuring device