JPH11200961A - Evaporation purge control method of internal combustion engine - Google Patents
Evaporation purge control method of internal combustion engineInfo
- Publication number
- JPH11200961A JPH11200961A JP511298A JP511298A JPH11200961A JP H11200961 A JPH11200961 A JP H11200961A JP 511298 A JP511298 A JP 511298A JP 511298 A JP511298 A JP 511298A JP H11200961 A JPH11200961 A JP H11200961A
- Authority
- JP
- Japan
- Prior art keywords
- canister
- fuel
- internal combustion
- fuel vapor
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料タンクから蒸
発する燃料蒸気を、大気中に放出することを抑制する内
燃機関のエバポパージ制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporative purge control method for an internal combustion engine which suppresses the release of fuel vapor evaporated from a fuel tank into the atmosphere.
【0002】[0002]
【従来の技術】従来燃料タンク内で蒸発した燃料蒸気
は、タンク内圧が一定の圧力になるとワンウェイ・バル
ブが作動して燃料タンクから排出されてキャニスタに一
旦吸着貯留され、エンジン作動時に吸気管の負圧により
キャニスタの大気導入路から外気を導入してキャニスタ
に吸着している燃料蒸気が脱離され、吸気管内に導出さ
れて燃焼していた。(これを一般には「キャニスタ・ス
トーレッジ方式」と称するが、本発明においては、これ
をもって「エバポシステム」又は「エバポパージ制御」
と称する。) 一方、近年燃費低減要求の高まりから燃料をシリンダ内
に直接噴射する筒内直噴エンジンが開発され、実用化さ
れている。そして、筒内直噴エンジンのエバポシステム
は、従来のポート噴射エンジンのエバポシステムとほぼ
同じものを採用しているのが現状である。2. Description of the Related Art Conventionally, fuel vapor evaporated in a fuel tank is discharged from the fuel tank by operating a one-way valve when the internal pressure of the tank reaches a predetermined pressure, temporarily absorbed and stored in a canister. The outside air was introduced from the air introduction passage of the canister by the negative pressure, and the fuel vapor adsorbed on the canister was desorbed, led out into the intake pipe and burned. (This is generally referred to as “canister storage method”, but in the present invention, this is referred to as “evaporation system” or “evaporation purge control.”
Called. On the other hand, in recent years, in-cylinder direct injection engines for directly injecting fuel into a cylinder have been developed and put into practical use due to a demand for a reduction in fuel consumption. At present, an evaporative system for a direct injection engine is substantially the same as an evaporative system for a conventional port injection engine.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
ポート噴射エンジンでは、燃料と空気が一定の割合(約
1:14.6)で均一に混ざりあった状態の混合気を吸
入し、燃焼させることで出力を発生させており、エンジ
ン回転数と吸気管圧力信号(吸入空気量に相当)をもと
に燃料噴射量を決定している。これに対して、筒内直接
噴射エンジンでは、スロットルバルブを開き多量の空気
を吸入した上で、スパークプラグ近辺にのみ必要な燃料
を供給し、燃焼させることで燃費向上を実現しており、
吸気管圧力は大気圧に近く、燃料噴射量を決定する情報
とはならない。However, in the conventional port injection engine, a fuel-air mixture in which fuel and air are uniformly mixed at a fixed ratio (about 1: 14.6) is sucked and burned. The fuel injection amount is determined based on the engine speed and the intake pipe pressure signal (corresponding to the intake air amount). On the other hand, in the direct injection engine, the throttle valve is opened, a large amount of air is sucked in, the required fuel is supplied only to the vicinity of the spark plug, and the fuel is burned, thereby improving fuel efficiency.
The intake pipe pressure is close to the atmospheric pressure and is not information for determining the fuel injection amount.
【0004】従って、ポート噴射エンジンのエバポシス
テムではスロットルバルブの開閉によってできる吸気管
負圧を利用してキャニスタに吸着している燃料蒸気を脱
離してキャニスタを再生していたのに対し、筒内直噴エ
ンジンではスロットルバルブはほぼ全開状態である。筒
内直噴エンジンにおいても高速、高負荷領域では空気量
を若干絞り、理論空燃比で運転され、その時には吸気管
負圧が得られるが、ポート噴射エンジンに比べ負圧が小
さい上にその機会は少なく、キャニスタの大気導入路か
ら外気を十分に導入することができず、キャニスタが再
生できない。また、キャニスタの状態をフィードバック
しての制御ではないためキャニスタを再生すべき時に吸
気管負圧がかかるとは限らない。このためポート噴射エ
ンジンのキャニスタよりも、筒内直噴エンジンのキャニ
スタ内が燃料蒸気で飽和状態になるスピードが早く、飽
和したキャニスタは燃料タンクから排出される燃料蒸気
を吸着することができず、大気に燃料蒸気が漏れだして
大気汚染の恐れが出てくる。これを防ぐ手段としてはキ
ャニスタを大型化することが考えられるが、キャニスタ
の搭載位置であるエンジンルーム及び燃料タンクの近辺
にはスペースがあまりなく、十分な大型化はできない。Therefore, in the evaporation system of the port injection engine, the canister is regenerated by desorbing the fuel vapor adsorbed on the canister by utilizing the negative pressure of the intake pipe formed by opening and closing the throttle valve. In a direct injection engine, the throttle valve is almost fully open. In a direct injection engine, even in a high-speed, high-load range, the air amount is slightly reduced and the engine is operated at a stoichiometric air-fuel ratio. At that time, a negative pressure in the intake pipe is obtained. And the outside air cannot be sufficiently introduced from the air introduction passage of the canister, and the canister cannot be regenerated. Further, since the control is not performed by feeding back the state of the canister, the intake pipe negative pressure is not always applied when the canister is to be regenerated. For this reason, the speed at which the canister of the direct injection engine becomes saturated with fuel vapor is faster than that of the canister of the port injection engine, and the saturated canister cannot adsorb the fuel vapor discharged from the fuel tank, Fuel vapor leaks into the atmosphere, causing the risk of air pollution. As a means for preventing this, it is conceivable to increase the size of the canister. However, there is not much space near the engine room and the fuel tank where the canister is mounted, and the size cannot be increased sufficiently.
【0005】[0005]
【課題を解決するための手段】本発明は、前記の課題を
解決するための手段として、特許請求の範囲の各請求項
に記載された内燃機関のエバポパージ制御方法を提供す
る。The present invention provides, as a means for solving the above-mentioned problems, an evaporative purge control method for an internal combustion engine described in each of the claims.
【0006】請求項1に記載された内燃機関のエバポパ
ージ制御方法においては、キャニスタにおける燃料蒸気
の吸着状態に応じて適宜吸気管負圧の大きい理論空燃比
運転に切り替えてキャニスタのパージを行っているの
で、キャニスタが飽和状態になり、大気中に燃料蒸気が
漏れて大気汚染する恐れがなくなる。また、キャニスタ
を大型化する必要もない。According to the first aspect of the present invention, the canister is purged by switching to a stoichiometric air-fuel ratio operation in which the intake pipe negative pressure is large in accordance with the adsorbed state of fuel vapor in the canister. Therefore, the canister becomes saturated, and there is no danger of fuel vapor leaking into the atmosphere and causing air pollution. Also, there is no need to increase the size of the canister.
【0007】請求項2に記載された内燃機関のエバポパ
ージ制御方法においては、請求項1の内燃機関のエバポ
パージ制御方法による効果に加えて、給油の際に燃料タ
ンク内に滞留している燃料蒸気のほとんどを吸着して飽
和状態になっているキャニスタの再生を早急に行える。According to a second aspect of the present invention, in addition to the effect of the first aspect, the fuel vapor remaining in the fuel tank during refueling is removed. It is possible to quickly regenerate a saturated canister by absorbing most of it.
【0008】請求項3,4,5に記載された内燃機関の
エバポパージ制御方法は、キャニスタにおける燃料蒸気
の吸着状態の判定を、それぞれ具体的に記載したもの
で、実質的に請求項1又は2の内燃機関のエバポパージ
制御方法と同様の効果を奏するものである。According to a third aspect of the present invention, there is provided an evaporative purge control method for an internal combustion engine, which specifically describes the determination of a state of adsorbing fuel vapor in a canister. This has the same effect as the above-described evaporative purge control method for an internal combustion engine.
【0009】請求項6に記載された内燃機関のエバポパ
ージ制御方法は、キャニスタ内の活性炭が燃料蒸気の吸
着により発熱することに着目したものであり、請求項
3,4又は5の内燃機関のエバポパージ制御方法と組み
合わせることにより、高速道路等で定常走行が長時間続
くような場合で理論空燃比運転にはなかなか切り替わら
ない場合においても、理論空燃比運転に切り替えてキャ
ニスタの再生を行うことができる。In a sixth aspect of the present invention, there is provided an evaporative purge control method for an internal combustion engine which focuses on the fact that activated carbon in a canister generates heat due to adsorption of fuel vapor. By combining with the control method, the canister can be regenerated by switching to the stoichiometric air-fuel ratio operation even in the case where the steady-state traveling continues for a long time on a highway or the like and the stoichiometric air-fuel ratio operation is not easily switched.
【0010】[0010]
【発明の実施の形態】本発明の第1実施形態の構成につ
いて図1を用いて説明する。燃料タンク1とキャニスタ
2とは、燃料タンク内圧がある一定圧以上に上昇及び下
降しないように制御する双方向に連通するタンク内圧弁
3と給油時のみ開弁される給油弁4を介して連通してい
る。キャニスタ2と吸気管8とは、エンジンの回転数、
吸気管負圧等によってパージ流量を制御する負圧制御弁
(VSV)5を介して連通している。キャニスタ2には
大気口側と吸気管側との差圧を検出する圧力センサ6
と、キャニスタ2内部の活性炭の温度を検出する温度セ
ンサ7が設置されている。温度センサ7はキャニスタ2
の中央部、例えば容量1/2の位置に設置することが好
ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of a first embodiment of the present invention will be described with reference to FIG. The fuel tank 1 and the canister 2 communicate with each other via a tank internal pressure valve 3 that is bidirectionally connected to control the internal pressure of the fuel tank so that it does not rise or fall above a certain pressure, and a refueling valve 4 that is opened only when refueling. doing. The canister 2 and the intake pipe 8 define the engine speed,
It communicates via a negative pressure control valve (VSV) 5 for controlling a purge flow rate by an intake pipe negative pressure or the like. The canister 2 has a pressure sensor 6 for detecting a differential pressure between the atmosphere port side and the intake pipe side.
And a temperature sensor 7 for detecting the temperature of the activated carbon in the canister 2. The temperature sensor 7 is a canister 2
Is preferably installed at the center, for example, at a position of a half capacity.
【0011】次に、第1実施形態の作動について説明す
る。図4で、あるエンジン回転数での水温に対する吸気
管負圧の例を示すように、運転状態がほとんどリーンバ
ーン運転である筒内直噴エンジンにおいても、理論空燃
比運転を行う際にはリーンバーン状態よりもかなり大き
な吸気管負圧が発生する。Next, the operation of the first embodiment will be described. As shown in FIG. 4, an example of the intake pipe negative pressure with respect to the water temperature at a certain engine rotation speed is shown in FIG. A considerably larger intake pipe negative pressure is generated than in the burn state.
【0012】リーンバーン運転から加速するために理論
空燃比運転に切り替わる際に、アクセルを踏み込む信号
から吸入空気量を若干絞るためにスロットルバルブ9が
閉じる方向に動く。その際スロットルバルブ9の後方に
は負圧が発生し、その負圧によりキャニスタ2の大気口
から外気が導入されて吸気管8に送られる。キャニスタ
2に燃料蒸気が吸着していれば導入される外気により脱
離されて外気と共に燃料蒸気が吸気管8に送られる。こ
のときのキャニスタ2の上流と下流の差圧は、外気のみ
が流れるのに比べて脱離された燃料蒸気分の流量が増加
するため差圧が大きくなる。あらかじめ電子式制御装置
(ECU)に吸着管負圧に対するキャニスタ2の新品状
態から吸着量が小さい場合の差圧幅ΔPを記憶させてお
き、差圧を圧力センサ6でモニタする。例えば差圧がE
CU(電子式制御装置)に記憶されているΔPの範囲を
越えたら、運転状態を通常はリーンバーン運転に戻す場
合でも差圧がΔPの範囲に低下するまで理論空燃比運転
を継続させ、その後は通常の制御にて運転モードを切り
替える。When the operation is switched from the lean burn operation to the stoichiometric air-fuel ratio operation in order to accelerate, the throttle valve 9 moves in the closing direction to slightly reduce the intake air amount from the signal of depressing the accelerator. At this time, a negative pressure is generated behind the throttle valve 9, and outside air is introduced from the atmosphere port of the canister 2 by the negative pressure and sent to the intake pipe 8. If the fuel vapor is adsorbed on the canister 2, the fuel vapor is desorbed by the introduced outside air, and the fuel vapor is sent to the intake pipe 8 together with the outside air. At this time, the differential pressure between the upstream and downstream of the canister 2 becomes large because the flow rate of the desorbed fuel vapor increases as compared with the case where only outside air flows. An electronic control unit (ECU) previously stores a differential pressure width ΔP when the suction amount is small from a new state of the canister 2 with respect to the suction pipe negative pressure, and the pressure difference is monitored by the pressure sensor 6. For example, if the differential pressure is E
When the operation state is normally returned to the lean burn operation after exceeding the range of ΔP stored in the electronic control unit (CU), the stoichiometric air-fuel ratio operation is continued until the differential pressure falls to the range of ΔP, and thereafter, Switches the operation mode under normal control.
【0013】前記したように圧力センサ6を使用しての
キャニスタの吸着状態の判定は、一旦理論空燃比運転に
切り替わってからの制御であったが、高速道路等で定常
走行が長時間続くような場合は理論空燃比運転にはなか
なか切り替わらない。しかしながら、燃料タンク1から
の燃料蒸気のキャニスタ2への流入は起こっているた
め、キャニスタ2の再生が行われずにキャニスタ2が飽
和状態になる恐れがある。そこで、キャニスタ2内に封
入されている活性炭は燃料蒸気を吸着すると発熱すると
いう特性を利用し、キャニスタ2の例えば中央部の容量
1/2の位置に設置した温度センサ7による活性炭温度
をモニタし、温度が上昇してあらかじめECUに記憶さ
せておいた温度を越えたら、キャニスタ2に燃料蒸気が
十分に吸着したと判定し、即理論空燃比運転に切り替え
る。その後の作動は、前記したように圧力センサ6で差
圧をモニタして、キャニスタ2の吸着状態によって運転
モードを切り替えればよい。As described above, the determination of the adsorbed state of the canister using the pressure sensor 6 is performed after the operation is switched to the stoichiometric air-fuel ratio operation. In such a case, it is difficult to switch to the stoichiometric air-fuel ratio operation. However, since the fuel vapor flows from the fuel tank 1 into the canister 2, the canister 2 may be saturated without regeneration of the canister 2. Therefore, utilizing the characteristic that the activated carbon enclosed in the canister 2 generates heat when adsorbing the fuel vapor, the temperature of the activated carbon is monitored by the temperature sensor 7 installed at, for example, a half capacity of the center of the canister 2. If the temperature rises and exceeds the temperature stored in the ECU in advance, it is determined that the fuel vapor has sufficiently adsorbed to the canister 2, and the operation is immediately switched to the stoichiometric air-fuel ratio operation. Subsequent operations may be performed by monitoring the differential pressure with the pressure sensor 6 and switching the operation mode according to the suction state of the canister 2 as described above.
