JPH11200356A - Ground stabilizing agent - Google Patents

Ground stabilizing agent

Info

Publication number
JPH11200356A
JPH11200356A JP583798A JP583798A JPH11200356A JP H11200356 A JPH11200356 A JP H11200356A JP 583798 A JP583798 A JP 583798A JP 583798 A JP583798 A JP 583798A JP H11200356 A JPH11200356 A JP H11200356A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
resin
thickness
ground stabilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP583798A
Other languages
Japanese (ja)
Inventor
Minoru Toyama
稔 登山
Koichi Saito
晃一 斉藤
Takashi Niifuku
隆志 新福
Masanori Ishikawa
真範 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP583798A priority Critical patent/JPH11200356A/en
Publication of JPH11200356A publication Critical patent/JPH11200356A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ground stabilizing agent being excellent in tension characteristics, creep characteristics, and pull-out resistance properties. SOLUTION: A long substance made of continuous inorganic fiber-reinforced thermoplastic resin is produced such that fiber-contained resin prepared by impregnating continuous fibers for inorganic reinforcement with thermoplastic resin. After a lattice-form substance is formed in a way that the long substance is arranged in a lattice-form state as a longitudinal material 7 and the lateral material 8, a longitudinal part 10, a lateral part 11, and an intersection part 9 are provided to weld the lattice-form substance. In this case, the thickness of the longitudinal part is 2.5 mm or less and the thickness of the lateral part is 1.0-10.0 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連続無機繊維強化熱
可塑性樹脂製長尺体を構成部材とした地盤安定化材に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground stabilizing material comprising a continuous inorganic fiber reinforced thermoplastic resin elongated member.

【0002】[0002]

【従来技術】従来、土地造成、道路、鉄道などの土工事
分野において軟弱地盤の安定化処理、盛土の安定化や円
弧滑り防止のため、締固めや土中水の排除、セメントや
石灰による処理が行われていた。最近では、それらの方
法と異なり、高分子材料であるジオテキスタイルを用い
た補強土工法の活用が図られている。
2. Description of the Related Art Conventionally, in the field of earth works such as land reclamation, roads, railways, etc., for the purpose of stabilization of soft ground, stabilization of embankment and prevention of arc slippage, compaction and removal of soil water, treatment with cement and lime. Had been done. Recently, unlike those methods, a reinforced earth method using a geotextile, which is a polymer material, is being utilized.

【0003】この補強土工法は、ジオテキスタイルの補
強材としての引っ張り抵抗や土との摩擦抵抗等により土
塊全体の強化を図り、施工が比較的容易で、工期の短縮
や土構造物の重量低減を可能とできる。これらのジオテ
キスタイルは、地盤の滑り破壊防止のための地盤との噛
み合わせや、土中に浸透した水などの速やかな排除など
のために、網の目の形をしている。
[0003] This reinforced earth method aims at strengthening the entire mass of soil by means of a tensile resistance as a reinforcing material of the geotextile and a frictional resistance with the soil, etc., thereby making construction relatively easy, shortening the construction period and reducing the weight of the soil structure. Can be possible. These geotextiles are in the form of a mesh for meshing with the ground to prevent slippage of the ground and for quickly removing water and the like that has penetrated into the soil.

【0004】ジオテキスタイルの中でも高い強度が要求
されるジオグリッドは、主に高密度ポリエチレン(HD
PE)やポリプロピレン(PP)、ポリエチレンテレフ
タレート(PET)等の高分子材料から得られるもので
あり、ポリマーグリッドとも呼ばれている。一般に、こ
の様なジオグリッドは伸び変形し易く、15〜20%程
度に引き延ばされた時点での引張り強度が最も強力に作
用するものであるのに対し、土は2〜5%に引き延ばさ
れ歪んだときに崩壊を始めるという特性を有しているこ
とから、該ジオグリッドでは、土が崩壊を始める初期段
階において十分に地盤の滑り破壊等を防止できないとい
う欠点を有している。
[0004] Among geotextiles, geogrids that require high strength are mainly made of high-density polyethylene (HD).
It is obtained from a polymer material such as PE), polypropylene (PP), and polyethylene terephthalate (PET), and is also called a polymer grid. In general, such a geogrid is easily stretched and deformed, and the tensile strength at the time when it is stretched to about 15 to 20% acts most strongly, while the soil is drawn to 2 to 5%. The geogrid has the drawback that it cannot sufficiently prevent the ground from sliding at the initial stage when the soil starts to collapse because it has the property of starting to collapse when it is stretched and distorted. .

【0005】この様な問題を解決し、高強度、高弾性率
および高いクリープ特性を持たせるため、熱硬化性樹脂
や熱可塑性樹脂を連続繊維で強化してグリッド状に一体
成形したファイバーグリッドが開発されており、特開平
7−173824号公報等にも開示されている。しか
し、ファイバーグリッドは、柔軟性と耐衝撃性に乏しい
ため、凹凸の激しい場所や岩石等の多い場所で施工する
と曲げ応力に耐え切れなかったり、岩石等の落下による
衝撃荷重に耐え切れず連続繊維が損傷してしまうという
欠点を有している。これに対し、特開平5−23982
2号公報に、特定量の連続繊維を熱可塑性樹脂で含浸さ
せた特定厚みからなるリブをネット状にした地盤補強材
が開示されている。この方法により、補強材に柔軟性を
持たせることができたが、耐衝撃性に関しては何ら改善
させることはできなかった。
[0005] In order to solve such problems and provide high strength, high elastic modulus and high creep characteristics, a fiber grid obtained by reinforcing a thermosetting resin or a thermoplastic resin with continuous fibers and integrally forming it into a grid shape has been developed. It has been developed and is disclosed in Japanese Patent Application Laid-Open No. 7-173824. However, since the fiber grid is poor in flexibility and impact resistance, it cannot withstand bending stress when it is installed in a place with a lot of unevenness or a lot of rock, etc. Has the disadvantage of being damaged. On the other hand, Japanese Patent Application Laid-Open No. 5-23982
No. 2 discloses a ground reinforcing material in which a rib having a specific thickness in which a specific amount of continuous fiber is impregnated with a thermoplastic resin has a net shape. By this method, the reinforcing material could be made flexible, but the impact resistance could not be improved at all.

【0006】また、我が国では、土地の確保が困難にな
ってきているため、急勾配盛土や擁壁盛土などの法面勾
配の急な盛土が多くなってきており、盛土底面積、すな
わちポリマーグリッド等の補強材が充分な効果を有する
程の大きさを取れなくなってきている。また、既存のフ
ァイバーグリッドにおいても、引き抜き抵抗性が低いた
め、敷設面積が充分に取れない軟弱地盤地帯での補強工
事では従来のコンクリート擁壁や石積み等の方法に頼ら
ざるを得ないのが現状であった。
Further, in Japan, it is becoming difficult to secure land, so that there are many embankments with steep slopes such as steep embankments and retaining wall embankments. And other reinforcing materials cannot be made large enough to have a sufficient effect. Also, existing fiber grids have low pull-out resistance, so reinforcement work in soft ground where the laying area is not sufficient can only rely on conventional methods such as concrete retaining walls and masonry. Met.

【0007】かかる事実に基づき、本発明者らは、引張
特性、クリープ特性及び引き抜き抵抗性に着目しファイ
バーグリッドの開発に着手した。
[0007] Based on this fact, the present inventors have started development of a fiber grid, paying attention to tensile properties, creep properties and pull-out resistance.

【0008】[0008]

【発明が解決しようとする課題】本発明は、引張特性、
クリープ特性及び引き抜き抵抗性に優れた地盤安定化材
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is directed to tensile properties,
An object of the present invention is to provide a ground stabilizing material having excellent creep characteristics and pull-out resistance.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意検討した結果、特定構造の連続無機繊
維強化熱可塑性樹脂製長尺体を構成部材として格子状体
を形成し、これを熱溶着することにより目的を達成する
地盤安定化材が得られることを見いだし、本発明に達し
た。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have formed a lattice-like body using a continuous inorganic fiber reinforced thermoplastic resin elongated body having a specific structure as a constituent member. It has been found that a ground stabilizing material which achieves the object can be obtained by heat-welding the same, and the present invention has been achieved.

【0010】すなわち、本発明は、連続した無機補強用
繊維に熱可塑性樹脂を含浸してなる繊維含有樹脂に熱可
塑性樹脂層を被覆してなる連続無機繊維強化熱可塑性樹
脂製長尺体を縦材及び横材として格子状に配置して格子
状体を形成した後、該格子状体を熱溶着してなる、縦部
と横部と交点部を備えた地盤安定化材であって、該縦部
の厚みは2.5mm以下であり、該横部の厚みは1.0
〜10.0mmであることを特徴とする地盤安定化材で
ある。
That is, the present invention relates to a continuous inorganic fiber reinforced thermoplastic resin elongated body obtained by coating a thermoplastic resin layer on a fiber-containing resin obtained by impregnating a continuous inorganic reinforcing fiber with a thermoplastic resin. A ground stabilizing material having a vertical portion, a horizontal portion, and an intersection portion formed by arranging a lattice-like body by arranging the lattice-like body as a material and a horizontal member, and then forming the lattice-like body by heat welding. The thickness of the vertical portion is 2.5 mm or less, and the thickness of the horizontal portion is 1.0 mm.
It is a ground stabilizing material characterized by being about 10.0 mm.

【0011】[0011]

【発明の実施の形態】本発明の縦材及び横材に使用され
る連続無機繊維強化熱可塑性樹脂製長尺体(以下、単に
「長尺体」ともいう)は、繊維含有樹脂に熱可塑性樹脂
層を被覆してなるものである。該繊維含有樹脂は、連続
した無機補強用繊維に熱可塑性樹脂を含浸してなるもの
である。ここで、長尺体とは長手方向の長さが幅方向の
長さに対して極めて長いものの総称の意味であり、例え
ば、幅方向の断面が矩形、円、楕円形、三角形等の任意
の形状を包含する。例えば、幅方向の断面が矩形の例を
図1に示す。長尺体1は、無機補強用繊維2及び熱可塑
性樹脂3からなる繊維含有樹脂4に熱可塑性樹脂層5を
被覆してなる。
BEST MODE FOR CARRYING OUT THE INVENTION A continuous inorganic fiber reinforced thermoplastic resin long body (hereinafter, also simply referred to as "long body") used for a vertical member and a horizontal member of the present invention is a thermoplastic resin containing a thermoplastic resin. It is formed by coating a resin layer. The fiber-containing resin is obtained by impregnating continuous inorganic reinforcing fibers with a thermoplastic resin. Here, the elongate body is a generic term meaning that the length in the longitudinal direction is extremely long with respect to the length in the width direction. For example, the cross section in the width direction is an arbitrary shape such as a rectangle, a circle, an ellipse, and a triangle. Shape. For example, FIG. 1 shows an example in which the cross section in the width direction is rectangular. The elongated body 1 is obtained by coating a thermoplastic resin layer 5 on a fiber-containing resin 4 composed of an inorganic reinforcing fiber 2 and a thermoplastic resin 3.

【0012】本発明は、長尺体を縦材及び横材として格
子状に配置して格子状体を形成した後にこれを熱溶着す
ることを特徴とする。ここで、「格子状体」とは、格子
の交点部が縦材1体以上と横材1体以上から構成される
ことを意味する。従って、本発明の交点部は、縦材1体
と横材1体から構成されてもよいし、縦材1体と横材2
体から構成されていてもよいし、両材を各々複数用いて
もよい。また、格子状体は、所望により縦材、横材以外
の任意の部材を構成要素とすることもでき、例えば、縦
材と横材に接触するように前記長尺体を斜め材として適
宜用いることもできる。
The present invention is characterized in that a long body is arranged in a grid shape as a vertical member and a horizontal member to form a grid member, and then this is thermally welded. Here, the “lattice-like body” means that the intersection of the lattice is composed of one or more vertical members and one or more horizontal members. Therefore, the intersection of the present invention may be composed of one vertical member and one horizontal member, or one vertical member and one horizontal member.
It may be composed of a body, or a plurality of both materials may be used. In addition, the lattice-like body may be an arbitrary member other than the vertical member and the horizontal member if desired. For example, the long member is appropriately used as an oblique member so as to contact the vertical member and the horizontal member. You can also.

【0013】本発明において、格子状体を形成した後、
該格子状体は熱溶着されることにより格子状体の縦材と
横材あるいは斜め材等は物理的に結合される。本発明に
おいて該交点部は熱溶着されるが、ネットとして機能す
れば必ずしも全部の交点部が熱溶着されなければならな
いことを意味しないが、全部の交点部が熱溶着されるこ
とが好ましい。また、本発明における熱溶着において、
熱溶着される部位は、交点部に限定されることはなく、
横材同志、縦材同志、交点部以外の縦材と横材等、適宜
選定することができる。例えば、好ましい態様として、
交点部を該縦材の両面が該横材で挟まれ互いに熱溶着し
た構造で、かつ横部を横材同志で熱溶着した構造とする
ことが挙げられる。
In the present invention, after forming the lattice-like body,
The grid-like body is physically welded to the vertical member and the horizontal member or the diagonal member of the grid-like member by heat welding. In the present invention, the intersections are thermally welded, but if they function as a net, it does not necessarily mean that all the intersections must be thermally welded, but it is preferable that all the intersections be thermally welded. In the heat welding according to the present invention,
The part to be heat welded is not limited to the intersection,
Cross members, vertical members, vertical members and horizontal members other than intersections can be appropriately selected. For example, as a preferred embodiment,
The intersection portion may have a structure in which both surfaces of the vertical member are sandwiched by the horizontal members and are welded to each other, and the horizontal portion may be a structure in which the horizontal members are thermally welded to each other.

【0014】本発明の具体的構造例を図2及び図3に示
した。図2は、本発明の格子状体を平面に形成し、これ
を熱溶着し、平面に対し垂直方向から見た図である。図
3は、図2のA−Aに沿った線で切断した断面を示す図
である。図2において、本発明の地盤安定化材6は、縦
材7と横材8を熱溶着してなり、交点部9(点線で囲ま
れた部位)と縦部10と横部11を備えている。
FIGS. 2 and 3 show specific structural examples of the present invention. FIG. 2 is a view in which the lattice-shaped body of the present invention is formed in a plane, is thermally welded, and is viewed from a direction perpendicular to the plane. FIG. 3 is a diagram illustrating a cross section cut along a line AA in FIG. 2. In FIG. 2, a ground stabilizing material 6 of the present invention is formed by thermally welding a vertical member 7 and a horizontal member 8, and includes an intersection 9 (a portion surrounded by a dotted line), a vertical portion 10, and a horizontal portion 11. I have.

【0015】図3の(a)は、縦材4と横材5とが各々
1体で交点部9を構成し、交点部のみで縦材と横材が熱
溶着されている例を示し、(b)及び(c)は、1体の
縦材4と2体の横材5とで交点部9を形成し、交点部及
び横材同志で熱溶着を行った例を示している。図(b)
は、交点部9の厚みが横部の厚みより大きい例であり、
図(c)は、縦材を横材で挟み込み、交点部と横部の厚
みが略等しくなるように熱可塑性樹脂層厚み等の縦材及
び横材の構成及び熱溶着における溶融、接着条件を制御
した例である。
FIG. 3A shows an example in which the vertical member 4 and the horizontal member 5 each constitute an intersection 9 as a single body, and the vertical member and the horizontal member are heat-welded only at the intersection. (B) and (c) show an example in which an intersection 9 is formed by one vertical member 4 and two horizontal members 5 and heat welding is performed at the intersection and the horizontal members. Figure (b)
Is an example in which the thickness of the intersection portion 9 is larger than the thickness of the horizontal portion,
FIG. 3C shows the configuration of the vertical and horizontal members, such as the thickness of the thermoplastic resin layer, and the melting and bonding conditions in the thermal welding, such that the vertical members are sandwiched between the horizontal members, and the intersection portions and the horizontal portions have substantially the same thickness. This is an example of controlling.

【0016】上記本発明の地盤安定化材の構造例は極一
部であり、本発明の長尺体を縦材及び横材として格子状
に配置する手段、例えば、人手や既製の織機や編機を用
いることにより任意の所望の構造を得ることができる。
また、本発明における熱溶着の方法は、任意の周知の方
法が適用され、例えば、熱プレスや熱板溶着機、超音波
溶着機に上記の如く配置した長尺体を供すことにより行
うことができる。
The above-mentioned structural examples of the ground stabilizing material of the present invention are a very small part. Means for arranging the long body of the present invention in a lattice shape as a vertical member and a horizontal member, for example, a manual or a ready-made loom or knitting Any desired structure can be obtained by using a machine.
In addition, any well-known method is applied to the method of heat welding in the present invention. For example, the heat welding can be performed by providing a long body arranged as described above to a hot press, a hot plate welding machine, or an ultrasonic welding machine. it can.

【0017】本発明において、縦部の厚みは、基本的に
は縦材1体の肉厚と熱溶着される個数により決定される
が、2.5mm以下、好ましくは0.5〜2.0mmの範囲
である。2.5mmより厚い場合は、ネットとしての剛性が
高くなりすぎ、その結果、巻回性が低下するため取り扱
いに支障をきたし、また作業性も低下する。また、0.
5mmより小さいと所望の特性が得られない。
In the present invention, the thickness of the vertical portion is basically determined by the thickness of one vertical member and the number to be heat-welded, but is preferably 2.5 mm or less, preferably 0.5 to 2.0 mm. Range. When the thickness is more than 2.5 mm, the rigidity of the net becomes too high, and as a result, the winding property is reduced, which hinders the handling, and also reduces the workability. Also, 0.
If it is smaller than 5 mm, desired characteristics cannot be obtained.

【0018】本発明において、横部の厚みは、縦部と同
様に基本的には縦材1体の肉厚と熱溶着される個数によ
り決定されるが、1.0〜10.0mmであり、好まし
くは1.5〜8.0mmの範囲である。1.0mm未満
では、目的とする引き抜き抵抗性が得られず、10.0
mmを越えると材料の使用量に対応して引き抜き抵抗性
が向上しなくなると共に、熱可塑性樹脂層を厚くした場
合には取り扱いが不便になる。
In the present invention, the thickness of the horizontal portion is basically determined by the thickness of one vertical member and the number of pieces to be thermally welded, as in the case of the vertical portion, and is 1.0 to 10.0 mm. , Preferably in the range of 1.5 to 8.0 mm. If it is less than 1.0 mm, the desired pull-out resistance cannot be obtained, and
If it exceeds mm, the pull-out resistance will not be improved in accordance with the amount of material used, and handling will be inconvenient if the thermoplastic resin layer is thickened.

【0019】また、縦材間目合t1 は、好ましくは20
〜100mmの範囲であり、横材間目合t2 は、好まし
くは30〜200mmの範囲であり、目的により適宜決
定され得る。本発明の地盤安定化材の使用方法は、上記
縦部と横部との厚みの相違から、地盤の変形により予想
される力の向きと横材の長手方向の向きが一致するよう
に用いることが好ましい。また、熱溶着により生じた地
盤安定化材表面の凸部が、盛土の下側になるように敷設
した方が、施工後の盛土表面の平滑性を確保する上で好
ましい。
The joint length t 1 between the longitudinal members is preferably 20
In the range of 100 mm, the transverse member between first multiplexer t 2 is preferably in the range of 30 to 200 mm, it can be suitably determined according to the purpose. The method of using the ground stabilizing material of the present invention is such that the difference in thickness between the vertical portion and the horizontal portion is used so that the direction of the force expected due to deformation of the ground and the direction of the longitudinal direction of the horizontal member match. Is preferred. In addition, it is preferable to lay the ground stabilizing material surface generated by the thermal welding so that the convex portion is on the lower side of the embankment from the viewpoint of securing the smoothness of the embankment surface after construction.

【0020】本発明の地盤安定化材は引張特性、クリー
プ特性及び引き抜き抵抗性に優れ、敷設面積が取れない
ような軟弱地盤地帯での高い盛土やより急勾配の盛土等
の盛土工法に好適である。本発明に使用される長尺体の
構成素材等について説明する。 [熱可塑性樹脂]本発明に使用する長尺体の繊維含有樹
脂及び熱可塑性樹脂層に用いられる熱可塑性樹脂として
は、下記のものあるいはその改質樹脂を例示できる。 ・ポリオレフィン樹脂:ポリエチレン樹脂、ポリプロピ
レン樹脂、ポリ−1−ブテン樹脂、ポリ−4−メチル−
1−ペンテン樹脂、プロピレン−エチレン共重合体樹脂
及びプロピレン−1−ブテン共重合体樹脂の1種以上; ・ポリエステル樹脂:ポリエチレンテレフタレート、ポ
リブチレンテレフタレート及びポリエチレンテレフタレ
ートイソフタレートの1種以上; ・ポリアミド樹脂(ナイロン):ポリアミド−6、ポリ
アミド−7、ポリアミド−66、ポリアミド−610、
ポリアミド−11及びポリアミド−12; ・ポリアセタール; ・ポリウレタン; ・上記の2種以上からなる組成物及び2種以上からなる
ポリマーアロイ。
The soil stabilizing material of the present invention is excellent in tensile properties, creep properties and pull-out resistance, and is suitable for embankment construction methods such as high embankment in a soft ground where a laying area cannot be obtained or embankment with a steeper slope. is there. The constituent materials of the long body used in the present invention will be described. [Thermoplastic Resin] The following or modified resins thereof can be exemplified as the thermoplastic resin used in the long fiber-containing resin and the thermoplastic resin layer used in the present invention.・ Polyolefin resin: polyethylene resin, polypropylene resin, poly-1-butene resin, poly-4-methyl-
At least one of 1-pentene resin, propylene-ethylene copolymer resin and propylene-1-butene copolymer resin; polyester resin: at least one of polyethylene terephthalate, polybutylene terephthalate and polyethylene terephthalate isophthalate; polyamide resin (Nylon): polyamide-6, polyamide-7, polyamide-66, polyamide-610,
Polyamide-11; Polyamide-12; Polyacetal; Polyurethane; A composition comprising two or more of the above and a polymer alloy comprising two or more of the above.

【0021】これらの中では、汎用性及び機械的強度等
の観点から、結晶性ポリオレフィン、特に結晶性ポリプ
ロピレンが好ましく用いられる。熱可塑性樹脂が、ポリ
オレフィン(ポリ−α−オレフィン)の様に分子末端基
に無機補強用繊維、特にガラス繊維に対する界面接着性
を付与するための反応性官能基又は極性官能基を有しな
い場合には、該樹脂を不飽和酸又はその酸無水物等の誘
導体で改質する方策及び/又は不飽和酸で改質された重
合体を非改質樹脂に必要量配合する方策等を施すことが
有用である。
Of these, crystalline polyolefins, particularly crystalline polypropylene, are preferably used from the viewpoints of versatility and mechanical strength. In the case where the thermoplastic resin does not have a reactive functional group or a polar functional group for imparting interfacial adhesion to inorganic reinforcing fibers, particularly glass fibers, to a molecular terminal group like a polyolefin (poly-α-olefin). It is possible to take measures such as modifying the resin with a derivative such as an unsaturated acid or an acid anhydride thereof and / or blending a required amount of the polymer modified with the unsaturated acid into the unmodified resin. Useful.

【0022】上記の改質剤として用い得る不飽和酸は通
常は脂肪族不飽和酸であって例えばアクリル酸、メタク
リル酸、マレイン酸、シトラコン酸及びメサコン酸から
選ばれる1種以上であって、好ましくはマレイン酸であ
る。また、改質剤として用い得る不飽和酸無水物等の誘
導体は通常は脂肪族不飽和酸無水物であって例えば無水
マレイン酸及び無水イタコン酸から選ばれる1種以上で
あって、好ましくは無水マレイン酸(マレイン酸無水
物)である。
The unsaturated acid which can be used as the above modifier is usually an aliphatic unsaturated acid, for example, at least one selected from acrylic acid, methacrylic acid, maleic acid, citraconic acid and mesaconic acid, Preferably it is maleic acid. Derivatives such as unsaturated acid anhydrides that can be used as a modifier are usually aliphatic unsaturated acid anhydrides, for example, one or more selected from maleic anhydride and itaconic anhydride, and are preferably anhydrides. Maleic acid (maleic anhydride).

【0023】本発明においては、このような改質剤を用
いる際に、必要に応じて有機過酸化物を組み合わせて用
いてもよい。有機過酸化物の例としては、例えば、2,5-
ジメチル(t-ブチルパーオキシ)ヘキサン、1,3-ビス(t-
ブチル-オキシイソプロピル)ベンゼン、ジクミルパーオ
キサイド及びベンゾイルパーオキサイド等を挙げること
ができる。
In the present invention, when such a modifier is used, an organic peroxide may be used in combination, if necessary. Examples of organic peroxides include, for example, 2,5-
Dimethyl (t-butylperoxy) hexane, 1,3-bis (t-
(Butyl-oxyisopropyl) benzene, dicumyl peroxide and benzoyl peroxide.

【0024】熱可塑性樹脂としては、上記のような非改
質樹脂及び改質樹脂を単独で用いてもよいし、組み合わ
せて樹脂組成物として用いてもよい。無機補強用繊維と
の強固な結合を有した繊維含有樹脂を実現するために
は、改質樹脂を少なくとも用いることが好ましい。この
ような改質樹脂または改質樹脂組成物は例えば、基材と
なる非改質樹脂と、改質剤と、有機過酸化物とを、ヘン
シェルミキサー(商品名)等の混合手段で混合した後、押
出機に供給して溶融混練し、次にこの溶融混練物を押し
出し成形することにより製造することができる。
As the thermoplastic resin, the above-mentioned non-modified resin and modified resin may be used alone or in combination as a resin composition. In order to realize a fiber-containing resin having a strong bond with the inorganic reinforcing fiber, it is preferable to use at least a modified resin. Such a modified resin or modified resin composition is, for example, a non-modified resin serving as a base material, a modifier, and an organic peroxide were mixed by a mixing means such as a Henschel mixer (trade name). Thereafter, it is supplied to an extruder to be melt-kneaded, and then the melt-kneaded product is extruded to be manufactured.

【0025】また、熱可塑性樹脂は、必要に応じて各種
の下記添加剤を1種以上配合することができる: ・酸化防止剤、耐熱安定剤、紫外線吸収剤、樹脂状破壊
防止剤、帯電防止剤、潤滑剤、可塑剤、離型剤、難燃剤
(耐炎剤)、難燃助剤及び結晶化促進剤(造核剤;結晶
化剤)並びに染料及び顔料等。
The thermoplastic resin may contain one or more of the following various additives as required: an antioxidant, a heat stabilizer, an ultraviolet absorber, a resinous destruction inhibitor, an antistatic agent. Agents, lubricants, plasticizers, mold release agents, flame retardants (flame retardants), flame retardant aids and crystallization promoters (nucleating agents; crystallization agents), dyes and pigments.

【0026】これらの添加剤はマトリックスとなる上記
の熱可塑性樹脂に予め配合された形で用いてもよく、マ
スターバッチの形で用いてもよい。また、繊維含有樹脂
の熱可塑性樹脂と熱可塑性樹脂層の熱可塑性樹脂とは互
いに同じ樹脂か相溶性のある樹脂であると、その界面間
の結合性を強固にできるために好ましい。 [無機補強用繊維]本発明において繊維含有樹脂を形成
する連続した無機補強用繊維は、単繊維の集束体、通常
はロービング状のものから開繊されて得ることができ
る。ロービング以外にもガラスヤーンやトウなどを利用
することができる。
These additives may be used in a form previously mixed with the above-mentioned thermoplastic resin serving as a matrix, or may be used in the form of a master batch. Further, it is preferable that the thermoplastic resin of the fiber-containing resin and the thermoplastic resin of the thermoplastic resin layer be the same resin or a compatible resin, since the bonding property between the interfaces can be strengthened. [Inorganic reinforcing fiber] In the present invention, the continuous inorganic reinforcing fiber forming the fiber-containing resin can be obtained by opening a bundle of single fibers, usually a roving form. In addition to roving, glass yarn or tow can be used.

【0027】その材質からみれば、この無機補強用繊維
は、例えば、ガラス繊維、岩綿(ロックウール)、石
綿、石英繊維、金属繊維、ウィスカー(ホイスカー)及
び炭素繊維等が挙げられる。それらの中で、その性状及
び入手容易性等の点で通常的にはガラス繊維が好ましく
用いられる。ガラス繊維としては、硬質ガラスが好まし
く、特に、無アルカリガラスであるEガラスが好ましく
用いられる。このガラス繊維は樹脂強化用として通常的
に製造されて市販されているガラスロービングであっ
て、通常的にはその平均繊維径4〜30μm、フィラメント
集束本数400〜10000本及びTex番手300〜
20000のものであるが、好ましくは平均繊維径9〜2
3μmのものである。必要に応じて、これらのガラスロー
ビングを合糸して用いることもできる。
From the viewpoint of the material, the inorganic reinforcing fiber includes, for example, glass fiber, rock wool (rock wool), asbestos, quartz fiber, metal fiber, whisker (whisker), and carbon fiber. Among them, glass fibers are usually preferably used in view of their properties and availability. As the glass fiber, hard glass is preferable, and in particular, E glass which is non-alkali glass is preferably used. This glass fiber is a commercially available glass roving that is usually manufactured for resin reinforcement, and usually has an average fiber diameter of 4 to 30 μm, a number of filament bundles of 400 to 10,000, and a Tex count of 300 to
20,000, preferably an average fiber diameter of 9 to 2
It is 3 μm. If necessary, these glass rovings can be combined and used.

【0028】また、この無機補強用繊維は、例えば、シ
ラン系カップリング剤、チタネート系カップリング剤、
ボロン系カップリング剤、アルミネート系カップリング
剤の少なくとも何れかのような表面処理剤で表面処理し
て用いてもよい。この無機補強用繊維に表面処理が施さ
れると、ポリプロピレン等の疎水性樹脂に対する親和性
が高められ、その開繊物の間にポリプロピレン等の樹脂
が含浸されやすくなる。
The inorganic reinforcing fibers include, for example, silane coupling agents, titanate coupling agents,
A surface treatment with a surface treatment agent such as at least one of a boron-based coupling agent and an aluminate-based coupling agent may be used. When the surface treatment is applied to the inorganic reinforcing fibers, the affinity for a hydrophobic resin such as polypropylene is increased, and the resin such as polypropylene is easily impregnated between the spread fibers.

