JPH11197506A - Catalyst for purification of exhaust gas and its production - Google Patents

Catalyst for purification of exhaust gas and its production

Info

Publication number
JPH11197506A
JPH11197506A JP10002119A JP211998A JPH11197506A JP H11197506 A JPH11197506 A JP H11197506A JP 10002119 A JP10002119 A JP 10002119A JP 211998 A JP211998 A JP 211998A JP H11197506 A JPH11197506 A JP H11197506A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
water
exhaust gas
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10002119A
Other languages
Japanese (ja)
Inventor
Yasunari Hanaki
保成 花木
Toru Sekiba
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10002119A priority Critical patent/JPH11197506A/en
Publication of JPH11197506A publication Critical patent/JPH11197506A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To promote activation of noble metals and to improve low temp. activity from the initial stage after long-term use by using an alumina-based multiple oxide containing at least one kind of lanthanum, nickel and cobalt in a specified compsn. ratio as the carrier base of noble metals. SOLUTION: This catalyst for purification of exhaust gas consists of an alumina multiple oxide containing at least one kind selected from lanthanum, nickel and cobalt. The alumina-based multiple oxide is prepared by dispersing or dissolving fine particles of alumina hydrate colloid (alumina sol), a water-soluble salt of at least one kind of element selected from cobalt and nickel, and a water-soluble salt of lanthanum in water, adding at least one kind of aq. soln. selected from ammonia water, aluminum carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate, then removing water, drying and calcining.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒及びその製造方法に関し、特に、自動車等の内燃機関
から排出される排気ガス中の炭化水素(以下「HC」と
称す)、一酸化炭素(以下「CO」と称す)及び窒素酸
化物(以下「NOX 」と称す)を低温においても有効に
浄化することができる低温活性に優れ、全ての排気ガス
組成雰囲気下において触媒活性に優れる排気ガス浄化用
触媒及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and a method for producing the same, and more particularly, to hydrocarbons (hereinafter referred to as "HC") and monoxide in exhaust gas discharged from an internal combustion engine of an automobile or the like. Excellent low-temperature activity that can effectively purify carbon (hereinafter referred to as “CO”) and nitrogen oxides (hereinafter referred to as “NO x ”) even at low temperatures, and excellent catalytic activity under all exhaust gas composition atmospheres The present invention relates to an exhaust gas purifying catalyst and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、内燃機関始動直後から触媒温
度が排気ガス浄化用反応温度に達するまでの低温期間
は、排気ガスの浄化能が十分でないため、低温から排気
ガス浄化反応を開始する排気ガス浄化用触媒の開発が期
待されている。
2. Description of the Related Art Conventionally, during a low temperature period from the start of an internal combustion engine until the catalyst temperature reaches a reaction temperature for exhaust gas purification, the exhaust gas purification performance is not sufficient. The development of gas purification catalysts is expected.

【0003】[0003]

【発明が解決しようとする課題】かかる排気ガス浄化用
触媒としては、例えば、特公昭58−20307号公
報、特開平5−305236号公報、特開平6−378
号公報及び特開平8−323205号公報に開示されて
いるものがある。特公昭58−20307号公報に記載
された排気ガス浄化用触媒は、白金、ロジウム及びセリ
ウムから成る組成物を耐火性担体に担持させたものであ
り、具体的にはアルミナや酸化セリウムなどに白金、パ
ラジウム及びロジウムなどの白金族元素を担持させ、こ
れをモノリス担体にコーティングした構造のものであ
る。また特開平5−305236号公報には、貴金属を
含まないヘキサアルミネートを白金、ロジウム、パラジ
ウム等の貴金属担持アルミナに混成分散させた排気ガス
浄化用触媒が開示されており、具体的には一定の組成を
有するヘキサアルミネート組成物と白金、ロジウム、パ
ラジウムから成る群から選ばれた少なくとも一種の貴金
属を担持したアルミナを一定の重量比で混成したもので
ある。特開平6−378号公報には、活性アルミナと酸
化セリウムに、触媒成分として白金とパラジウムのうち
少なくとも一種と、塩基性元素であるカリウム、セシウ
ム、ストロンチウム及びバリウムから成る群より選ばれ
た少なくとも一種の金属の酸化物が担持された排気ガス
浄化用触媒が提案されている。換言すれば、当該触媒
は、白金族元素、活性アルミナ、酸化セリウム等、従来
から触媒成分として使用されているものに加え、塩基性
元素である、カリウム化合物、セシウム化合物、ストロ
ンチウム化合物及びバリウム化合物のうち少なくとも一
種類を組み合わせてなるものである。また、特開平8−
323205号公報には、触媒成分として少なくともパ
ラジウムと金属アルミネートを含有することを特徴とす
る排気ガス浄化用触媒が提案されている。
As such exhaust gas purifying catalysts, for example, JP-B-58-20307, JP-A-5-305236, and JP-A-6-378.
And Japanese Patent Application Laid-Open No. 8-323205. The exhaust gas purifying catalyst described in Japanese Patent Publication No. 58-20307 is a catalyst in which a composition comprising platinum, rhodium and cerium is supported on a refractory carrier, and specifically, platinum on alumina or cerium oxide. , Palladium, rhodium, and other platinum group elements, and a monolithic carrier coated with the element. JP-A-5-305236 discloses an exhaust gas purifying catalyst in which hexaaluminate containing no noble metal is mixed and dispersed in a noble metal-supported alumina such as platinum, rhodium, or palladium. Is a mixture of a hexaaluminate composition having the following composition and alumina carrying at least one noble metal selected from the group consisting of platinum, rhodium and palladium at a constant weight ratio. JP-A-6-378 discloses that activated alumina and cerium oxide include at least one of platinum and palladium as catalyst components and at least one selected from the group consisting of basic elements potassium, cesium, strontium and barium. There has been proposed an exhaust gas purifying catalyst in which an oxide of a metal is supported. In other words, the catalyst is a platinum group element, activated alumina, cerium oxide, etc., in addition to those conventionally used as a catalyst component, and a basic element such as a potassium compound, a cesium compound, a strontium compound and a barium compound. At least one of them is combined. Further, Japanese Unexamined Patent Publication No.
Japanese Patent Publication No. 323205 proposes an exhaust gas purifying catalyst characterized by containing at least palladium and metal aluminate as catalyst components.