【0014】さらに、キャニスタ2に設置した温度セン
サ7による活性炭温度をモニタしている場合は、次のよ
うな制御も可能である。一般にORVR規制対応車は給
油の際に燃料タンク1内で滞留している燃料蒸気のほと
んどがキャニスタ2に吸着される。このときキャニスタ
2の吸着状態はほぼ飽和しているため早急にキャニスタ
2の再生が必要となる。前述したように活性炭は燃料蒸
気の吸着により発熱するため、温度センサ7は活性炭温
度の上昇を検知して給油直後からの運転を理論空燃比運
転にしてキャニスタ2の再生を図ることができる。Further, when the temperature of the activated carbon is monitored by the temperature sensor 7 installed in the canister 2, the following control is also possible. In general, most fuel vapors remaining in the fuel tank 1 are adsorbed by the canister 2 when refueling in an ORVR-compliant vehicle. At this time, since the adsorption state of the canister 2 is almost saturated, it is necessary to regenerate the canister 2 immediately. As described above, the activated carbon generates heat due to the adsorption of fuel vapor. Therefore, the temperature sensor 7 detects an increase in the activated carbon temperature, and the operation immediately after refueling can be performed with the stoichiometric air-fuel ratio operation to regenerate the canister 2.
【0015】次に、第2実施形態について図2を用いて
説明する。第1実施形態との構成上の違いは、キャニス
タ2の上流と下流の差圧を検知する圧力センサ6に代え
て、キャニスタ2と吸気管8の連通路に流量センサ61
を設置したことにあり、これによりキャニスタ2の燃料
蒸気の吸着状態の判定方法が異なる。Next, a second embodiment will be described with reference to FIG. The difference from the first embodiment in the configuration is that the flow sensor 61 is provided in the communication passage between the canister 2 and the intake pipe 8 instead of the pressure sensor 6 for detecting the differential pressure between the upstream and downstream of the canister 2.
Therefore, the method of determining the adsorption state of the fuel vapor in the canister 2 is different.
【0016】キャニスタ2に燃料蒸気が吸着していない
状態を基準として考えると、吸気管負圧に対するキャニ
スタ2の大気口からの吸い込み空気量Qはほぼ一義的に
決まる。あらかじめECUに吸い込み空気量Qを記憶さ
せておき、キャニスタ2に燃料蒸気が吸着していれば吸
い込み空気によって脱離された分だけ流量が増加するた
め、それを流量センサ61によりモニタし、流量増量分
がキャニスタ2内の燃料蒸気の吸着量が少なくなったと
判定できる(例えば流量増量=Q×1.1)まで理論空
燃比運転を継続する。こうしてキャニスタ2のパージを
行う。Considering the state in which fuel vapor is not adsorbed in the canister 2 as a reference, the amount Q of air taken in from the atmosphere port of the canister 2 with respect to the negative pressure of the intake pipe is almost uniquely determined. The intake air amount Q is stored in advance in the ECU, and if fuel vapor is adsorbed in the canister 2, the flow rate increases by the amount desorbed by the intake air. The stoichiometric air-fuel ratio operation is continued until it can be determined that the amount of fuel vapor adsorbed in the canister 2 has decreased (for example, the flow rate increase = Q × 1.1). Thus, the canister 2 is purged.
【0017】また、第2実施形態においても、第1実施
形態と同じようにキャニスタ2に温度センサ7を設置し
て活性炭温度をモニタすることにより、前述したような
第1実施形態と同じ運転モードとすることができる。Also, in the second embodiment, a temperature sensor 7 is installed on the canister 2 to monitor the temperature of the activated carbon in the same manner as in the first embodiment. It can be.