【0029】上記の無機補強用繊維は、単独で用いても
よく、また2種以上を組み合わせて用いてもよい。 [繊維含有樹脂]繊維含有樹脂を作製する方法として
は、長尺体の長さ方向(樹脂の流れ方向)に略平行に配
列された連続した無機補強用繊維の内部に上記の溶融状
態の熱可塑性樹脂を含浸させる手順を挙げることができ
る。無機補強用繊維に樹脂を含浸させる際には、無機補
強用繊維を平面上に可能な限り均一に開繊し、その開繊
物に樹脂を均一に含浸させると、得られる長尺体の機械
的強度を向上させることができる点で好ましい。
The inorganic reinforcing fibers described above may be used alone or in combination of two or more. [Fiber-containing resin] As a method for producing a fiber-containing resin, the above-described heat of the molten state is introduced into continuous inorganic reinforcing fibers arranged substantially parallel to the length direction of the long body (flow direction of the resin). A procedure for impregnating a plastic resin can be given. When impregnating the inorganic reinforcing fiber with the resin, the inorganic reinforcing fiber is spread as evenly as possible on a flat surface, and the resin is uniformly impregnated into the spread fiber, and the obtained long body machine is obtained. This is preferable in that the target strength can be improved.

【0030】無機補強用繊維に樹脂を含浸させる方法
は、無機補強用繊維に樹脂を含浸させ得る方法であれば
如何なる方法であってもよい。例えば、この含浸方法と
して特公昭63−37694号公報、特公平4−418
86号公報及び特開昭61−229534号公報等に開
示されている方法を挙げることができる。この種の繊維
含有樹脂は、例えば、ロービング等の無機補強用繊維を
平面上に均一に開繊した後に、押出機内で溶融混練され
ている樹脂をこの無機補強用繊維に均一に含浸させて形
成させることができる。
The method for impregnating the inorganic reinforcing fiber with the resin may be any method as long as the method can impregnate the resin with the inorganic reinforcing fiber. For example, Japanese Patent Publication No. 63-37694, Japanese Patent Publication No. 4-418 describes this impregnation method.
86 and JP-A-61-229534. This kind of fiber-containing resin is formed, for example, by uniformly opening inorganic reinforcing fibers such as roving on a plane, and then uniformly impregnating the inorganic reinforcing fibers with the resin melt-kneaded in an extruder. Can be done.

【0031】縦材に用いられる繊維含有樹脂の肉厚は、
特に制限されるべきものではないが、0.1〜2.0mmが好ま
しい。肉厚が0.1mmより薄い場合は、製造が困難で生産
効率の低下を招く。2.0mmより厚い場合は、縦材の剛性
が高すぎ、取り扱いに支障を来す場合がある。横材に用
いられる繊維含有樹脂の肉厚も特に制限されるべきもの
ではないが、0.6〜9.6mmが好ましい。肉厚が0.6mmより
薄い場合は、厚み及び剛性の低下から、目的とする引き
抜き抵抗力が得られない。9.6mm より厚い場合は、厚み
の増加に対し、引き抜き抵抗への改善効果が小さいだけ
でなく、繊維含有樹脂の生産速度が極端に低下し、本発
明のコスト増加に繋がる。
The thickness of the fiber-containing resin used for the vertical member is
Although not particularly limited, it is preferably 0.1 to 2.0 mm. If the wall thickness is less than 0.1 mm, it is difficult to manufacture and the production efficiency is reduced. If the thickness is more than 2.0 mm, the rigidity of the vertical members is too high, which may hinder handling. The thickness of the fiber-containing resin used for the cross member is not particularly limited, but is preferably 0.6 to 9.6 mm. If the thickness is less than 0.6 mm, the desired pull-out resistance cannot be obtained due to a decrease in thickness and rigidity. When the thickness is more than 9.6 mm, the effect of improving the pull-out resistance with respect to the increase in thickness is not only small, but also the production speed of the fiber-containing resin is extremely reduced, which leads to an increase in the cost of the present invention.

【0032】無機補強用繊維は繊維含有樹脂中に好まし
くは10〜80重量%、更に好ましくは30〜70重量
%の量で含まれる。この量で無機補強用繊維を使用する
ことによって無機補強用繊維に熱可塑性樹脂が充分に含
浸される寄与で、無機補強用繊維が熱可塑性樹脂によっ
て相互に一体的に結合される。そして、無機補強用繊維
の含有量が5重量%以下であると、引張強度等の補強効
果が充分には発現しない場合がある。他方、無機補強用
繊維の含有量が90重量%以上に達すると、却って充分
な補強効果が発現されない場合がある。その原因は、熱
可塑性樹脂が無機補強用繊維に充分に含浸しないことに
あると解される。 [熱可塑性樹脂層]熱可塑性樹脂層とは、上記の繊維含
有樹脂の全面に上記特定性状の熱可塑性樹脂で形成され
た層である。熱可塑性樹脂層の厚みは、特に制限される
べきものではないが、0.2mm以上が好ましく、0.
2〜1.0mmの範囲が好ましい。熱可塑性樹脂層の厚
さが0.2mmより薄い場合は、交点部の強度の低下か
ら、引き抜き抵抗性が低下し、他方、1.0mmより厚
い場合には、引き抜き抵抗性が、材料の使用量に対応し
て向上しなくなると共に、取り扱いが不便になる。
The inorganic reinforcing fiber is contained in the fiber-containing resin in an amount of preferably 10 to 80% by weight, more preferably 30 to 70% by weight. By using the inorganic reinforcing fiber in this amount, the inorganic reinforcing fiber can be sufficiently impregnated with the thermoplastic resin, and the inorganic reinforcing fiber is integrally bonded to each other by the thermoplastic resin. When the content of the inorganic reinforcing fiber is 5% by weight or less, a reinforcing effect such as tensile strength may not be sufficiently exhibited. On the other hand, when the content of the inorganic reinforcing fibers reaches 90% by weight or more, a sufficient reinforcing effect may not be exhibited. It is understood that the cause is that the thermoplastic resin does not sufficiently impregnate the inorganic reinforcing fibers. [Thermoplastic resin layer] The thermoplastic resin layer is a layer formed of a thermoplastic resin having the above specific properties on the entire surface of the fiber-containing resin. The thickness of the thermoplastic resin layer is not particularly limited, but is preferably 0.2 mm or more.
A range of 2 to 1.0 mm is preferred. When the thickness of the thermoplastic resin layer is less than 0.2 mm, the pull-out resistance decreases due to the decrease in the strength of the intersections. It does not improve with the quantity and is inconvenient to handle.

【0033】熱可塑性樹脂層を作製するには、例えば樹
脂を予めフィルム状に成形した後にこのフィルムを繊維
含有樹脂の表面にラミネートする方法、溶融状態の熱可
塑性樹脂を繊維含有樹脂の表面にコーティングする方法
等によって作製することができる。熱可塑性樹脂層をラ
ミネートして形成する場合には、例えば、まず熱可塑性
樹脂及び必要に応じて改質剤等とを混合して押出機に供
給して溶融混練し、これを成膜してフィルムを形成す
る。これとは別に、例えば、無機補強用繊維中に、溶融
した熱可塑性樹脂を含浸させて繊維含有樹脂を形成す
る。そして、この繊維含有樹脂を半溶融状態にしたまま
で、予め巻き取っていたフィルムと貼り合わせてラミネ
ートする。なお、繊維含有樹脂とフィルムを貼り合わす
際に繊維含有樹脂は必ずしも半溶融状態である必要はな
く、繊維含有樹脂を冷却固化させた後に接着剤を用いて
フィルムと貼り合わせてもよい。
For preparing the thermoplastic resin layer, for example, a method in which the resin is formed into a film in advance and then the film is laminated on the surface of the fiber-containing resin, or the thermoplastic resin in a molten state is coated on the surface of the fiber-containing resin It can be produced by a method or the like. When the thermoplastic resin layer is formed by laminating, for example, first, a thermoplastic resin and, if necessary, a modifier and the like are mixed, supplied to an extruder, melt-kneaded, and formed into a film. Form a film. Separately, for example, a fiber-containing resin is formed by impregnating a molten thermoplastic resin into inorganic reinforcing fibers. Then, while keeping the fiber-containing resin in a semi-molten state, the fiber-containing resin is laminated with a film that has been wound in advance. When the fiber-containing resin and the film are bonded together, the fiber-containing resin does not necessarily need to be in a semi-molten state, and may be bonded to the film using an adhesive after the fiber-containing resin is cooled and solidified.

【0034】また、熱可塑性樹脂層をコーティングして
形成する場合には、上記繊維含有樹脂を半溶融状態にし
たままで、この繊維含有樹脂の表面に熱可塑性樹脂を押
し出してコーティングしてもよいし、繊維含有樹脂を冷
却固化させた後に、この繊維含有樹脂表面をコーティン
グしてもよい。
In the case where the thermoplastic resin layer is formed by coating, the surface of the fiber-containing resin may be extruded and coated with the thermoplastic resin while the fiber-containing resin is kept in a semi-molten state. After cooling and solidifying the fiber-containing resin, the surface of the fiber-containing resin may be coated.

【0035】[0035]

【実施例】次に、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。また、
実施例、および比較例において用いられている用語の定
義および測定方法は以下の通りである。 ガラス繊維含有量:JIS K7052に準じ測定した。
EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples. Also,
The definitions of the terms used in the examples and comparative examples and the measuring method are as follows. Glass fiber content: Measured according to JIS K7052.

【0036】MFR(メルトフローレート):JIS
K7210(荷重21.18N、加熱温度230℃)に
準じ測定した。 引き抜き抵抗性:鉛直圧力が0.02MPaとなるよう
に50×50cmのサンプルの上下に豊浦標準砂を敷き詰め、
引き抜き速度1mm/minでサンプルを引き抜いたときの荷
重を引抜き抵抗性とした。 実施例1 改質PP{結晶融点(Tm:示差走査熱量測定(DS
C)160℃:MFR130g/10min:無水マレイン酸改質
物}を溶融した270℃の温度の浴中に4000本の個々の
フィラメントを集束したガラスロ−ビング1本を通し、
浴槽の出口に設けた5mm×0.6mmのダイスから溶融樹脂が
含浸した繊維含有樹脂として引き出しニップロ−ルを通
して冷却固化させ線状物aを得た。線状物aのガラス含
有量は60wt%であった。更に、線状物aを被覆用ダイス
に導きPP(MFR2.0g/10分、DSC融点160℃
のPP)で線状物aの全面にほぼ均一となるように熱可
塑性樹脂層を被覆し、冷却固化して幅7mm,厚さ1.0mmの
全面PPで被覆された線状物Aを得た。
MFR (Melt Flow Rate): JIS
It measured according to K7210 (load 21.18N, heating temperature 230 degreeC). Pull-out resistance: Toyoura standard sand is spread above and below a 50 × 50 cm sample so that the vertical pressure is 0.02 MPa.
The load when the sample was withdrawn at a drawing speed of 1 mm / min was defined as the pulling resistance. Example 1 Modified PP {Crystal Melting Point (Tm: Differential Scanning Calorimetry (DS
C) 160 ° C .: MFR 130 g / 10 min: A glass roving having 4,000 individual filaments bundled was passed through a bath at a temperature of 270 ° C. in which the modified maleic anhydride was melted.
A fiber-containing resin impregnated with a molten resin was drawn out from a 5 mm × 0.6 mm die provided at the outlet of the bathtub, cooled and solidified through a nipple to obtain a linear product a. The glass content of the linear material a was 60% by weight. Further, the linear material a was guided to a coating die, and PP (MFR 2.0 g / 10 min, DSC melting point 160 ° C.)
PP), the entire surface of the linear material a is coated with a thermoplastic resin layer so as to be substantially uniform, and then cooled and solidified to obtain a linear material A covered with the entire PP having a width of 7 mm and a thickness of 1.0 mm. .

【0037】また、改質PP{結晶融点(Tm:DS
C)160℃:MFR 130g/10min :無水マレイン酸改質物}
を溶融した270℃の温度の浴中に4000本の個々のフィ
ラメントを集束したガラスロ−ビング3本を通し、浴槽
の出口に設けた5.0mm×1.8mmのダイスから溶融樹脂が含
浸した繊維含有樹脂として引き出し水中を通して冷却固
化させ線状物bを得た。線状物bのガラス含有量は60wt
%であった。更に、線状物bを被覆用ダイスに導きPP
(MFR2.0g/10分、DSC融点160℃のPP)で
線状物bの全面にほぼ均一となるように被覆し、冷却固
化して幅7.0mm,厚さ3.0mmの全面PPで被覆された線状
物Bを得た。 得られた線状物Aを縦材及び横材とし、
得られた線状物Bを横材として、縦材の上面を線状物
B、縦材の下面を線状物Aではさんで交点部を構成する
と共に横材間目合を100mm、縦材間目合を50mm
にとって格子状体を構成し、これを180℃に加熱され
た熱プレスへ導き、各線状物に張力を掛けたまま、5分
間加熱後、冷却固化して交点部及び横材同志が熱溶着し
た目的とする実施例1のサンプルを得た。 実施例2 改質PP{結晶融点(Tm:DSC)160℃:MFR 130g/1
0min :無水マレイン酸改質物}を溶融した270℃の
温度の浴中に4000本の個々のフィラメントを集束したガ
ラスロービング2本を通し、浴槽の出口に設けた5.0mm
×1.2mmのダイスから溶融樹脂が含浸した繊維含有樹脂
として引き出しニップロールを通して冷却固化させ線状
物cを得た。線状物cのガラス含有量は60wt%であっ
た。更に、線状物cを被覆用ダイスに導きPP(MFR
2.0g/10分、DSC融点160℃のPP)で線状物c
の全面にほぼ均一となるように熱可塑性樹脂層を被覆
し、冷却固化して幅7.0mm,厚さ2.0mmの全面PPで被覆
された線状物Cを得た。
The modified PP {crystal melting point (Tm: DS)
C) 160 ° C: MFR 130g / 10min: Modified maleic anhydride}
A fiber-containing resin impregnated with a molten resin from a 5.0 mm × 1.8 mm die provided at the outlet of the bath through three glass rovings in which 4,000 individual filaments are bundled in a bath at a temperature of 270 ° C. The solid was cooled and solidified by passing through water to obtain a linear material b. Glass content of linear material b is 60wt
%Met. Further, the linear object b is led to a coating die and PP
(MFR 2.0 g / 10 min, DSC with a melting point of 160 ° C. PP) is coated on the entire surface of the linear material b so as to be substantially uniform, cooled and solidified, and coated with the entire surface PP having a width of 7.0 mm and a thickness of 3.0 mm. A linear product B was obtained. The obtained linear material A is used as a vertical member and a horizontal member,
Using the obtained linear object B as a horizontal member, the upper surface of the vertical member is interposed between the linear member B and the lower surface of the vertical member with the linear member A to form an intersection portion, and the cross-member interval is 100 mm, and the vertical member is used. 50mm between eyes
And then led it to a hot press heated to 180 ° C., heated for 5 minutes with tension applied to each linear object, cooled and solidified, and the intersections and cross members were heat-welded. The intended sample of Example 1 was obtained. Example 2 Modified PP: Crystal melting point (Tm: DSC) 160 ° C .: MFR 130 g / 1
0 min: Two glass rovings each having 4,000 individual filaments bundled in a bath at a temperature of 270 ° C. in which the modified maleic anhydride was melted, and 5.0 mm provided at the outlet of the bathtub
As a fiber-containing resin impregnated with a molten resin from a × 1.2 mm die, it was cooled and solidified through a draw-out nip roll to obtain a linear material c. The glass content of the linear material c was 60% by weight. Further, the linear object c is guided to a coating die, and PP (MFR
2.0 g / 10 min, DSC with a melting point of 160 ° C. PP)
Was coated with a thermoplastic resin layer so as to be substantially uniform, and then cooled and solidified to obtain a linear material C coated with the entire surface PP having a width of 7.0 mm and a thickness of 2.0 mm.

【0038】実施例1において、得られた線状物Cを横
材として2体用い、線状物Aを縦材として使用した以外
は、実施例1と同様にして実施例2のサンプルを得た。 実施例3 実施例1において、得られた線状物Aを縦材として1
体、横材として2体各々使用して用いた以外は、実施例
1と同様にして実施例3のサンプルを得た。 実施例4 改質PP{結晶融点(Tm:DSC)160℃:MFR 130g/1
0min :無水マレイン酸改質物}を溶融した270℃の
温度の浴中に4000本の個々のフィラメントを集束したガ
ラスロ−ビング4本を通し、浴槽の出口に設けた5.0mm
×2.4mmのダイスから溶融樹脂が含浸した繊維含有樹脂
として引き出しニップロールを通して冷却固化させ線状
物dを得た。線状物dのガラス含有量は60wt%であっ
た。更に、線状物dを被覆用ダイスに導きPP(MFR
2.0g/10分、DSC融点160℃のPP)で線状物d
の全面にほぼ均一となるように熱可塑性樹脂層を被覆
し、冷却固化して幅7.0mm,厚さ4.0mmの全面PPで被覆
された線状物Dを得た。
A sample of Example 2 was obtained in the same manner as in Example 1 except that the obtained linear object C was used as a horizontal member and two linear objects A were used as a vertical member. Was. Example 3 In Example 1, the obtained linear object A was used as a vertical member, and 1
A sample of Example 3 was obtained in the same manner as in Example 1, except that two bodies were used as the body and the cross member, respectively. Example 4 Modified PP @ crystal melting point (Tm: DSC) 160 ° C .: MFR 130 g / 1
0min: 5.0 mm provided at the outlet of the bathtub by passing four glass rovings in which 4,000 individual filaments were bundled through a bath at a temperature of 270 ° C. in which the modified maleic anhydride was melted.
As a fiber-containing resin impregnated with a molten resin from a × 2.4 mm die, it was cooled and solidified through a draw-out nip roll to obtain a linear material d. The glass content of the linear material d was 60% by weight. Further, the linear object d is guided to a coating die, and PP (MFR
2.0 g / 10 min, DSC melting point 160 ° C PP)
Was coated with a thermoplastic resin layer so as to be substantially uniform, and then cooled and solidified to obtain a linear material D coated with the entire surface PP having a width of 7.0 mm and a thickness of 4.0 mm.

【0039】得られた線状物Dを横材として1体用い、
線状物Aを縦材として1体使用して格子状体を形成した
以外は、実施例1と同様にして交点部が熱溶着した実施
例4のサンプルを得た。 実施例5 実施例4の横材として用いた線状物が線状物Cであるこ
とを除いては実施例4と同様にして実施例5のサンプル
を得た。 比較例1 改質PP{結晶融点(Tm:DSC)160℃:MFR 130g/1
0min :無水マレイン酸改質物}を溶融した270℃の
温度の浴中に4000本の個々のフィラメントを集束したガ
ラスロービング1本を通し、浴槽の出口に設けた5.0mm
×0.36mmのダイスから溶融樹脂が含浸した繊維含有樹脂
として引き出しニップロールを通して冷却固化させ線状
物eを得た。線状物eのガラス含有量は60wt%であっ
た。更に、線状物eを被覆用ダイスに導きPP(MFR
2.0g/10分、DSC融点160℃のPP)で線状物e
の全面にほぼ均一となるように熱可塑性樹脂層を被覆
し、冷却固化して幅8.7mm,厚さ0.4mmの全面PPで被覆
された線状物Eを得た。
The obtained linear object D was used as one horizontal member,
A sample of Example 4 was obtained in the same manner as in Example 1, except that the linear material A was used as a vertical member to form a lattice-like body using one body. Example 5 A sample of Example 5 was obtained in the same manner as in Example 4 except that the linear material used as the cross member in Example 4 was linear material C. Comparative Example 1 Modified PP @ crystal melting point (Tm: DSC) 160 ° C .: MFR 130 g / 1
0 min: a glass roving having 4,000 individual filaments bundled in a bath at a temperature of 270 ° C. in which the modified maleic anhydride was melted, and 5.0 mm provided at the outlet of the bathtub
As a fiber-containing resin impregnated with a molten resin from a 0.36 mm die, it was cooled and solidified through a draw-out nip roll to obtain a linear material e. The glass content of the linear material e was 60% by weight. Further, the linear material e is guided to a coating die, and PP (MFR
2.0 g / 10 min, DSC melting point 160 ° C PP)
Was coated with a thermoplastic resin layer so as to be substantially uniform, and then cooled and solidified to obtain a linear material E coated with the entire surface PP having a width of 8.7 mm and a thickness of 0.4 mm.

【0040】得られた線状物Eを横材として2体用い、
線状物Aを縦材として1体使用した以外は、実施例1と
同様にして比較例1のサンプルを得た。得られた各サン
プルについて引抜き抵抗性試験を行い、その測定結果を
表1に示す。
The obtained linear object E was used as two cross members,
A sample of Comparative Example 1 was obtained in the same manner as in Example 1 except that one linear material A was used as a vertical member. A pull-out resistance test was performed on each of the obtained samples, and the measurement results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から縦部及び横部が所定の厚みを有し
た本発明の実施例は、横部が本発明よりも小さい比較例
に比べて引抜き抵抗性が極めて優れることが分かる。な
お、本発明は、上記の実施例に限定されるものでなく、
上記の説明から当業者が容易に類推しうる全ての変更実
施例を包含するものである。
From Table 1, it can be seen that the examples of the present invention in which the vertical and horizontal portions have a predetermined thickness have much better pull-out resistance than the comparative example in which the horizontal portions are smaller than the present invention. Note that the present invention is not limited to the above embodiments,
It is intended to cover all modifications that can be easily inferred by those skilled in the art from the above description.

【0043】[0043]

【発明の効果】本発明の地盤安定化材は、引張り強度お
よび引き抜き抵抗性(盛土の拘束性)に優れており軽量化
及びコストダウンが可能となるだけでなく、工事面積の
縮小化や敷設長さの取りにくい場所での工事が可能とな
る。
EFFECT OF THE INVENTION The ground stabilizing material of the present invention is excellent in tensile strength and pull-out resistance (restriction of embankment), and can not only reduce the weight and cost but also reduce the construction area and lay Construction is possible in places where the length is difficult.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の縦材及び横材に使用される連続無機繊
維強化熱可塑性樹脂製長尺体の幅方向の断面が矩形の例
を示す図である。
FIG. 1 is a diagram showing an example in which a continuous inorganic fiber reinforced thermoplastic resin long body used for a vertical member and a horizontal member of the present invention has a rectangular cross section in the width direction.

【図2】本発明の格子状体の一例を平面に形成し、これ
を熱溶着し、平面に対し垂直方向から見た図である。
FIG. 2 is a view showing an example of a lattice-shaped body of the present invention formed on a plane, heat-welding the same, and viewed from a direction perpendicular to the plane.