【0004】[0004]

【課題を解決するための手段】本発明者は上記課題を解
決するために鋭意研究した結果、一定の組成比率でラン
タン、ニッケル及びコバルトから選ばれた少なくとも一
種を含有したアルミナ系複合酸化物を貴金属担持基材と
して用いることにより、貴金属の活性化が促進され、初
期から耐久後まで低温活性を向上させ、且つ、ストイキ
域を中心に酸素濃度が不十分なリッチ域においてもH
C、CO、NOX の浄化率が向上することを見出した。
更に、このアルミナ系複合酸化物を製造するに際し、微
粒子アルミナ水和物コロイド(アルミナゾル)とランタ
ン、ニッケル及びコバルトから選ばれた少なくとも一種
の水溶性塩を、水に溶解又は分散させた後、アンモニア
水、炭酸アンモニウム、炭酸水素アンモニウム、硫酸ア
ンモニウム及び硫酸水素アンモニウムから成る群より選
ばれた少なくとも一種の水溶液を加え、水分を除去して
乾燥し、次いで焼成して得たものは、ランタン及びニッ
ケルとコバルトから選ばれた少なくとも一種が非常に高
分散した状態にあり、高温での構造安定性に優れ、しか
も、上記貴金属の活性化促進作用にも優れることを見出
し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an alumina-based composite oxide containing at least one selected from lanthanum, nickel and cobalt in a fixed composition ratio. By using as a noble metal-supporting substrate, activation of the noble metal is promoted, low-temperature activity is improved from the initial stage to endurance, and H is increased even in a rich region where the oxygen concentration is insufficient mainly in the stoichiometric region.
It has been found that the purification rates of C, CO and NO X are improved.
Further, in producing this alumina-based composite oxide, a fine particle alumina hydrate colloid (alumina sol) and at least one water-soluble salt selected from lanthanum, nickel and cobalt are dissolved or dispersed in water. Water, ammonium carbonate, ammonium bicarbonate, ammonium sulfate, and at least one aqueous solution selected from the group consisting of ammonium hydrogensulfate are added, water is removed, dried, and then calcined to obtain lanthanum and nickel and cobalt. It has been found that at least one selected from the group consisting of (1) and (2) is in a state of being very highly dispersed, has excellent structural stability at a high temperature, and has an excellent action of promoting the activation of the noble metal, and has reached the present invention.

【0005】請求項1記載の排気ガス浄化用触媒は、ラ
ンタン、ニッケル及びコバルトから選ばれた少なくとも
一種を含有するアルミナ系複合酸化物であることを特徴
とする。更に、請求項1記載のアルミナ系複合酸化物の
高温下の構造安定性及び比表面積を高めるため、請求項
2記載の排気ガス浄化用触媒は、請求項1記載のアルミ
ナ系複合酸化物が、次の一般式; [X]a[Y]b Alc Od (式中、Xは、ランタン元素であり、Yは、コバルト及
びニッケルからなる群より選ばれた少なくとも一種の元
素であり、a、b、c及びdは、各元素の原子比率を表
し、c=2.0の時、a=0.01〜0.1未満、b=
0.1〜0.7、dは上記各成分の原子価を満足するの
に必要な酸素原子数である)で表されるアルミナ系複合
酸化物であることを特徴とする。また、請求項2記載の
アルミナ系複合酸化物は、請求項1記載のアルミナ系複
合酸化物の組成が、上記式中、c=2.0の時、b=
0.1〜0.7のものである。a=0.01未満では、
アルミナ系複合酸化物に添加しているランタン元素の作
用が小さく、十分な改良効果が得られずニッケル及びコ
バルトから選ばれた少なくとも一種の元素とアルミニウ
ムからなる複合酸化物と変わらない。また、a=0.1
を越えると、BET比表面積や熱安定性等のアルミナ系
複合酸化物の物性が低下するため、貴金属の分散性が悪
く、初期において充分な性能が得られなかったり、耐久
中に貴金属のシンタリングを助長し、逆に耐久後の性能
が悪化する。
[0005] The exhaust gas purifying catalyst according to claim 1 is characterized by being an alumina-based composite oxide containing at least one selected from lanthanum, nickel and cobalt. Further, in order to increase the structural stability and the specific surface area of the alumina-based composite oxide according to claim 1 at a high temperature, the exhaust gas purifying catalyst according to claim 2 is characterized in that: The following general formula: [X] a [Y] b Alc Od (where X is a lanthanum element, Y is at least one element selected from the group consisting of cobalt and nickel, and a, b , C and d represent the atomic ratio of each element, and when c = 2.0, a = 0.01 to less than 0.1, b =
0.1 to 0.7, d is the number of oxygen atoms necessary to satisfy the valence of each component described above). Further, in the alumina-based composite oxide according to claim 2, when the composition of the alumina-based composite oxide according to claim 1 is c = 2.0 in the above formula, b =
0.1 to 0.7. If a is less than 0.01,
The effect of the lanthanum element added to the alumina-based composite oxide is small, and a sufficient improvement effect cannot be obtained, which is the same as a composite oxide composed of aluminum and at least one element selected from nickel and cobalt. Also, a = 0.1
Exceeds the physical properties of the alumina-based composite oxide, such as the BET specific surface area and thermal stability, so that the dispersibility of the noble metal is poor. And, on the contrary, the performance after the durability is deteriorated.

【0006】また、請求項1又は2記載のアルミナ系複
合酸化物は、高温下での結晶構造の熱安定性と、ストイ
キ域及びリッチ域での貴金属の活性化促進作用を更に向
上するため、微粒子アルミナ水和物コロイド(アルミナ
ゾル)と、コバルト及びニッケルから成る群より選べれ
た少なくとも一種の元素の水溶性塩と、ランタンの水溶
性塩を水に溶解又は分散させた後、アンモニア水、炭酸
アンモニウム、炭酸水素アンモニウム、硫酸アンモニウ
ム及び硫酸水素アンモニウムから成る群より選ばれた少
なくとも一種の水溶液を加え、水分を除去して乾燥し、
次いで焼成して得ることを特徴とする。
Further, the alumina-based composite oxide according to claim 1 or 2 further improves the thermal stability of the crystal structure at a high temperature and the activity of accelerating the activation of the noble metal in the stoichiometric region and the rich region. After dissolving or dispersing a fine particle alumina hydrate colloid (alumina sol), a water-soluble salt of at least one element selected from the group consisting of cobalt and nickel, and a water-soluble salt of lanthanum in water, ammonia water, ammonium carbonate Adding at least one aqueous solution selected from the group consisting of ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate, removing water and drying,
Then, it is obtained by firing.

