JPH11201420A - Method of detecting surface level of melt in electric resistance fusion furnace for ash processing - Google Patents

Method of detecting surface level of melt in electric resistance fusion furnace for ash processing

Info

Publication number
JPH11201420A
JPH11201420A JP809698A JP809698A JPH11201420A JP H11201420 A JPH11201420 A JP H11201420A JP 809698 A JP809698 A JP 809698A JP 809698 A JP809698 A JP 809698A JP H11201420 A JPH11201420 A JP H11201420A
Authority
JP
Japan
Prior art keywords
upper electrode
electrode
melt
surface level
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP809698A
Other languages
Japanese (ja)
Inventor
Ryota Hidaka
亮太 日高
Masakatsu Kishida
正坦 岸田
Teiji Hara
禎治 原
Shinji Iwamoto
伸二 岩本
Shuichi Matsumoto
秀一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP809698A priority Critical patent/JPH11201420A/en
Publication of JPH11201420A publication Critical patent/JPH11201420A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To obviate the necessity to provide a current application detector separately, and also, detect the surface level of the melt within an electric resistance fusion furnace for ash processing with accuracy by compensating the influence of the abrasion of the electrode. SOLUTION: In condition that voltage is applied to an upper electrode 1 and an under electrode 3, both electrodes 1 and 3 are brought into contact with each other, and a short circuit is detected, and a pulse counter is reset to zero, and then the upper electrode is raised, and the rise distance of the upper electrode 1 is pulse-counted, and the surface level of the melt is detected by the pulse count position of the upper electrode at the time of the current value having become zero. Moreover, in condition that voltage is applied to the upper electrode 1 and the under electrode 3 after a specified time, both electrodes 1 and 3 are brought into contact with each other, and the short circuit is detected, and the zero reset is corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼却灰や飛灰を溶
融する灰処理用電気抵抗溶融炉の溶融物表面レベルの検
出方法に関する。
The present invention relates to a method for detecting a surface level of a melt in an electric resistance melting furnace for ash treatment for melting incineration ash and fly ash.

【0002】[0002]

【従来の技術】従来、都市ごみ等の廃棄物は焼却施設で
焼却処分され、発生した焼却灰や飛灰は埋立て処分され
ていたが、有害重金属類の溶出による地下水汚染等の問
題から、燃料、電力等によって灰を溶融処理する方法が
提案され、一部では実処理が行われている。そのなか
に、焼却灰や飛灰を主体とする灰処理の溶融炉として、
灰処理用電気抵抗溶融炉が提案されている。
2. Description of the Related Art Conventionally, waste such as municipal waste has been incinerated in an incineration facility, and incinerated ash and fly ash generated have been disposed of in landfills. However, due to the problem of groundwater contamination due to elution of harmful heavy metals. A method for melting ash with fuel, electric power, or the like has been proposed, and some of the ash are actually processed. Among them, as a melting furnace of ash processing mainly incinerated ash and fly ash,
An electric resistance melting furnace for ash treatment has been proposed.

【0003】図4は従来の焼却灰処理用の電気抵抗溶融
炉の概略図で、灰処理用電気抵抗溶融炉は、焼却灰ある
いは飛灰等の灰投入口4、排気口5、溶融金属排出口
6、溶融スラグ排出口7、溶融塩排出口8を備えてい
る。電極は、炉天井から電極昇降装置2で昇降する上部
電極1が挿入されるとともに、上部電極1の先端は溶融
スラグ層内に浸漬しており、炉底に下部電極3が設けら
れている。溶融スラグ層は、電気の導体となり、電気抵
抗によるジュール熱で灰を溶融する。灰は、溶融スラグ
層を被覆するように灰投入口4から投入して溶融し、生
成した溶融金属、溶融スラグ及び溶融塩は、それぞれの
排出口6,7,8から排出される。
FIG. 4 is a schematic view of a conventional electric resistance melting furnace for incineration ash treatment. The electric resistance melting furnace for ash treatment includes an ash input port 4 for incinerated ash or fly ash, an exhaust port 5, a molten metal discharge furnace. An outlet 6, a molten slag discharge port 7, and a molten salt discharge port 8 are provided. The upper electrode 1 which goes up and down by the electrode lifting device 2 from the furnace ceiling is inserted into the electrode, the tip of the upper electrode 1 is immersed in the molten slag layer, and the lower electrode 3 is provided at the furnace bottom. The molten slag layer becomes an electric conductor and melts the ash by Joule heat due to electric resistance. The ash is charged from the ash input port 4 so as to cover the molten slag layer and is melted, and the generated molten metal, molten slag and molten salt are discharged from the respective discharge ports 6, 7, and 8.