【0018】次に、第3実施形態について図3を用いて
説明する。第3実施形態は、第1実施形態の圧力センサ
6及び第2実施形態の流量センサ61に代えて、排気管
10にO2 センサ62を設置したもので、これによりキ
ャニスタ2の燃料蒸気の吸着状態の判定方法が異なって
いる。Next, a third embodiment will be described with reference to FIG. In the third embodiment, an O 2 sensor 62 is provided in the exhaust pipe 10 instead of the pressure sensor 6 of the first embodiment and the flow sensor 61 of the second embodiment. The method of judging the state is different.
【0019】理論空燃比運転に切り替わった際、吸入空
気量を若干絞ってインジェクタの噴射量を調整すること
となるが、その際の吸気管負圧によりキャニスタ2に吸
着している燃料蒸気が脱離して吸気管8に送られインジ
ェクタから噴射された燃料と一緒に筒内に入り燃焼す
る。このとき、理論空燃比に対してキャニスタ2からの
燃料蒸気の混入によりO2 センサ62の出力はリッチ側
にずれるため、噴射量を減らして理論空燃比に戻すこと
が行われる。キャニスタ2からの燃料蒸気の混入がなく
なればその分今度はO2 センサ62の出力がリーン側に
ずれるため、この状態になるまで理論空燃比運転を継続
させればキャニスタ2を再生させることができる。When the operation is switched to the stoichiometric air-fuel ratio operation, the injection amount of the injector is adjusted by slightly reducing the intake air amount. At this time, the fuel vapor adsorbed on the canister 2 is removed by the intake pipe negative pressure. Then, the fuel enters the cylinder together with the fuel injected from the injector after being sent to the intake pipe 8 and burns. At this time, since the output of the O 2 sensor 62 shifts to the rich side due to mixing of the fuel vapor from the canister 2 with respect to the stoichiometric air-fuel ratio, the injection amount is reduced to return to the stoichiometric air-fuel ratio. If the fuel vapor from the canister 2 disappears, the output of the O 2 sensor 62 shifts to the lean side accordingly, so that the canister 2 can be regenerated by continuing the stoichiometric air-fuel ratio operation until this state is reached. .
【0020】また、第3実施形態においても、第1実施
形態と同じようにキャニスタ2に温度センサ7を設置し
て活性炭温度をモニタすることにより、前述したような
第1実施形態と同じ運転モードとすることができる。Also, in the third embodiment, a temperature sensor 7 is installed on the canister 2 to monitor the activated carbon temperature in the same manner as in the first embodiment. It can be.
【図1】本発明の第1実施形態としての内燃機関のエバ
ポパージ制御方法を示す回路図である。FIG. 1 is a circuit diagram showing an evaporation purge control method for an internal combustion engine as a first embodiment of the present invention.
【図2】本発明の第2実施形態としての内燃機関のエバ
ポパージ制御方法を示す回路図である。FIG. 2 is a circuit diagram showing an evaporation purge control method for an internal combustion engine as a second embodiment of the present invention.
【図3】本発明の第3実施形態としての内燃機関のエバ
ポパージ制御方法を示す回路図である。FIG. 3 is a circuit diagram showing an evaporative purge control method for an internal combustion engine as a third embodiment of the present invention.
【図4】理論空燃比運転とリーンバーン運転の吸気管の
負圧の状態を比較した線図である。FIG. 4 is a diagram comparing the state of negative pressure in an intake pipe between a stoichiometric air-fuel ratio operation and a lean burn operation.