【0007】請求項3記載のアルミナ系複合酸化物を製
造するに当たり、5μm〜200μmのコロイドの大き
さを持つアルミナ水和物を安定なコロイド状態に保つた
めpHを2.0〜7.0に調整したアルミナゾルと、ニ
ッケル、コバルト及びランタンの硝酸塩、炭酸塩、アン
モニウム塩及び酢酸塩等を任意に組み合わせて製造する
ことができるが、特に水溶性塩を使用することが結晶構
造の均一性や耐熱性を向上し、更に、貴金属の活性化促
進作用を向上する点から好ましい。
In producing the alumina-based composite oxide according to the third aspect, the pH is adjusted to 2.0 to 7.0 in order to keep alumina hydrate having a colloidal size of 5 μm to 200 μm in a stable colloidal state. The prepared alumina sol can be produced by arbitrarily combining nickel, cobalt, and lanthanum nitrates, carbonates, ammonium salts, acetates, and the like. It is preferable from the viewpoint of improving the properties and further enhancing the activation promoting action of the noble metal.

【0008】前期アルミナ系複合酸化物の調製方法とし
ては特別な方法に限定されず、成分の著しい偏在を伴わ
ない限り、公知の蒸発乾固法、沈殿法、含浸法等の種々
の方法の中から適宣選択して使用することができるが、
上記核元素の原料を水に溶解又は分散させた後、特に、
アンモニア水、炭酸アンモニウム、炭酸水素アンモニウ
ム、硫酸アンモニウム及び硫酸水素アンモニウムから成
る群より選ばれた少なくとも一種の化合物の水溶液を沈
殿剤として加える沈殿法を用いることが、アルミナ系複
合酸化物の充分なBET比表面積と結晶構造の均一性を
確保し、貴金属を均一に分散するため好ましい。
The method of preparing the alumina-based composite oxide is not limited to a special method, and may be any of various known methods such as evaporation to dryness, precipitation, impregnation, etc., unless significant uneven distribution of components is involved. Can be selected and used from
After dissolving or dispersing the core material in water,
The use of a precipitation method in which an aqueous solution of at least one compound selected from the group consisting of ammonia water, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate is used as a precipitant, provides a sufficient BET ratio of the alumina-based composite oxide. This is preferable because uniformity of the surface area and the crystal structure is ensured and the noble metal is uniformly dispersed.

【0009】本発明の排気ガス浄化用触媒を製造するに
際しては、純水にアルミナゾルを加えた分散液に、ニッ
ケル及びコバルトから選ばれた少なくとも一種の元素の
水溶性塩を純水に溶解した水溶液を加え攪拌する。この
際、各原料を同時に又は別個に溶解した液を加えても良
い。次いで、この原料混合溶液に、アンモニア水、炭酸
アンモニウム、炭酸水素アンモニウム、硫酸アンモニウ
ム及び硫酸水素アンモニウムから成る群より選ばれた少
なくとも一種の化合物を徐々に添加し、溶液のpHを
7.0〜9.0の範囲に成るように調整した後、更に、
この混合溶液を100℃〜300℃で加熱処理(煮沸)
し、水分を除去して乾燥し、残留物を熱処理してアルミ
ナ系複合酸化物が得られる。
In producing the exhaust gas purifying catalyst of the present invention, an aqueous solution in which a water-soluble salt of at least one element selected from nickel and cobalt is dissolved in pure water is added to a dispersion obtained by adding alumina sol to pure water. And stir. At this time, a liquid in which each raw material is dissolved simultaneously or separately may be added. Next, at least one compound selected from the group consisting of aqueous ammonia, ammonium carbonate, ammonium hydrogen carbonate, ammonium sulfate and ammonium hydrogen sulfate is gradually added to the raw material mixed solution, and the pH of the solution is adjusted to 7.0 to 9.0. After adjusting to be in the range of 0,
Heat treatment of this mixed solution at 100 to 300 ° C (boiling)
Then, moisture is removed and dried, and the residue is heat-treated to obtain an alumina-based composite oxide.

【0010】本発明にかかる排気ガス浄化用触媒である
アルミナ系複合酸化物が有す、微細な細孔構造と大きな
比表面積、更に、アルミナ系複合酸化物の活性相の均一
な分散状態及び均一な組成比の結晶構造が、貴金属の活
性化促進作用の発現に重要な役割を果たしている。
[0010] The alumina-based composite oxide, which is the catalyst for purifying exhaust gas according to the present invention, has a fine pore structure and a large specific surface area. The crystal structure having an appropriate composition ratio plays an important role in expressing the activation promoting action of the noble metal.

【0011】前期沈殿法に用いる沈殿剤として、上記ア
ンモニア水やアンモニウム化合物を使用すれば沈殿ケー
キの洗浄が不十分でも金属元素は残留せず、またアンモ
ニウム化合物(滴下後は、主として硝酸アンモニウム)
が残留しても後の焼成で容易に分解除去することができ
る。更に、硝酸アルミニウムに代わりアルミナゾルを使
用するため、沈殿を乾燥・焼成する際に、原料由来のN
X や硝酸アンモニウムに対する排気ガス・排水処理が
著しく軽減される。
If the above-mentioned aqueous ammonia or ammonium compound is used as a precipitating agent in the precipitating method, no metal element remains even if the precipitation cake is insufficiently washed, and an ammonium compound (mainly ammonium nitrate after dropping) is used.
Can be easily decomposed and removed in the subsequent firing. Furthermore, since alumina sol is used instead of aluminum nitrate, when the precipitate is dried and fired, N
Exhaust gas and wastewater treatment for O X or ammonium nitrate is significantly reduced.

【0012】上記沈殿法を実施するに際しては、溶液の
pHを7.0〜9.0の範囲に調整することにより、各
種金属塩の沈殿物を形成することができる。pHが7.
0より低いと各種元素が十分に沈殿物を形成せず、逆に
pHが9.0より高いと沈殿した成分の一部が再溶解す
ることがある。
In carrying out the above precipitation method, precipitates of various metal salts can be formed by adjusting the pH of the solution to a range of 7.0 to 9.0. pH 7
When the pH is lower than 0, various elements do not sufficiently form a precipitate, and when the pH is higher than 9.0, some of the precipitated components may be redissolved.