【0004】灰処理用電気抵抗溶融炉では、溶融スラグ
層上部に析出する塩化ナトリウムや塩化カリウム等の塩
類が形成され、溶融塩により電極が損耗したり、電極の
短絡の原因となつたりするために上部電極の昇降を制御
したり、あるいは溶融金属、溶融スラグあるいは溶融塩
の排出のタイミングを制御したりして安定した操業を行
うために、灰処理用電気抵抗溶融炉内の溶融塩及び溶融
スラグレベルを検知している。
[0004] In an electric resistance melting furnace for ash treatment, salts such as sodium chloride and potassium chloride which precipitate on the upper part of the molten slag layer are formed, and the molten salt may damage the electrodes or cause a short circuit of the electrodes. In order to stabilize the operation by controlling the raising and lowering of the upper electrode or controlling the timing of discharging the molten metal, molten slag or molten salt, the molten salt and molten metal in the electric resistance melting furnace for ash treatment The slag level is detected.

【0005】図4に示す灰処理用電気抵抗溶融炉では、
耐熱絶縁管17内に通電検出端子18が収納された通電
検出器19を上下させて、溶融塩および溶融スラグのそ
れぞれの電気抵抗値の違いから端子間に流れる電流値を
電流計11で測定してレベルを測定している。
[0005] In the electric resistance melting furnace for ash treatment shown in FIG.
An electric current detector 19 in which an electric current detection terminal 18 is accommodated in a heat-resistant insulating tube 17 is moved up and down, and a current value flowing between the terminals is measured by an ammeter 11 based on a difference in electric resistance between molten salt and molten slag. The level is measured.

【0006】[0006]

【発明が解決しようとする課題】前記の通電検出器は、
絶対レベルが測定できること、通電検出器が摩耗しない
こと、及び測定の外乱が無いことを前提としているが、
しかしながら、実際には以下のような短所がある。
The above-mentioned energization detector is
It is assumed that the absolute level can be measured, the conduction detector does not wear, and there is no measurement disturbance.
However, there are actually the following disadvantages.

【0007】(1)前記通電検出器では、通常、検出部
を湯切した状態にしておいて測定時のみスラグにつける
という方法で行う場合、検出部が低温であるため、図5
(a)に示すように、スラグが検出部を囲むように冷え
固まり、凝固部20が電気抵抗となるために正しい電流
測定が行えず、スラグレベル検知が不可能となる。
[0007] (1) In the energization detector, when the detection unit is normally put in a hot-water state and is attached to slag only at the time of measurement, the temperature of the detection unit is low.
As shown in (a), the slag cools and solidifies so as to surround the detection portion, and the solidified portion 20 becomes an electric resistance, so that correct current measurement cannot be performed, and slag level detection becomes impossible.

【0008】(2)また、検出部を常時溶融物に漬ける
という方法で行う場合、スラグの冷え固まる影響は減少
するものの、図5(b)に示すように、通電部が溶融塩
と反応して摩耗していき誤差が大きくなり、やがて使用
不可能となる。また、測定原理上、耐熱絶縁管の面位置
で測定する必要があるので、摩耗していくと顕著に影響
を受けて全て誤差となる。
(2) When the detecting section is immersed in the molten material at all times, the influence of cooling and solidifying of the slag is reduced, but as shown in FIG. It becomes worn and the error becomes large, and eventually becomes unusable. In addition, since it is necessary to perform measurement at the surface position of the heat-resistant insulating tube according to the principle of measurement, if worn, it is significantly affected and all errors occur.

【0009】(3)摩耗部を補正しようとしても、耐熱
絶縁管で通電部がシールされているため、通電部を送り
出したりすることが難しいので、摩耗が許容誤差範囲を
超えた時点で検出部を交換しなければならない。そのた
め、ランニングコストが高くなる。
(3) Even if an attempt is made to correct the worn portion, it is difficult to send out the current-carrying portion because the current-carrying portion is sealed with a heat-resistant insulating tube. Must be replaced. Therefore, the running cost increases.

【0010】本発明は、通電検出器を別途設ける必要が
なく、また、電極の摩耗の影響を補正して精度よく灰処
理用電気抵抗溶融炉内の溶融物表面レベルを検知するこ
とができる、灰処理用電気抵抗溶融炉内の溶融物表面レ
ベルの検知方法を提供するものである。
According to the present invention, there is no need to separately provide an electricity detector, and the surface level of the melt in the electric resistance melting furnace for ash treatment can be accurately detected by correcting the effect of electrode wear. An object of the present invention is to provide a method for detecting a surface level of a melt in an electric resistance melting furnace for ash treatment.

【0011】[0011]

【課題を解決するための手段】本発明の灰処理用電気抵
抗溶融炉の溶融物表面レベルの検出方法は、上部電極と
下部電極に電圧を印加した状態で上部電極を下降させて
いき、上部電極と下部電極が接触して電極に短絡電流が
流れた位置で上部電極を停止させ、パルスカウンタをゼ
ロリセットした後、上部電極を上昇させ、上部電極の上
昇距離をパルスカウントし、電極に流れる電流値がゼロ
となった時のパルスカウント値により溶融物表面レベル
を検出することを特徴とする。
According to the method for detecting the surface level of a melt in an electric resistance melting furnace for ash treatment of the present invention, the upper electrode is lowered while a voltage is applied to the upper electrode and the lower electrode. Stop the upper electrode at the position where the electrode and the lower electrode come into contact and a short-circuit current flows to the electrode, reset the pulse counter to zero, raise the upper electrode, pulse-count the rising distance of the upper electrode, and flow to the electrode It is characterized in that the surface level of the melt is detected by a pulse count value when the current value becomes zero.

【0012】[0012]

【発明の実施の形態】図1は本発明の灰処理用電気抵抗
溶融炉の溶融物表面レベル検出原理の説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the principle of detecting the surface level of a melt in an electric resistance melting furnace for ash treatment according to the present invention.

【0013】灰処理用電気抵抗溶融炉は、従来と同様
に、上部電極1が電極昇降装置2により昇降自在に設け
られ、炉底には下部電極3が設けらており、焼却灰ある
いは飛灰等の灰投入口4、排気口5、溶融金属排出口
6、溶融スラグ排出口7、溶融塩排出口8が設けられて
いる。
In the electric resistance melting furnace for ash treatment, an upper electrode 1 is provided so as to be able to move up and down by an electrode elevating device 2 and a lower electrode 3 is provided at the furnace bottom, as in the prior art. And the like, an ash input port 4, an exhaust port 5, a molten metal outlet 6, a molten slag outlet 7, and a molten salt outlet 8 are provided.

【0014】上部電極1と下部電極3とは、電気抵抗溶
融用電源トランス9に接続され、電気抵抗溶融用電源ト
ランス9の二次側に電圧計10及び電流計11が配置さ
れる。
The upper electrode 1 and the lower electrode 3 are connected to a power transformer 9 for melting electric resistance, and a voltmeter 10 and an ammeter 11 are arranged on the secondary side of the power transformer 9 for melting electric resistance.

【0015】上部電極1は、昇降装置2の電極支持アー
ム12に支持され、電極支持アーム12はモータ13に
よりマスト14を昇降する。モータ13の回転軸にはロ
ータリーエンコーダ15が直結され、パルスカウンタ1
6により上部電極の移動距離を演算する。
The upper electrode 1 is supported by an electrode support arm 12 of the lifting device 2, and the electrode support arm 12 moves up and down a mast 14 by a motor 13. The rotary encoder 15 is directly connected to the rotation axis of the motor 13,
The moving distance of the upper electrode is calculated by 6.

【0016】次に、本発明の溶融物表面レベル検出につ
いて説明する。
Next, the melt surface level detection of the present invention will be described.

【0017】いま、上部電極1と下部電極3に電圧を印
加した状態で、上部電極1と下部電極3とが接触してい
る位置では、図1のグラフに示すように、上部電極1と
下部電極3に短絡電流が流れ、この位置でパルスカウン
タ16をゼロリセットしておけば、上部電極1が上昇す
るときの移動距離をパルスカウンタ16でカウントする
ことにより、下部電極3を基準とする上部電極1の移動
距離、すなわち、上部電極1の絶対位置を知ることがで
きる。
Now, when a voltage is applied to the upper electrode 1 and the lower electrode 3, at a position where the upper electrode 1 and the lower electrode 3 are in contact with each other, as shown in the graph of FIG. If a short-circuit current flows through the electrode 3 and the pulse counter 16 is reset to zero at this position, the moving distance when the upper electrode 1 moves up is counted by the pulse counter 16 so that the upper electrode with the lower electrode 3 as a reference is counted. The moving distance of the electrode 1, that is, the absolute position of the upper electrode 1 can be known.

【0018】上部電極1を上昇させ、上部電極1が溶融
物表面17から離れて湯切した瞬間に上部電極1と下部
電極3が空気絶縁され、図1のグラフに示すように、電
流値がゼロとなる。したがって、電流値がゼロとなった
時の上部電極1の絶対位置が溶融物表面レベルとなる。
The upper electrode 1 is lifted, and the upper electrode 1 and the lower electrode 3 are air-insulated at the moment when the upper electrode 1 separates from the melt surface 17 and drains, and as shown in the graph of FIG. It becomes zero. Therefore, the absolute position of the upper electrode 1 when the current value becomes zero becomes the melt surface level.

【0019】なお、湯切りして電流がゼロになった後に
再び下降して電流が流れた時のパルスカウント値を溶融
物表面レベルとする方が次の場合にて有効である。すな
わち、溶融物の粘性が高い場合は、電極が上昇するにつ
れて溶融物が引っ張られて上昇してくるので、見かけ上
レベルが大きくなる誤差が生じるので、それを防止する
ために、一旦湯切りして溶融物の表面をほぼ水平にして
から電極を下降させて、電極に電流が流れた位置をスラ
グ表面レベルとした方が誤差が小さくてよい。下部電極
3は数日間に渡って運転をしてもほとんど消耗しない
が、上部電極は消耗が激しいため、レベルを検出する過
程でゼロリセットを実施しないと、検出誤差が大きくな
る。また、レベルは、急に変化するものではないので、
15分に1回程度、測定して監視しておけば操業を良好
に行える。
It is more effective in the following cases to set the pulse count value at the time when the current flows to the melt surface level after the current has been reduced to zero after the draining of the hot water. That is, when the viscosity of the melt is high, the melt is pulled and rises as the electrode rises, so that an error that the apparent level becomes large occurs. The error may be smaller if the electrode is lowered after the surface of the melt is made substantially horizontal and the position where the current flows through the electrode is set to the slag surface level. The lower electrode 3 hardly wears out even if it is operated for several days, but the upper electrode is intensely worn. Therefore, if zero reset is not performed in the process of detecting the level, a detection error increases. Also, since the level does not change suddenly,
Operation can be performed well if measurement and monitoring are performed about once every 15 minutes.

【0020】図2は本発明による誤差の補正方法の説明
図、図3は本発明による補正のフロー図で、図2(a)
に示すように、上部電極1の消耗量がない、あるいは少
ない状態では、最初にゼロリセットした位置から上部電
極1の移動距離をパルスカウンターでカウントすること
により、溶融物表面レベルを操業に差し支えない程度に
検出することができる。しかし、その後、図2(b)に
示すように、上部電極1が長さl1ほど消耗した場合、
消耗した上部電極1を上昇させると、消耗前のゼロリセ
ットした位置から移動距離をパルスカウンターでカウン
トすると、短い移動距離で電極に流れる電流値がゼロと
なり、そのカウントした位置が溶融物表面レベルとな
り、実際の距離l2より長さl1だけ浅い距離l3をカウ
ントすることになり、溶融物表面レベルを正確に検出で
きなくなる。
FIG. 2 is an explanatory diagram of the error correction method according to the present invention, and FIG. 3 is a flowchart of the correction according to the present invention.
As shown in (1), when the amount of consumption of the upper electrode 1 is small or small, the moving distance of the upper electrode 1 from the position where it was first reset to zero is counted by a pulse counter, so that the surface level of the melt can be used for the operation. To the extent that it can be detected. However, after that, as shown in FIG. 2B, when the upper electrode 1 is consumed by a length l 1 ,
When the consumed upper electrode 1 is raised, when the moving distance is counted by the pulse counter from the zero reset position before the consumption, the current value flowing through the electrode in a short moving distance becomes zero, and the counted position becomes the surface level of the molten material. , will be counted only shallow distance l 3 the length l 1 from the actual distance l 2, it can not be accurately detected melt surface level.

【0021】そこで、上部電極1の消耗による補正を行
うために、レベルを測定する際には、上部電極1の下降
を開始し、短絡電流が流れるまで下降させ、上部電極1
と下部電極3の接触による短絡電流を確認した後、上部
電極1の下降を停止させ、パルスカウンタをゼロリセッ
トする。ゼロリセットした位置を補正した後、上部電極
の上昇を開始させ、電流値がゼロになった時のパルスカ
ウンタのパルスカウント値が溶融物表面レベルとなる。
なお、上部電極の下降中に短絡電流に接近した時、下降
スピードをダウンさせると、停止精度を向上させて、電
極どうしの衝突による破損や行き過ぎ誤差を小さくでき
る。
Therefore, in order to make a correction due to the consumption of the upper electrode 1, when measuring the level, the lowering of the upper electrode 1 is started and lowered until a short-circuit current flows.
After confirming the short-circuit current due to the contact between the upper electrode 1 and the lower electrode 3, the lowering of the upper electrode 1 is stopped, and the pulse counter is reset to zero. After correcting the zero reset position, the upper electrode starts rising, and the pulse count value of the pulse counter when the current value becomes zero becomes the melt surface level.
In addition, when approaching the short-circuit current while the upper electrode is descending, if the descending speed is reduced, the stopping accuracy is improved, and the damage due to the collision between the electrodes and the excessive error can be reduced.

【0022】以上より、操業中に上部電極と下部電極を
接触させた状態をつくり、パルスカウンターをゼロリセ
ットすれば、上部電極の消耗量を補正したことになり、
上部電極が消耗しても正確に溶融物表面レベルを検知す
ることができる。
From the above, when the upper electrode and the lower electrode are brought into contact with each other during operation and the pulse counter is reset to zero, the consumption of the upper electrode is corrected.
Even if the upper electrode is exhausted, the surface level of the melt can be accurately detected.

【0023】上部電極と下部電極を接触させた状態を検
知する方法としては、電気抵抗溶融炉の回路インピーダ
ンスはスラグや運転の状態などで変化せずいつも同じ値
なので、タップ電圧から計算で短絡電流を求めることが
できる。そして短絡電流が流れた時が上部電極と下部電
極が接触した時なのでそれを監視しておけばよい。
As a method for detecting a state in which the upper electrode and the lower electrode are in contact with each other, the circuit impedance of the electric resistance melting furnace is always the same value without changing due to slag or operating conditions. Can be requested. Since the time when the short-circuit current flows is the time when the upper electrode and the lower electrode are in contact with each other, it may be monitored.

【0024】[0024]

【発明の効果】本発明によれば、通電部にスラグが冷え
固まって発生する誤差がなく、精度よく溶融物表面レベ
ルを検知できる。また、塩による電極の摩耗が原因で発
生する誤差も新たにゼロリセットして補正するだけで、
精度よく溶融物表面レベルを検知することができる。さ
らに、スラグレベル検知に要するコストを低く抑えるこ
とができる。
According to the present invention, there is no error that occurs when the slag is cooled and solidified in the current-carrying part, and the surface level of the molten material can be detected accurately. In addition, errors caused by electrode wear due to salt can only be corrected by newly resetting to zero.
The surface level of the melt can be accurately detected. Furthermore, the cost required for slag level detection can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の灰処理用電気抵抗溶融炉の溶融物表面
レベル検出原理の説明図である。
FIG. 1 is a diagram illustrating the principle of detecting the surface level of a melt in an electric resistance melting furnace for ash treatment of the present invention.

【図2】本発明による誤差の補正方法の説明図である。FIG. 2 is an explanatory diagram of an error correction method according to the present invention.

【図3】本発明による補正のフロー図である。FIG. 3 is a flowchart of correction according to the present invention.

【図4】従来の焼却灰処理用電気抵抗溶融炉の概略図で
ある。
FIG. 4 is a schematic view of a conventional electric resistance melting furnace for treating incineration ash.

【図5】従来の焼却灰処理用電気抵抗溶融炉の通電検出
器の概略図である。
FIG. 5 is a schematic view of a current detector of a conventional electric resistance melting furnace for treating incineration ash.

【符号の説明】[Explanation of symbols]

1:上部電極 2:電極昇降装置 3:下部電極 4:灰投入口 5:排気口 6:溶融金属排出口 7:溶融スラグ排出口 8:溶融塩排出口 9:電気抵抗溶融用電源トランス 10:電圧計 11:電流計 12:電極支持アーム 13:モータ 14:マスト 15:ロータリーエンコーダ 16:パルスカウンタ 17:耐熱絶縁管 18:通電検出端子 19:通電検出器 20:凝固部 1: Upper electrode 2: Electrode lifting device 3: Lower electrode 4: Ash inlet 5: Exhaust outlet 6: Molten metal outlet 7: Molten slag outlet 8: Molten salt outlet 9: Power transformer for melting electric resistance 10: Voltmeter 11: Ammeter 12: Electrode support arm 13: Motor 14: Mast 15: Rotary encoder 16: Pulse counter 17: Heat resistant insulating tube 18: Conduction detection terminal 19: Conduction detector 20: Coagulation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 禎治 北九州市戸畑区大字中原46−59 新日本製 鐵株式会社エンジニアリング事業本部内 (72)発明者 岩本 伸二 北九州市戸畑区大字中原46−59 日鐵プラ ント設計株式会社内 (72)発明者 松本 秀一 北九州市戸畑区大字中原46−59 日鐵プラ ント設計株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Sadaharu Hara 46-59, Nakahara, Tobata-ku, Kitakyushu Nippon Steel Corporation Inside the Engineering Business Unit (72) Inventor Shinji Iwamoto 46-59, Nakahara, Tobata-ku, Kitakyushu Within Steel Plant Design Co., Ltd. (72) Inventor Shuichi Matsumoto 46-59 Ohara Nakahara, Tobata-ku, Kitakyushu City Inside Nippon Steel Plant Design Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上部電極と下部電極に電圧を印加した状
態で上部電極を下降させていき、上部電極と下部電極が
接触して電極に短絡電流が流れた位置で上部電極を停止
させ、パルスカウンタをゼロリセットした後、上部電極
を上昇させ、上部電極の上昇距離をパルスカウントし、
電極に流れる電流値がゼロとなった時のパルスカウント
値により溶融物表面レベルを検出することを特徴とする
灰処理用電気抵抗溶融炉の溶融物表面レベルの検出方
法。
1. An upper electrode is lowered while a voltage is applied to the upper electrode and the lower electrode, and the upper electrode is stopped at a position where the upper electrode and the lower electrode come into contact with each other and a short-circuit current flows through the electrode. After resetting the counter to zero, raise the upper electrode, pulse count the rising distance of the upper electrode,
A method for detecting a surface level of a melt in an electric resistance melting furnace for ash treatment, wherein the surface level of the melt is detected by a pulse count value when a current value flowing through an electrode becomes zero.
JP809698A 1998-01-19 1998-01-19 Method of detecting surface level of melt in electric resistance fusion furnace for ash processing Withdrawn JPH11201420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP809698A JPH11201420A (en) 1998-01-19 1998-01-19 Method of detecting surface level of melt in electric resistance fusion furnace for ash processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP809698A JPH11201420A (en) 1998-01-19 1998-01-19 Method of detecting surface level of melt in electric resistance fusion furnace for ash processing