【図3】図2のA−Aに沿った線で切断した断面を示す
図であり、(a)及び(b)は、その各態様である。 1 長尺体 2 無機補強用繊維 3 熱可塑性樹脂 4 繊維含有樹脂 5 熱可塑性樹脂層 6 地盤安定化材 7 縦材 8 横材 9 交点部 10 縦部 11 横部 t1 縦材間目合 t2 横材間目合
FIGS. 3A and 3B are cross-sectional views taken along a line AA in FIG. 2, wherein FIGS. 1 the elongate body 2 inorganic reinforcing fibers 3 Thermoplastic resin 4 fiber-containing resin 5 Thermoplastic resin layer 6 Soil stabilizer 7 longitudinal members 8 crosspiece 9 intersections 10 vertical section 11 transverse section t 1 the longitudinal member between eyes if t 2 Cross material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 連続した無機補強用繊維に熱可塑性樹脂
を含浸してなる繊維含有樹脂に熱可塑性樹脂層を被覆し
てなる連続無機繊維強化熱可塑性樹脂製長尺体を縦材及
び横材として格子状に配置して格子状体を形成した後、
該格子状体を熱溶着してなる、縦部と横部と交点部を備
えた地盤安定化材であって、該縦部の厚みは2.5mm
以下であり、該横部の厚みは1.0〜10.0mmであ
ることを特徴とする地盤安定化材。
1. A continuous inorganic fiber reinforced thermoplastic resin elongated body obtained by coating a thermoplastic resin layer on a fiber-containing resin obtained by impregnating a continuous inorganic reinforcing fiber with a thermoplastic resin, is used as a longitudinal member and a transverse member. After forming a grid by arranging them in a grid,
A ground stabilizing material having a vertical portion, a horizontal portion, and an intersection portion formed by heat-welding the lattice-like body, wherein the vertical portion has a thickness of 2.5 mm.
The ground stabilizing material, wherein the thickness of the lateral portion is 1.0 to 10.0 mm.
【請求項2】 前記交点部は該縦材の両面が該横材で挟
まれ互いに熱溶着した構造で、かつ横部は横材同志で熱
溶着した構造であることを特徴とする請求項1に記載の
地盤安定化材。
2. The crossing point portion has a structure in which both surfaces of the vertical member are sandwiched by the horizontal member and are welded to each other, and the horizontal portion has a structure in which the horizontal member is heat-welded to each other. The ground stabilizing material according to 1.
【請求項3】 前記熱可塑性樹脂層の厚みは0.2mm以上
の熱可塑性樹脂で被覆されてなることを特徴とする請求
項1または2項記載の地盤安定化材。
3. The ground stabilizing material according to claim 1, wherein said thermoplastic resin layer is coated with a thermoplastic resin having a thickness of 0.2 mm or more.
【請求項4】 前記繊維含有樹脂の無機補強用繊維含有
量が10〜80重量%であることを特徴とする請求項1
〜3の何れか1項に記載の地盤安定化材。
4. The fiber-containing resin according to claim 1, wherein the content of the fiber for inorganic reinforcement is 10 to 80% by weight.
The ground stabilizing material according to any one of Items 3 to 3.
【請求項5】 前記無機補強用繊維がガラス繊維からな
ることを特徴とする請求項1〜4の何れか1項に記載の
地盤安定化材。
5. The ground stabilizing material according to claim 1, wherein the inorganic reinforcing fiber is made of glass fiber.
【請求項6】 前記繊維含有樹脂及び熱可塑性樹脂層に
用いられる樹脂がポリオレフィン樹脂またはその改質樹
脂であることを特徴とする請求項1〜5の何れか1項に
記載の地盤安定化材。
6. The ground stabilizing material according to claim 1, wherein the resin used for the fiber-containing resin and the thermoplastic resin layer is a polyolefin resin or a modified resin thereof. .
JP583798A 1998-01-14 1998-01-14 Ground stabilizing agent Pending JPH11200356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP583798A JPH11200356A (en) 1998-01-14 1998-01-14 Ground stabilizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP583798A JPH11200356A (en) 1998-01-14 1998-01-14 Ground stabilizing agent

Publications (1)

Publication Number Publication Date
JPH11200356A true JPH11200356A (en) 1999-07-27

Family

ID=11622153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP583798A Pending JPH11200356A (en) 1998-01-14 1998-01-14 Ground stabilizing agent

Country Status (1)

Country Link
JP (1) JPH11200356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200203A (en) * 2005-01-20 2006-08-03 Hiroshima Univ Plastic-board drain material, and device for pulling out the drain material
CN105332367A (en) * 2014-08-06 2016-02-17 许炎章 Reinforced breathable geogrid
US20170009420A1 (en) * 2014-01-27 2017-01-12 Terre Armee Internationale Reinforced stabilisation strip for reinforced embankment structures, with a functionalised casing
CN113502704A (en) * 2021-08-06 2021-10-15 安徽路宝土工材料有限公司 Be used for road bed to add muscle reinforced plastic geogrid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200203A (en) * 2005-01-20 2006-08-03 Hiroshima Univ Plastic-board drain material, and device for pulling out the drain material
JP4609793B2 (en) * 2005-01-20 2011-01-12 国立大学法人広島大学 Plastic board drain material
US20170009420A1 (en) * 2014-01-27 2017-01-12 Terre Armee Internationale Reinforced stabilisation strip for reinforced embankment structures, with a functionalised casing
JP2017505865A (en) * 2014-01-27 2017-02-23 テール アルメ アンテルナシオナル Reinforced stabilization strip for reinforced embankment structures with a functionalized jacket
CN105332367A (en) * 2014-08-06 2016-02-17 许炎章 Reinforced breathable geogrid
CN113502704A (en) * 2021-08-06 2021-10-15 安徽路宝土工材料有限公司 Be used for road bed to add muscle reinforced plastic geogrid

Similar Documents

Publication Publication Date Title
JP3918011B2 (en) Method for producing geogrid made of fiber reinforced polymer strip
US8647741B2 (en) Polypropylene fiber, method of producing the same and utilization of the same
JP4476420B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
US5578370A (en) Molecularly interspersed thermoplastic composite mat
JPS60119250A (en) Reinforcing base cloth
JP4354776B2 (en) Carbon long fiber reinforced resin pellet, method for producing the same, and molded product
US20070099524A1 (en) Composite for a Panel Facing
JP2011063029A (en) Method for producing heat-treated carbon filament-reinforced resin pellet
JPH11200356A (en) Ground stabilizing agent
JP4648052B2 (en) Heat treated carbon long fiber reinforced resin pellets
JP3845701B2 (en) Long fiber reinforced net
EP0994223B1 (en) Fabric suitable to the application as reinforcement of building works
JP3976895B2 (en) Irregular fiber
JP2008522051A (en) Method for producing a rough elongated composite element and such a rough elongated composite element
JP2005068371A (en) Fiber-reinforced thermoplastic resin-molded product excellent in heat resistance and method for producing the same
JP2011179197A (en) Implement for fixing net for preventing exfoliation of concrete
JP4591905B2 (en) Manufacturing method of resin net for civil engineering work
JP2010144376A (en) Net for preventing flaking of concrete, and method for preventing flaking of the concrete by using the same
JPS6366362A (en) Reinforcing base cloth
KR101194309B1 (en) Strip, matrix structure and strip manufacture method
JP4093369B2 (en) Glass fiber for long fiber reinforced polypropylene resin molding material and long fiber reinforced polypropylene resin molding material
JP2000117865A (en) Continuous inorganic fiber-reinforced sheet
JP3748435B2 (en) Fiber sheet for welding reinforcement
JP3447904B2 (en) Pole for blocking rod
JPH11198238A (en) End-processed continuous member made of thermoplastic resin reinforced with continuous fiber, and net obtained therefrom