【0013】水の除去は、例えば濾過法や蒸発乾固法の
公知の方法の中から適宣選択して行うことができる。本
発明のアルミナ系複合酸化物を得るための最初の熱処理
は、特に制限されないが、例えば700〜1200℃の
温度範囲で空気中及び/又は空気流通下で行うことが好
ましい。
The removal of water can be appropriately selected from known methods such as a filtration method and an evaporation to dryness method. Although the first heat treatment for obtaining the alumina-based composite oxide of the present invention is not particularly limited, it is preferably performed, for example, in a temperature range of 700 to 1200 ° C. in air and / or under air flow.

【0014】[0014]

【作用】請求項1記載の排気ガス浄化用触媒は、ニッケ
ル及びコバルトから選ばれた少なくとも一種と、ランタ
ンを含有するアルミナ系複合酸化物が貴金属種と密に接
触すると、アルミナ系複合酸化物中の格子酸素や表面の
吸着酸素が移動・放出され易くなり、低温活性と酸素不
足雰囲気での浄化性性能等の触媒性能を向上させること
になる。
The exhaust gas purifying catalyst according to claim 1 is characterized in that when at least one selected from nickel and cobalt and lanthanum-containing alumina-based composite oxide come into intimate contact with a noble metal species, the alumina-based composite oxide becomes Lattice oxygen and oxygen adsorbed on the surface are easily transferred and released, and catalytic performance such as low-temperature activity and purifying performance in an oxygen-deficient atmosphere is improved.

【0015】また、請求項3記載の排気ガス浄化用触媒
の製造方法は、アルミニウムの原料として微粒子のアル
ミナゾルを使用することで、アルミニウムの水溶性塩を
用いたアルミナ系複合酸化物と比べ、結晶構造の均一性
や耐久性能(熱安定性等)が更に向上し、貴金属を高分
散担持するための比表面積が十分に確保できる。従っ
て、貴金属と活性相とが更に密に接触できるため、貴金
属の活性化促進作用が増大し、排気ガス浄化用触媒の低
温活性と浄化性能等の触媒性能を向上させることとな
る。
Further, the method for producing an exhaust gas purifying catalyst according to the third aspect of the present invention uses fine-particle alumina sol as a raw material of aluminum, thereby making it possible to use a crystalline alumina sol as compared with an alumina-based composite oxide using a water-soluble salt of aluminum. The uniformity of the structure and the durability performance (thermal stability, etc.) are further improved, and the specific surface area for highly dispersing and supporting the noble metal can be sufficiently secured. Therefore, the noble metal and the active phase can be brought into more intimate contact with each other, so that the activation promoting action of the noble metal is increased, and the catalytic performance such as the low-temperature activity and the purification performance of the exhaust gas purifying catalyst is improved.

【0016】[0016]

【実施例】本発明を次の実施例及び比較例により説明す
る。
The present invention will be described with reference to the following examples and comparative examples.

【0017】<実施例1>酢酸ランタン42.7g、硝
酸ニッケル485gを純水1000gに溶解した水溶液
を、アルミナ(Al23 )換算で20重量%のアルミ
ナゾル1700gを純水2500gに分散させた懸濁液
に加えた後、攪拌しながら5%アンモニア水を加え、p
Hを8.0に調整した。この溶液を150℃で4時間煮
沸した後、スプレードライヤーで乾燥し、400℃で2
時間、600℃で2時間、次いで800℃で4時間焼成
し、La0.03Ni0.5Al2.0OX を得た。な
お、Xは上記各成分の原子価を満足するのに必要な酸素
原子数である。実施例2〜10、比較例1〜10も同様
である。
Example 1 An aqueous solution obtained by dissolving 42.7 g of lanthanum acetate and 485 g of nickel nitrate in 1000 g of pure water was dispersed in 2500 g of pure water with 1700 g of alumina sol of 20% by weight in terms of alumina (Al 2 O 3 ). After adding to the suspension, 5% aqueous ammonia was added with stirring, and p
H was adjusted to 8.0. This solution was boiled at 150 ° C. for 4 hours, dried with a spray dryer, and then dried at 400 ° C. for 2 hours.
Time, 2 hours at 600 ° C., and then calcined 4 hours at 800 ° C., to obtain a La0.03Ni0.5Al2.0O X. Here, X is the number of oxygen atoms necessary to satisfy the valence of each component. The same applies to Examples 2 to 10 and Comparative Examples 1 to 10.

【0018】<実施例2>酢酸ランタン14.2g、硝
酸ニッケル485gを純水1000gに溶解した水溶液
を、アルミナ(Al23 )換算で20重量%のアルミ
ナゾル1700gを純水2500gに分散させた懸濁液
に加えた後、攪拌しながら5%アンモニア水を加え、p
Hを8.0に調整した。この溶液を150℃で4時間煮
沸した後、スプレードライヤーで乾燥し、400℃で2
時間、600℃で2時間、次いで800℃で4時間焼成
し、La0.01Ni0.5Al2.0OX を得た。
<Example 2> An aqueous solution in which 14.2 g of lanthanum acetate and 485 g of nickel nitrate were dissolved in 1000 g of pure water was dispersed in 2500 g of pure water with 1700 g of alumina sol of 20% by weight in terms of alumina (Al 2 O 3 ). After adding to the suspension, 5% aqueous ammonia was added with stirring, and p
H was adjusted to 8.0. This solution was boiled at 150 ° C. for 4 hours, dried with a spray dryer, and then dried at 400 ° C. for 2 hours.
Calcination was performed at 600 ° C. for 2 hours and then at 800 ° C. for 4 hours to obtain La0.01Ni0.5Al2.0O x .

【0019】<実施例3>酢酸ランタン128.1g、
硝酸ニッケル485gを純水1000gに溶解した水溶
液を、アルミナ(Al23 )換算で20重量%のアル
ミナゾル1700gを純水2500gに分散させた懸濁
液に加えた後、攪拌しながら5%アンモニア水を加え、
pHを8.0に調整した。この溶液を150℃で4時間
煮沸した後、スプレードライヤーで乾燥し、400℃で
2時間、600℃で2時間、次いで800℃で4時間焼
成し、La0.09Ni0.5Al2.0OX を得た。
<Example 3> Lanthanum acetate 128.1 g,
An aqueous solution prepared by dissolving 485 g of nickel nitrate in 1000 g of pure water was added to a suspension in which 1700 g of 20 wt% alumina sol in terms of alumina (Al 2 O 3 ) was dispersed in 2500 g of pure water. Add water,
The pH was adjusted to 8.0. After boiling for 4 hours at a solution 0.99 ° C., dried in a spray drier, 2 hours at 400 ° C., and calcined for 4 hours at 2 hours, then 800 ° C. at 600 ° C., to obtain a La0.09Ni0.5Al2.0O X .

【0020】<実施例4>酢酸ランタン42.7g、硝
酸コバルト291gを純水1000gに溶解した水溶液
を、アルミナ(Al23 )換算で20重量%のアルミ
ナゾル1700gを純水2500gに分散させた懸濁液
に加えた後、攪拌しながら5%アンモニア水を加え、p
Hを8.0に調整した。この溶液を150℃で4時間煮
沸した後、スプレードライヤーで乾燥し、400℃で2
時間、600℃で2時間、次いで800℃で4時間焼成
し、La0.03Ni0.3Al2.0OX を得た。
Example 4 An aqueous solution obtained by dissolving 42.7 g of lanthanum acetate and 291 g of cobalt nitrate in 1000 g of pure water was dispersed in 2500 g of pure water with 1700 g of 20 wt% alumina sol in terms of alumina (Al 2 O 3 ). After adding to the suspension, 5% aqueous ammonia was added with stirring, and p
H was adjusted to 8.0. This solution was boiled at 150 ° C. for 4 hours, dried with a spray dryer, and then dried at 400 ° C. for 2 hours.
Time, 2 hours at 600 ° C., and then calcined 4 hours at 800 ° C., to obtain a La0.03Ni0.3Al2.0O X.

【0021】<実施例5>酢酸ランタン42.7g、硝
酸コバルト97g、硝酸ニッケル388gを純水100
0gに溶解した水溶液を、アルミナ(Al23 )換算
で20重量%のアルミナゾル1700gを純水2500
gに分散させた懸濁液に加えた後、攪拌しながら5%ア
ンモニア水を加え、pHを8.0に調整した。この溶液
を150℃で4時間煮沸した後、スプレードライヤーで
乾燥し、400℃で2時間、600℃で2時間、次いで
800℃で4時間焼成し、La0.03Ni0.4Co
0.1Al2.0OX を得た。
<Example 5> 42.7 g of lanthanum acetate, 97 g of cobalt nitrate and 388 g of nickel nitrate were added to 100 parts of pure water.
0 g of an aqueous solution dissolved in alumina (Al 2 O 3 ) was converted to 20 wt% of alumina sol (1700 g) in pure water (2,500).
After adding to the suspension dispersed in g, 5% aqueous ammonia was added with stirring to adjust the pH to 8.0. This solution was boiled at 150 ° C. for 4 hours, dried with a spray drier, baked at 400 ° C. for 2 hours, 600 ° C. for 2 hours, and then at 800 ° C. for 4 hours to obtain La0.03Ni0.4Co.
It was obtained 0.1Al2.0O X.

【0022】<比較例1>酢酸ランタン7.1g、硝酸
ニッケル485gを純水1000gに溶解した水溶液
を、アルミナ(Al23 )換算で20重量%のアルミ
ナゾル1700gを純水2500gに分散させた懸濁液
に加えた後、攪拌しながら5%アンモニア水を加え、p
Hを8.0に調整した。この溶液を150℃で4時間煮
沸した後、スプレードライヤーで乾燥し、400℃で2
時間、600℃で2時間、次いで800℃で4時間焼成
し、La0.005Ni0.5Al2.0OX を得た。
Comparative Example 1 An aqueous solution in which 7.1 g of lanthanum acetate and 485 g of nickel nitrate were dissolved in 1000 g of pure water was dispersed in 2500 g of pure water with 1700 g of 20 wt% alumina sol in terms of alumina (Al 2 O 3 ). After adding to the suspension, 5% aqueous ammonia was added with stirring, and p
H was adjusted to 8.0. This solution was boiled at 150 ° C. for 4 hours, dried with a spray dryer, and then dried at 400 ° C. for 2 hours.
Time, 2 hours at 600 ° C., and then calcined 4 hours at 800 ° C., to obtain a La0.005Ni0.5Al2.0O X.

【0023】<比較例2>酢酸ランタン284.6g、
硝酸ニッケル485gを純水1000gに溶解した水溶
液を、アルミナ(Al23 )換算で20重量%のアル
ミナゾル1700gを純水2500gに分散させた懸濁
液に加えた後、攪拌しながら5%アンモニア水を加え、
pHを8.0に調整した。この溶液を150℃で4時間
煮沸した後、スプレードライヤーで乾燥し、400℃で
2時間、600℃で2時間、次いで800℃で4時間焼
成し、La0.2Ni0.5Al2.0OX を得た。
<Comparative Example 2> 284.6 g of lanthanum acetate,
An aqueous solution prepared by dissolving 485 g of nickel nitrate in 1000 g of pure water was added to a suspension in which 1700 g of 20 wt% alumina sol in terms of alumina (Al 2 O 3 ) was dispersed in 2500 g of pure water. Add water,
The pH was adjusted to 8.0. This solution was boiled at 150 ° C. for 4 hours, dried with a spray drier, and calcined at 400 ° C. for 2 hours, 600 ° C. for 2 hours, and then at 800 ° C. for 4 hours to obtain La0.2Ni0.5Al2.0O X. .

【0024】<比較例3>硝酸ニッケル485gを純水
1000gに溶解した水溶液を、アルミナ(Al2
3 )換算で20重量%のアルミナゾル1700gを純水
2500gに分散させた懸濁液に加え、攪拌しながら5
%アンモニア水を加え、pHを8.0に調整した。この
溶液を150℃で24時間乾燥した後、400℃で2時
間、600℃で2時間、次いで800℃で4時間焼成
し、Ni0.5Al2.0OX を得た。
Comparative Example 3 An aqueous solution obtained by dissolving 485 g of nickel nitrate in 1000 g of pure water was mixed with alumina (Al 2 O).
3 ) 1700 g of a 20% by weight alumina sol was converted to a suspension of 2500 g of pure water dispersed in 2500 g of pure water.
% Ammonia water was added to adjust the pH to 8.0. After drying this solution at 150 ° C. for 24 hours, it was baked at 400 ° C. for 2 hours, 600 ° C. for 2 hours, and then at 800 ° C. for 4 hours to obtain Ni0.5Al2.0O X.

【0025】<比較例4>硝酸コバルト291gを純水
1000gに溶解した水溶液を、アルミナ(Al2
3 )換算で20重量%のアルミナゾル1700gを純水
2500gに分散させた懸濁液に加え、攪拌しながら5
%アンモニア水を加え、pHを8.0に調整した。この
溶液を150℃で24時間乾燥した後、400℃で2時
間、600℃で2時間、次いで800℃で4時間焼成
し、Co0.3Al2.0OX を得た。
<Comparative Example 4> An aqueous solution in which 291 g of cobalt nitrate was dissolved in 1000 g of pure water was converted to alumina (Al 2 O).
3 ) 1700 g of a 20% by weight alumina sol was converted to a suspension of 2500 g of pure water dispersed in 2500 g of pure water.
% Ammonia water was added to adjust the pH to 8.0. After drying this solution at 150 ° C. for 24 hours, it was baked at 400 ° C. for 2 hours, at 600 ° C. for 2 hours, and then at 800 ° C. for 4 hours to obtain Co0.3Al2.0O x .

【0026】<比較例5>酢酸ランタン42.7gを純
水1000gに溶解した水溶液を、アルミナ(Al2
3 )換算で20重量%のアルミナゾル1700gを純水
2500gに分散させた懸濁液に加えた後、攪拌しなが
ら5%アンモニア水を加え、pHを8.0に調整した。
この溶液を150℃で4時間煮沸した後、スプレードラ
イヤーで乾燥し、400℃で2時間、600℃で2時
間、次いで800℃で4時間焼成し、La0.03Al
2.0OX を得た。
Comparative Example 5 An aqueous solution obtained by dissolving 42.7 g of lanthanum acetate in 1000 g of pure water was mixed with alumina (Al 2 O).
3 ) After adding 1700 g of alumina sol of 20% by weight in terms of a dispersion in 2500 g of pure water, the pH was adjusted to 8.0 by adding 5% aqueous ammonia with stirring.
The solution was boiled at 150 ° C. for 4 hours, dried with a spray drier, baked at 400 ° C. for 2 hours, 600 ° C. for 2 hours, and then at 800 ° C. for 4 hours to obtain La0.03Al.
2.0O X was obtained.

【0027】<実施例6>実施例1で得たLa0.03
Ni0.5Al2.0OX にパラジウムを1.0重量%
担持した粉末(粉末A)692gとランタンを1モル%
(La23 に換算して2重量%)とジルコニウムを3
2モル%(Zr02 に換算して25重量%)を含むセリ
ウム酸化物粉末にパラジウム0.75重量gを担持した
粉末(粉末B)480gに、硝酸水溶液1200gを磁
性ボールミルに投入し、混合粉砕してスラリー液を得
た。このスラリー液をコージェライト質モノリス担体
(1.3L、400セル)に付着させ、400℃で1時
間焼成し、コート層重量160g/L、パラジウム担持
量40g/cf(1.42g/L)の触媒を得た。次い
で、上記触媒成分担持コージェライト質モノリス担体に
酢酸バリウム溶液を付着させた後、400℃で1時間焼
成し、BaO15g/Lを含有させた。
Example 6 La 0.03 obtained in Example 1
The palladium in Ni0.5Al2.0O X 1.0% by weight
692 g of the supported powder (powder A) and 1 mol% of lanthanum
( 2 % by weight in terms of La 2 O 3 ) and zirconium
To 480 g of powder (powder B) carrying 0.75 weight g of palladium on cerium oxide powder containing 2 mol% (25 weight% in terms of ZrO 2 ), 1200 g of an aqueous nitric acid solution was put into a magnetic ball mill, and mixed and pulverized. Thus, a slurry liquid was obtained. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells) and calcined at 400 ° C. for 1 hour to obtain a coat layer weight of 160 g / L and a palladium carrying amount of 40 g / cf (1.42 g / L). A catalyst was obtained. Next, a barium acetate solution was applied to the cordierite monolithic carrier supporting the catalyst component, and then calcined at 400 ° C. for 1 hour to contain 15 g / L of BaO.

【0028】<実施例7>実施例2で得たLa0.01
Ni0.5Al2.0OX を用いた以外は、実施例6と
同様にしてコート層重量160g/L、パラジウム担持
量40g/cf(1.42g/L)の触媒を得た。次い
で、実施例6と同様にして酢酸バリウム溶液を付着させ
た後、400℃で1時間焼成し、BaO15g/Lを含
有させた。
<Example 7> La 0.01 obtained in Example 2
Except for using Ni0.5Al2.0O X was obtained a catalyst coating layer weight 160 g / L in the same manner as in Example 6, palladium weight 40g / cf (1.42g / L) . Next, a barium acetate solution was applied in the same manner as in Example 6, and then baked at 400 ° C. for 1 hour to contain 15 g / L of BaO.

【0029】<実施例8>実施例3で得たLa0.09
Ni0.5Al2.0OX を用いた以外は、実施例6と
同様にしてコート層重量160g/L、パラジウム担持
量40g/cf(1.42g/L)の触媒を得た。次い
で、実施例6と同様にして酢酸バリウム溶液を付着させ
た後、400℃で1時間焼成し、BaO15g/Lを含
有させた。
Example 8 La 0.09 obtained in Example 3
Except for using Ni0.5Al2.0O X was obtained a catalyst coating layer weight 160 g / L in the same manner as in Example 6, palladium weight 40g / cf (1.42g / L) . Next, a barium acetate solution was applied in the same manner as in Example 6, and then baked at 400 ° C. for 1 hour to contain 15 g / L of BaO.

【0030】<実施例9>実施例4で得たLa0.03
Ni0.3Al2.0OX を用いた以外は、実施例6と
同様にしてコート層重量160g/L、パラジウム担持
量40g/cf(1.42g/L)の触媒を得た。次い
で、実施例6と同様にして酢酸バリウム溶液を付着させ
た後、400℃で1時間焼成し、BaO15g/Lを含
有させた。
Example 9 La 0.03 obtained in Example 4
Except for using Ni0.3Al2.0O X was obtained a catalyst coating layer weight 160 g / L in the same manner as in Example 6, palladium weight 40g / cf (1.42g / L) . Next, a barium acetate solution was applied in the same manner as in Example 6, and then baked at 400 ° C. for 1 hour to contain 15 g / L of BaO.

【0031】<実施例10>実施例5で得たLa0.0
3Ni0.4Co0.1Al2.0OX を用いた以外
は、実施例6と同様にしてコート層重量160g/L、
パラジウム担持量40g/cf(1.42g/L)の触
媒を得た。次いで、実施例6と同様にして酢酸バリウム
溶液を付着させた後、400℃で1時間焼成し、BaO
15g/Lを含有させた。
Example 10 La0.0 obtained in Example 5
Except for using 3Ni0.4Co0.1Al2.0O X is coat layer weight in the same manner as in Example 6 160 g / L,
A catalyst having a palladium loading of 40 g / cf (1.42 g / L) was obtained. Next, after a barium acetate solution was applied in the same manner as in Example 6, it was baked at 400 ° C. for 1 hour to obtain BaO
It contained 15 g / L.

【0032】<比較例6>比較例1のLa0.05Ni
0.5Al2.0OX を用いた以外は、実施例6と同様
にしてコート層重量160g/L、パラジウム担持量4
0g/cf(1.42g/L)の触媒を得た。次いで、
実施例6と同様にして酢酸バリウム溶液を付着させた
後、400℃で1時間焼成し、BaO15g/Lを含有
させた。
Comparative Example 6 La0.05Ni of Comparative Example 1
Except for using 0.5Al2.0O X is coating layer weight 160 g / L in the same manner as in Example 6, palladium amount 4
0 g / cf (1.42 g / L) of the catalyst was obtained. Then
After depositing a barium acetate solution in the same manner as in Example 6, it was baked at 400 ° C. for 1 hour to contain 15 g / L of BaO.

【0033】<比較例7>比較例2のLa0.2Ni
0.5Al2.0OX を用いた以外は、実施例6と同様
にしてコート層重量160g/L、パラジウム担持量4
0g/cf(1.42g/L)の触媒を得た。次いで、
実施例6と同様にして酢酸バリウム溶液を付着させた
後、400℃で1時間焼成し、BaO15g/Lを含有
させた。
Comparative Example 7 La0.2Ni of Comparative Example 2
Except for using 0.5Al2.0O X is coating layer weight 160 g / L in the same manner as in Example 6, palladium amount 4
0 g / cf (1.42 g / L) of the catalyst was obtained. Then
After depositing a barium acetate solution in the same manner as in Example 6, it was baked at 400 ° C. for 1 hour to contain 15 g / L of BaO.

【0034】<比較例8>比較例3のNi0.5Al
2.0OX を用いた以外は、実施例6と同様にしてコー
ト層重量160g/L、パラジウム担持量40g/cf
(1.42g/L)の触媒を得た。次いで、実施例6と
同様にして酢酸バリウム溶液を付着させた後、400℃
で1時間焼成し、BaO15g/Lを含有させた。
Comparative Example 8 Ni0.5Al of Comparative Example 3
Except for using 2.0O X is coating layer weight 160 g / L in the same manner as in Example 6, palladium weight 40 g / cf
(1.42 g / L) of the catalyst was obtained. Next, a barium acetate solution was applied in the same manner as in
For 1 hour, and contained 15 g / L of BaO.

【0035】<比較例9>比較例4のCo0.3Al
2.0OX を用いた以外は、実施例6と同様にしてコー
ト層重量160g/L、パラジウム担持量40g/cf
(1.42g/L)の触媒を得た。次いで、実施例6と
同様にして酢酸バリウム溶液を付着させた後、400℃
で1時間焼成し、BaO15g/Lを含有させた。
<Comparative Example 9> Co0.3Al of Comparative Example 4
Except for using 2.0O X is coating layer weight 160 g / L in the same manner as in Example 6, palladium weight 40 g / cf
(1.42 g / L) of the catalyst was obtained. Next, a barium acetate solution was applied in the same manner as in
For 1 hour, and contained 15 g / L of BaO.

【0036】<比較例10>比較例5のLa0.03A
l2.0OX を用いた以外は、実施例6と同様にしてコ
ート層重量160g/L、パラジウム担持量40g/c
f(1.42g/L)の触媒を得た。次いで、実施例6
と同様にして酢酸バリウム溶液を付着させた後、400
℃で1時間焼成し、BaO15g/Lを含有させた。
Comparative Example 10 La 0.03 A of Comparative Example 5
except for using L2.0O X is coating layer weight 160 g / L in the same manner as in Example 6, palladium weight 40 g / c
f (1.42 g / L) of the catalyst was obtained. Then, Example 6
After depositing a barium acetate solution in the same manner as in
It was baked at 1 ° C. for 1 hour to contain 15 g / L of BaO.

【0037】<試験例>前記実施例及び比較例の排気ガ
ス浄化用触媒について、以下の耐久条件により耐久を行
った後、下記評価条件で触媒活性評価を行った。
<Test Examples> The exhaust gas purifying catalysts of the above Examples and Comparative Examples were endured under the following endurance conditions, and then evaluated under the following evaluation conditions.

【0038】 [0038]

【0039】評価条件1:低温活性 エンジン排気量 2000cc 燃料 無鉛ガソリン 昇温速度 10℃/分 測定温度範囲 150℃〜500℃ 耐久後の各排気ガス浄化用触媒の低温活性を、HC、C
O及びNOX の転化率が50%になった時の温度(T5
0/℃)で表し、その結果を図1に示す。
Evaluation condition 1: Low-temperature activity Engine displacement 2000 cc Fuel unleaded gasoline Heating rate 10 ° C./min Measurement temperature range 150 ° C. to 500 ° C. The low-temperature activity of each exhaust gas purifying catalyst after endurance was determined by HC, C
O and NO X temperature when the conversion reached 50% (T5
0 / ° C.), and the results are shown in FIG.