1…燃料タンク 2…キャニスタ 3…タンク内圧弁 4…給油弁 5…負圧制御弁(VSV) 6…圧力センサ 7…温度センサ 8…吸気管 9…スロットルバルブ 10…排気管 11…インジェクタ DESCRIPTION OF SYMBOLS 1 ... Fuel tank 2 ... Canister 3 ... Tank internal pressure valve 4 ... Refueling valve 5 ... Negative pressure control valve (VSV) 6 ... Pressure sensor 7 ... Temperature sensor 8 ... Intake pipe 9 ... Throttle valve 10 ... Exhaust pipe 11 ... Injector
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 45/00 301 F02D 45/00 301G 368 368G ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 45/00 301 F02D 45/00 301G 368 368G
Claims (6)
り替えに際して、キャニスタにおける燃料蒸気の吸着状
態を検知して吸着量が多いと判定したときには、リーン
バーン運転に優先して理論空燃比運転を行ってキャニス
タのパージを行い、吸着量が少ないと判定したときに
は、リーンバーン運転を行うことを特徴とする内燃機関
のエバポパージ制御方法。At the time of switching between the stoichiometric air-fuel ratio operation and the lean burn operation, when the adsorption state of fuel vapor in the canister is detected and it is determined that the adsorption amount is large, the stoichiometric air-fuel ratio operation is performed prior to the lean burn operation. And performing a lean burn operation when it is determined that the adsorption amount is small.
時間理論空燃比運転を行ってキャニスタのパージを図
り、その後の理論空燃比運転とリーンバーン運転の切り
替えに際して、キャニスタにおける燃料蒸気の吸着状態
を検知して吸着量が多いと判定したときには、リーンバ
ーン運転に優先して理論空燃比運転を行ってキャニスタ
のパージを行い、吸着量が少ないと判定したときには、
リーンバーン運転を行うことを特徴とする内燃機関のエ
バポパージ制御方法。2. A stoichiometric air-fuel ratio operation is performed for a predetermined time when the internal combustion engine is started after refueling to purify the canister, and when the stoichiometric air-fuel ratio operation is switched to a lean burn operation, fuel vapor is adsorbed in the canister. When the state is detected and it is determined that the adsorption amount is large, the stoichiometric air-fuel ratio operation is performed in preference to the lean burn operation to purge the canister, and when it is determined that the adsorption amount is small,
An evaporative purge control method for an internal combustion engine, comprising performing a lean burn operation.
の差圧を圧力センサにより検出して前記キャニスタの燃
料蒸気の吸着状態の判定を行うことを特徴とする請求項
1又は2に記載の内燃機関のエバポパージ制御方法。3. The adsorption state of fuel vapor in the canister is determined by detecting a pressure difference between an atmosphere port side and an intake pipe side of the canister by a pressure sensor. Evaporative purge control method for an internal combustion engine.
センサを設けて、その流量変化から前記キャニスタの燃
料蒸気の吸着状態の判定を行うことを特徴とする請求項
1又は2に記載の内燃機関のエバポパージ制御方法。4. The internal combustion engine according to claim 1, wherein a flow rate sensor is provided halfway between the canister and the intake pipe, and a change in the flow rate is used to determine a fuel vapor adsorption state of the canister. Engine evaporative purge control method.
ら前記キャニスタの燃料蒸気の吸着状態の判定を行うこ
とを特徴とする請求項1又は2に記載の内燃機関のエバ
ポパージ制御方法。5. An evaporative purge control method for an internal combustion engine according to claim 1, wherein an O 2 sensor is provided in the exhaust pipe to determine the adsorbed state of fuel vapor in the canister from the oxygen concentration.