Publications (1)

Publication Number Publication Date
JPH11201420A true JPH11201420A (en) 1999-07-30

Family

ID=11683790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP809698A Withdrawn JPH11201420A (en) 1998-01-19 1998-01-19 Method of detecting surface level of melt in electric resistance fusion furnace for ash processing

Country Status (1)

Country Link
JP (1) JPH11201420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137255A (en) * 2010-12-27 2012-07-19 Wire Device:Kk Method of measuring electrode length in electric resistance type melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137255A (en) * 2010-12-27 2012-07-19 Wire Device:Kk Method of measuring electrode length in electric resistance type melting furnace

Similar Documents

Publication Publication Date Title
RU2417346C2 (en) Device for measurement and control of loading charge or metal scrap into electric arc furnace and corresponding procedure
CA1077997A (en) Primary electrode arrangement for high temperature melting furnace
JPH11201420A (en) Method of detecting surface level of melt in electric resistance fusion furnace for ash processing
JP3746921B2 (en) Operation method of electric melting furnace
JP3585344B2 (en) Apparatus and method for detecting base metal level in plasma type ash melting furnace
JP3480786B2 (en) Induction melting furnace leak detector
JP2006308497A (en) Method and device for measuring furnace bottom temperature, and method and device for monitoring bottom of melting furnace
JP3285193B2 (en) Electrode position setting method and input power control method for melting tank
JP5007094B2 (en) Control method of plasma melting furnace
JP3692245B2 (en) Measuring method of melting slag depth etc. of plasma ash melting furnace
JP3628162B2 (en) Slag thickness detection method for electric ash melting furnace
CN111965225A (en) Crucible monitoring method and device in vacuum induction melting furnace
US3495018A (en) Arc voltage control for consumable electrode furnaces
JP2755813B2 (en) Refractory repair time judgment device
JP2004144443A (en) Operation controller and its method for dc electric type melting furnace
JP3764624B2 (en) Operation method of electric melting furnace
JPH10122544A (en) Control method of molten boundary layer in melting furnace of incinerated residue
JP3317792B2 (en) Method for detecting boundary between molten slag layer and molten salt layer in electric resistance melting furnace
JPH09105507A (en) Operating method for ash treating electric resistance melting furnace
JPS60187455A (en) Detection of molten metal level in casting mold
JP2503775Y2 (en) Tundish plasma heating equipment
JP4285747B2 (en) Electric melting furnace operation control method
JP3542074B2 (en) Automatic controller for electric resistance melting furnace
SU607431A1 (en) Method of checking burn-out of crystallizer
JPH08165510A (en) Level detector for molten steel in dc arc furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405