【0040】 耐久後の各排気ガス浄化用触媒の浄化性能をストイキ雰
囲気におけるHC、CO及びNOX の平均転化率(%)
を以下の数式1〜数式3により決定し、その結果を図1
に示す。
[0040] The average conversion of the HC purifying performance in stoichiometric atmosphere of the exhaust gas purifying catalyst, CO and NO X after durability (%)
Is determined by the following Equations 1 to 3, and the result is shown in FIG.
Shown in

【0041】[0041]

【数式1】 [Formula 1]

【0042】[0042]

【数式2】 [Formula 2]

【0043】[0043]

【数式3】 [Equation 3]

【0044】[0044]

【発明の効果】本発明により得られる排気ガス浄化用触
媒は、高温下における耐久性に優れ、貴金属種のシンタ
リングを抑制し、更に、貴金属種の活性化を促進するこ
とができ、上記効果に加えて、結晶構造を均一化し高温
での構造安定性を向上し、更に、活性相の分散状態を高
め貴金属の活性化促進作用を向上できる。
The exhaust gas purifying catalyst obtained by the present invention has excellent durability at high temperatures, suppresses sintering of noble metal species, and can promote activation of noble metal species. In addition, the crystal structure can be made uniform, the structural stability at a high temperature can be improved, and the dispersed state of the active phase can be increased to enhance the activation promoting action of the noble metal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例及び比較例の排気ガス浄化用触
媒の触媒活性評価を示す図である。
FIG. 1 is a diagram showing an evaluation of catalytic activity of exhaust gas purifying catalysts of Examples and Comparative Examples of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 触媒成分担持層を有する一体構造型の排
気ガス浄化用触媒において、触媒成分として少なくとも
パラジウムとアルミナ系複合酸化物を含み、該アルミナ
系複合酸化物が、ランタンと、コバルト及びニッケルか
らなる群より選ばれた少なくとも一種を含有することを
特徴とする排気ガス浄化用触媒。
1. An exhaust gas purifying catalyst having an integral structure having a catalyst component-supporting layer, comprising at least palladium and an alumina-based composite oxide as a catalyst component, wherein the alumina-based composite oxide comprises lanthanum, cobalt and nickel. An exhaust gas purifying catalyst comprising at least one selected from the group consisting of:
【請求項2】 請求項1記載の排気ガス浄化用触媒にお
いて、アルミナ系複合酸化物が、次の一般式; [X]a[Y]b Alc Od (式中、Xは、ランタン元素Laであり、Yは、コバル
ト及びニッケルからなる群より選ばれた少なくとも一種
の元素であり、a、b、c及びdは、各元素の原子比率
を表し、c=2.0の時、a=0.01〜0.1未満、
b=0.1〜0.7、dは上記各成分の原子価を満足す
るのに必要な酸素原子数である)で表されるアルミナ系
複合酸化物であることを特徴とする排気ガス浄化用触
媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the alumina-based composite oxide has the following general formula: [X] a [Y] bAlcOd (where X is a lanthanum element La) Y is at least one element selected from the group consisting of cobalt and nickel, and a, b, c and d represent the atomic ratio of each element. When c = 2.0, a = 0 .01 to less than 0.1,
b = 0.1 to 0.7, and d is the number of oxygen atoms necessary to satisfy the valence of each component described above.) Catalyst.
【請求項3】 請求項1又は2記載のアルミナ系複合酸
化物を製造するに当たり、微粒子アルミナ水和物コロイ
ド(以下、「アルミナゾル」と称す)とランタンの水溶
性塩とコバルト及びニッケルのうち少なくとも一種の水
溶性塩を水に溶解又は分散させた後、アンモニア水、炭
酸アンモニウム及び炭酸水素アンモニウムから成る群よ
り選ばれた少なくとも一種の水溶液を加え、pHを7.
0〜9.0の範囲になるように調整した後、更に、この
混合溶液を100℃〜300℃で加熱処理(煮沸)し、
水分を除去して乾燥し、次いで焼成して得ることを特徴
とする排気ガス浄化用触媒の製造方法。
3. A method for producing the alumina-based composite oxide according to claim 1 or 2, wherein at least one of colloidal alumina hydrate (hereinafter referred to as “alumina sol”), a water-soluble salt of lanthanum, cobalt and nickel. After dissolving or dispersing one kind of water-soluble salt in water, at least one kind of aqueous solution selected from the group consisting of aqueous ammonia, ammonium carbonate and ammonium hydrogen carbonate is added, and the pH is adjusted to 7.
After adjusting so as to be in the range of 0 to 9.0, the mixed solution is further heat-treated (boiled) at 100 ° C to 300 ° C,
A method for producing an exhaust gas purifying catalyst, characterized in that the catalyst is obtained by removing water, drying and then calcining.
JP10002119A 1998-01-08 1998-01-08 Catalyst for purification of exhaust gas and its production Pending JPH11197506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10002119A JPH11197506A (en) 1998-01-08 1998-01-08 Catalyst for purification of exhaust gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10002119A JPH11197506A (en) 1998-01-08 1998-01-08 Catalyst for purification of exhaust gas and its production

Publications (1)

Publication Number Publication Date
JPH11197506A true JPH11197506A (en) 1999-07-27

Family

ID=11520472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10002119A Pending JPH11197506A (en) 1998-01-08 1998-01-08 Catalyst for purification of exhaust gas and its production

Country Status (1)

Country Link
JP (1) JPH11197506A (en)

Similar Documents

Publication Publication Date Title
US6069111A (en) Catalysts for the purification of exhaust gas and method of manufacturing thereof
KR100199909B1 (en) A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
EP1946834B1 (en) Catalyst carrier particle, exhaust gas purifying catalyst, and methods for producing those
JPH09141098A (en) Catalyst for purification of exhaust gas and its production
JP2005262201A (en) Exhaust gas-cleaning catalyst and method for manufacturing the same
WO2005084796A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JP5078125B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
US20200070126A1 (en) Exhaust gas-purifying catalyst composition and method for producing the same, and automobile exhaust gas-purifying catalyst
JP5168527B2 (en) Oxide powder and production method thereof
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08229394A (en) Production of oxide-deposited catalyst carrier
JPWO2015087781A1 (en) Exhaust gas purification catalyst
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JP4836187B2 (en) Exhaust gas purification catalyst, production method thereof and regeneration method thereof
JP2007301471A (en) Catalyst for cleaning exhaust gas
JPH0768175A (en) Catalyst for purification of exhaust gas
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3156577B2 (en) Material for exhaust gas purification catalyst and method for producing the same
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP4665458B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JPH11197506A (en) Catalyst for purification of exhaust gas and its production
JPH11226405A (en) Catalyst for purification of exhaust gas and its production