性炭温度から前記キャニスタの燃料蒸気の吸着状態の判
定を行うことを特徴とする請求項1〜5のいずれか1項
に記載の内燃機関のエバポパージ制御方法。6. The evaporative purge of an internal combustion engine according to claim 1, wherein a temperature sensor is provided in the canister to determine a state of adsorbing fuel vapor in the canister from an activated carbon temperature. Control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00511298A JP3955142B2 (en) | 1998-01-13 | 1998-01-13 | Evaporative purge control method for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00511298A JP3955142B2 (en) | 1998-01-13 | 1998-01-13 | Evaporative purge control method for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11200961A true JPH11200961A (en) | 1999-07-27 |
JP3955142B2 JP3955142B2 (en) | 2007-08-08 |
Family
ID=11602279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00511298A Expired - Fee Related JP3955142B2 (en) | 1998-01-13 | 1998-01-13 | Evaporative purge control method for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3955142B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1083321A2 (en) * | 1999-09-10 | 2001-03-14 | Toyota Jidosha Kabushiki Kaisha | Combustion control apparatus and method engines |
WO2004083619A1 (en) * | 2003-03-21 | 2004-09-30 | Siemens Vdo Automotive Inc. | Method for determining vapour canister loading using temperature |
US7233845B2 (en) | 2003-03-21 | 2007-06-19 | Siemens Canada Limited | Method for determining vapor canister loading using temperature |
WO2015039465A1 (en) * | 2013-09-17 | 2015-03-26 | 北汽福田汽车股份有限公司 | Fuel system for vehicle |
-
1998
- 1998-01-13 JP JP00511298A patent/JP3955142B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1083321A2 (en) * | 1999-09-10 | 2001-03-14 | Toyota Jidosha Kabushiki Kaisha | Combustion control apparatus and method engines |
US6505599B1 (en) | 1999-09-10 | 2003-01-14 | Toyota Jidosha Kabushiki Kaisha | Combustion control apparatus and method for engines |
EP1083321A3 (en) * | 1999-09-10 | 2003-06-25 | Toyota Jidosha Kabushiki Kaisha | Combustion control apparatus and method engines |
WO2004083619A1 (en) * | 2003-03-21 | 2004-09-30 | Siemens Vdo Automotive Inc. | Method for determining vapour canister loading using temperature |
US7233845B2 (en) | 2003-03-21 | 2007-06-19 | Siemens Canada Limited | Method for determining vapor canister loading using temperature |
WO2015039465A1 (en) * | 2013-09-17 | 2015-03-26 | 北汽福田汽车股份有限公司 | Fuel system for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP3955142B2 (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7107759B2 (en) | Apparatus for reducing hydrocarbon emission of internal combustion engine | |
JPH0726599B2 (en) | Evaporative fuel control device for internal combustion engine | |
JP3503479B2 (en) | Evaporative fuel treatment system for lean burn internal combustion engines | |
KR100306186B1 (en) | Gasoline vapor purging system of interal combustion engine | |
JPH11200961A (en) | Evaporation purge control method of internal combustion engine | |
JPH11200907A (en) | Control method for gasoline engine | |
JP4292671B2 (en) | Hydrocarbon emission reduction device for internal combustion engine | |
JP3562241B2 (en) | Control device for internal combustion engine | |
JP3633209B2 (en) | Evaporative fuel processing apparatus in cylinder injection internal combustion engine | |
JP3235158B2 (en) | Evaporative fuel control system for vehicles | |
JP2001263126A (en) | Internal combustion engine | |
JPH08121266A (en) | Evaporating fuel treatment device of internal combustion engine | |
US11149670B2 (en) | Exhaust purification system | |
JP3525688B2 (en) | Evaporative fuel treatment system for internal combustion engine | |
JPH1054310A (en) | Intake control device for internal combustion engine | |
JP4622192B2 (en) | Combustion control device for internal combustion engine | |
JPH0526120A (en) | Evaporated fuel controller of internal combustion engine | |
JP2000045886A (en) | Method for supplying eveporated fuel in internal combustion engine | |
JP4424217B2 (en) | Evaporative fuel processing device for internal combustion engine | |
JP3065176B2 (en) | Engine air-fuel ratio control device | |
JP4243991B2 (en) | Hydrocarbon emission reduction device for internal combustion engine | |
JPH1047172A (en) | Control device of internal combustion engine | |
JPH0517408Y2 (en) | ||
JP2023095237A (en) | Control device for internal combustion engine and control method for internal combustion engine | |
JP2013164041A (en) | Evaporated fuel supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040428 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040702 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070501 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120511 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120511 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130511 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140511 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |