JPH1119688A - Ferrous ion chelating agent and chelating method - Google Patents
Ferrous ion chelating agent and chelating methodInfo
- Publication number
- JPH1119688A JPH1119688A JP17710597A JP17710597A JPH1119688A JP H1119688 A JPH1119688 A JP H1119688A JP 17710597 A JP17710597 A JP 17710597A JP 17710597 A JP17710597 A JP 17710597A JP H1119688 A JPH1119688 A JP H1119688A
- Authority
- JP
- Japan
- Prior art keywords
- soln
- charged
- magnetic field
- field region
- ferrous ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水中の第一鉄イオ
ンを封鎖するための封鎖剤及び封鎖方法に係り、詳しく
は汲み上げた地下水などに含まれる第一鉄イオンが第二
鉄イオンに酸化されて析出することを防止する第一鉄イ
オンの封鎖剤及び封鎖方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blocking agent and a blocking method for blocking ferrous ions in water, and more particularly, to oxidizing ferrous ions contained in pumped ground water and the like to ferric ions. The present invention relates to a ferrous ion sequestering agent and a sequestering method for preventing the ferrous ions from being precipitated.
【0002】[0002]
【従来の技術】揮発性有機塩素化合物等の揮発性汚染物
質により汚染された地下水の揚水設備では、含有される
揮発性汚染物質を除去するために曝気装置が設けられ、
曝気処理により揮発性汚染物質を除去した後、放水され
ている。この場合、地下水中には還元状態で第一鉄イオ
ンが含まれているため、この第一鉄イオンが曝気処理で
第二鉄イオンに酸化され、沈澱となって曝気装置や後段
の設備等の配管や放水路等において堆積し、これらの設
備を閉塞させるなどの障害をもたらす。2. Description of the Related Art Pumping equipment for groundwater contaminated with volatile contaminants such as volatile organic chlorine compounds is provided with an aeration device for removing the volatile contaminants contained therein.
Water is discharged after removing volatile pollutants by aeration treatment. In this case, since ferrous ions are contained in the groundwater in a reduced state, the ferrous ions are oxidized to ferric ions by aeration treatment and are precipitated to form a precipitate, such as an aeration apparatus or a subsequent facility. It accumulates in pipes, drainage channels, etc., and causes obstacles such as blocking these facilities.
【0003】このため、曝気装置の前段に、地下水中の
第一鉄イオンを第二鉄イオンに酸化して凝集処理し、沈
澱を固液分離する除鉄装置を設けたり、定期的に或いは
必要に応じて曝気装置の内部洗浄を行ったりして上記障
害を防止している。For this reason, an iron removing device for oxidizing ferrous ions in groundwater to ferric ions to perform coagulation treatment and separating the precipitate into solid and liquid forms is provided in front of the aeration device, or periodically or as necessary. In order to prevent the above-mentioned trouble, the inside of the aeration device is washed in accordance with the situation.
【0004】このような鉄の沈澱による問題は、地下水
を補給水とする冷却水系においても起こり得る。[0004] Such a problem due to the precipitation of iron can also occur in a cooling water system using groundwater as makeup water.
【0005】このようなことから、特別な装置や操作を
要することなく、第一鉄イオンが第二鉄イオンに酸化さ
れることによる鉄の沈澱の生成を防止する技術の開発が
望まれている。[0005] For these reasons, there is a demand for the development of a technique for preventing the formation of iron precipitates due to the oxidation of ferrous ions to ferric ions without requiring any special equipment or operation. .
【0006】なお、特表平7−508886号公報に
は、帯電シリカコロイドよりなる味増進剤が記載されて
いるが、帯電シリカコロイドで第一鉄イオンを封鎖する
技術思想はない。Japanese Patent Application Laid-Open No. 7-508886 describes a taste enhancer composed of charged silica colloid, but there is no technical idea to block ferrous ions with the charged silica colloid.
【0007】[0007]
【発明が解決しようとする課題】本発明は上記従来の実
情に鑑みてなされたものであって、水中の第一鉄イオン
を封鎖することにより、第一鉄イオンが第二鉄イオンに
酸化されて析出することを防止する第一鉄イオンの封鎖
剤及び封鎖方法を提出することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances. By blocking ferrous ions in water, ferrous ions are oxidized to ferric ions. It is an object of the present invention to submit a ferrous ion blocking agent and a blocking method for preventing precipitation.
【0008】[0008]
【課題を解決するための手段】本発明の第一鉄イオンの
封鎖剤は、二酸化ケイ素コロイド液を磁界領域を通過さ
せて得られた帯電二酸化ケイ素コロイド液からなるもの
である。この封鎖剤は、クエン酸及び/又はクエン酸塩
を含んでいても良い。The ferrous ion sequestering agent according to the present invention comprises a charged silicon dioxide colloid obtained by passing a silicon dioxide colloid through a magnetic field region. The sequestering agent may include citric acid and / or citrate.
【0009】本発明の第一鉄イオンの封鎖方法は、第一
鉄イオンを含む水に、この第一鉄イオンの封鎖剤を添加
することを特徴とする。The method for blocking ferrous ions of the present invention is characterized in that a blocking agent for ferrous ions is added to water containing ferrous ions.
【0010】二酸化ケイ素(シリカ:SiO2 )コロイ
ド液中では、シリカ粒子はSi−O−Si結合により互
いに絡み合った三次元網目構造のコロイド粒子として存
在する。このシリカコロイド液を磁界領域に通過させる
とシリカ粒子はマイナスに帯電する。このようにマイナ
スに帯電したシリカコロイド粒子は、プラスイオンの第
一鉄イオンを吸引する。In a silicon dioxide (silica: SiO 2 ) colloidal liquid, silica particles exist as colloidal particles having a three-dimensional network structure entangled with each other by Si—O—Si bonds. When the silica colloid is passed through the magnetic field region, the silica particles are negatively charged. The silica colloid particles negatively charged as described above attract ferrous ions as positive ions.
【0011】このように、マイナスに帯電した三次元網
目構造のシリカコロイド粒子に第一鉄イオンが吸着する
ことにより該第一鉄イオンが封鎖され(即ち、酸素又は
酸素イオンの第一鉄イオンへの接近が阻止され)、第一
鉄イオンが第二鉄イオンへと酸化されて沈澱として析出
するのを防止すると考えられる。As described above, the ferrous ions are adsorbed by the negatively charged silica colloid particles having a three-dimensional network structure, whereby the ferrous ions are blocked (that is, oxygen or oxygen ions are converted to ferrous ions). To prevent the ferrous ion from being oxidized to ferric ion and being deposited as a precipitate.
【0012】なお、シリカコロイド粒子は、pHの低下
等により更に互いに凝集し合って成長し、ゲル化する
が、ゲル化した粒子では第一鉄イオンが吸着すべき表面
がきわめて少ないため良好な封鎖効果を得ることができ
ない。シリカコロイド液を磁界領域を通過させると、シ
リカコロイド粒子が負に帯電し互いに反発し合うように
なるため、粒子凝集によるゲル化が抑制され優れた封鎖
効果を得ることができる。The silica colloid particles are further aggregated with each other due to a decrease in pH, grow and gel, and the gelled particles have a very small surface on which ferrous ions are to be adsorbed. No effect can be obtained. When the silica colloid liquid is passed through the magnetic field region, the silica colloid particles are negatively charged and repel each other, so that gelation due to particle aggregation is suppressed and an excellent sealing effect can be obtained.
【0013】特に、シリカコロイド液にクエン酸及び/
又はその塩を添加した場合には、三次元網目構造のシリ
カコロイド粒子が安定化され凝集が防止されるようにな
り、きわめて良好な封鎖効果を得ることができる。In particular, citric acid and / or
Alternatively, when a salt thereof is added, the silica colloid particles having a three-dimensional network structure are stabilized and aggregation is prevented, and a very good sealing effect can be obtained.
【0014】[0014]
【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。Embodiments of the present invention will be described below in detail.
【0015】本発明の第一鉄イオンの封鎖剤の帯電シリ
カコロイド液を調製するには、例えば、1〜5Nとくに
3〜4NのNaOH水溶液と10〜40重量%のシリカ
コロイド液を混合した液(以下「被帯電処理液」と称す
場合がある。)を磁界領域に通過させる。この被帯電処
理液を、磁界領域を通過させる前、又は通過している間
に、必要に応じて、コロイド粒子の安定化のためにNa
OHとほぼ等モルのクエン酸及び/又はクエン酸塩を添
加する。その後、必要に応じ酢酸、塩酸等を添加してp
Hを7.6〜8.2に調整し、次いで所定のシリカ濃度
となるように純水などの水で希釈する。In order to prepare the charged silica colloid solution of the ferrous ion sequestering agent of the present invention, for example, a solution obtained by mixing a 1 to 5N, particularly 3 to 4N aqueous NaOH solution and a 10 to 40% by weight silica colloid solution is used. (Hereinafter, may be referred to as a “liquid to be charged”) in a magnetic field region. Before or during the passage of the treatment liquid to be charged through the magnetic field region, if necessary, Na may be used to stabilize the colloid particles.
Add approximately equimolar amounts of citric acid and / or citrate to OH. Then, if necessary, acetic acid, hydrochloric acid, etc.
H is adjusted to 7.6 to 8.2, and then diluted with water such as pure water to a predetermined silica concentration.
【0016】ここで、クエン酸塩としては、クエン酸3
カリウム、クエン酸3ナトリウム等が挙げられる。Here, citric acid 3
Potassium, trisodium citrate and the like.
【0017】また、最終的に得られる帯電シリカコロイ
ド液のシリカ濃度は、過度に高濃度であるとシリカコロ
イドのゲル化の恐れがあり、過度に低濃度であると封鎖
剤としての使用に当り、大量の封鎖剤を添加することが
必要となることから、100〜10000mg/L程度
であることが好ましい。このシリカ濃度において、帯電
シリカコロイド液中のシリカコロイド粒子は、一般に1
0〜100Å程度の大きさの、マイナスに帯電した三次
元網目構造の粒子となっている。If the silica concentration of the finally obtained charged silica colloid solution is too high, the silica colloid may be gelled. If the concentration is too low, the silica colloid may be used as a blocking agent. Since it is necessary to add a large amount of a blocking agent, the amount is preferably about 100 to 10000 mg / L. At this silica concentration, the silica colloid particles in the charged silica colloid liquid generally contain 1
The particles have a negatively charged three-dimensional network structure having a size of about 0 to 100 °.
【0018】なお、上記帯電処理は、シリカコロイド液
を磁界領域と無磁界領域とを交互に通過させるように行
うのが好ましい。このように、磁界領域と無磁界領域と
を交互に通過させると、磁界領域を通過することで帯電
したシリカコロイド粒子が、無磁界領域を通過する間に
粒子上の外的磁力要因が取り除かれ、電荷と内的な粒子
結合状態に応じた形態をとるようになり、コロイド粒子
が安定化される。この安定状態はコロイド粒子が無磁界
領域から出て再び磁界領域を通過するときにも維持され
る。It is preferable that the charging treatment is performed so that the silica colloid liquid passes alternately through a magnetic field region and a non-magnetic field region. As described above, when the magnetic field region and the non-magnetic field region are alternately passed, the silica colloid particles charged by passing through the magnetic field region remove external magnetic force factors on the particles while passing through the non-magnetic field region. As a result, the colloidal particles come to take a form according to the charge and the internal particle bonding state, and the colloid particles are stabilized. This stable state is maintained when the colloid particles exit the non-magnetic field region and pass through the magnetic field region again.
【0019】このような帯電シリカコロイド液は、好ま
しくは、特表平7−508886号公報に記載される装
置を用いて製造される。Such a charged silica colloid liquid is preferably produced using an apparatus described in Japanese Patent Publication No. Hei 7-508886.
【0020】以下に、特表平7−508886号公報記
載の装置を示す図1,2を参照して、本発明に係る帯電
シリカコロイド液の製造方法をより詳細に説明する。Hereinafter, the method for producing a charged silica colloid liquid according to the present invention will be described in more detail with reference to FIGS. 1 and 2 showing an apparatus described in JP-T-7-508886.
【0021】図1は本発明に係る帯電シリカコロイド液
の製造に好適な帯電処理装置の斜視図であり、図2は図
1の−線に沿う断面図である。FIG. 1 is a perspective view of a charging apparatus suitable for producing a charged silica colloid liquid according to the present invention, and FIG. 2 is a cross-sectional view taken along the line-in FIG.
【0022】混合容器10は支持脚12にネジ13によ
って固定され、基礎台11の上方に固定されている。上
板14は支持脚12の上部に搭載され混合容器10の上
方の位置でモータ15を支持している。シャフト16は
モータ15から下方に延び、混合容器10内の混合羽根
17を保持している。混合容器10の下部は下方に縮径
する円錐形状である。混合容器10と支持脚12はプラ
スチックや木材等の非磁性材料で製造することが好まし
い。The mixing vessel 10 is fixed to the support legs 12 by screws 13 and is fixed above the base 11. The upper plate 14 is mounted on the support legs 12 and supports the motor 15 at a position above the mixing container 10. The shaft 16 extends downward from the motor 15 and holds a mixing blade 17 in the mixing container 10. The lower portion of the mixing vessel 10 has a conical shape whose diameter is reduced downward. The mixing container 10 and the support legs 12 are preferably made of a non-magnetic material such as plastic or wood.
【0023】混合容器10の下方には、電磁石30A,
30B,30C,30Dの支持台18が設置されてい
る。Below the mixing vessel 10, electromagnets 30A,
The support tables 18 of 30B, 30C, and 30D are installed.
【0024】また、混合容器10の下部円錐部10aの
下端から、非磁性材料製の循環配管20(20A)が円
錐部10aの上方に延び、この循環配管20は更に、円
錐部10aの外側面に上方から下方に螺旋状に巻き付け
られている(なお、この螺旋状部20Bは、液体容器か
ら液体が排水口を通して通常に排水されるときに渦巻く
方向、即ち、北半球においては反時計回り、南半球にお
いては時計回りに循環するように設計されていることが
望ましい。)。循環配管20は、この螺旋状部20Bの
下部から、更に、支持台18の上板の中央の開孔18A
を通って、ポンプ25に延び、ポンプ25から更に、分
岐配管21の取付部22を経て混合容器10の上部開口
に延設されている。23は分岐配管21の流量調整バル
ブであり、15A,25Aはそれぞれモータ15、ポン
プ25に駆動電力を供給するコードである。また、31
は電磁石30A〜30Dに電力を供給する直流電源であ
り、31A,31Bはコードである。From the lower end of the lower conical portion 10a of the mixing vessel 10, a circulating pipe 20 (20A) made of a non-magnetic material extends above the conical section 10a. (It should be noted that the spiral portion 20B has a spiraling direction when the liquid is normally drained from the liquid container through the drain port, that is, the spiral direction is counterclockwise in the northern hemisphere, and is in the southern hemisphere. Is desirably designed to circulate clockwise.) The circulation pipe 20 extends from the lower part of the spiral part 20B to the opening 18A at the center of the upper plate of the support base 18.
, And extends to the pump 25, and further extends from the pump 25 to the upper opening of the mixing vessel 10 via the mounting portion 22 of the branch pipe 21. Reference numeral 23 denotes a flow control valve of the branch pipe 21, and reference numerals 15A and 25A denote cords for supplying drive power to the motor 15 and the pump 25, respectively. Also, 31
Is a DC power supply for supplying power to the electromagnets 30A to 30D, and 31A and 31B are cords.
【0025】4個の電磁石30A,30B,30C及び
30Dは、その底部が支持台18上の上板に設けられた
凹部にはめ込まれ、支持台18上に安定的に搭載されて
いる。電磁石30A〜30Dは、各々の磁極が同一平面
上に存在し、かつその平面内で四角形の頂点を形成する
ように配列される。好適には、この四角形は図示のごと
く正方形である。隣り合う電磁石の磁性は互いに反対磁
極とされ、このような配列によって、例えば電磁石30
Bと30Dの2個の正の磁極は四角形の1対の対頂部を
形成し、電磁石30Aと30Cの2個の負の磁極は他の
1対の対頂部を形成する。磁極の各々は反対磁性の2個
の隣接磁極によって磁石的に引き付けられ、対頂部の同
一磁極とは反発する。これら4個の電磁石30A〜30
Dは互いに球状磁的影響領域を発生するが、その殆どは
電磁石の上方に広がって、電磁石の極を含む平面上方に
磁界を形成し、循環配管20の螺旋状部20Bを包囲す
る。従って、帯電処理工程において被帯電処理液はこの
循環配管20の螺旋状部20Bを流通するときに、磁界
の磁力線を横断する。そして、この磁力線の横断によっ
て、被帯電処理液中のコロイド粒子は全体としてマイナ
スに帯電する。The four electromagnets 30A, 30B, 30C and 30D have their bottoms fitted into recesses provided in the upper plate on the support base 18 and are stably mounted on the support base 18. The electromagnets 30 </ b> A to 30 </ b> D are arranged such that each magnetic pole is on the same plane and forms a quadrangular vertex in the plane. Preferably, the square is a square as shown. Adjacent electromagnets have opposite magnetic poles, and such an arrangement allows the electromagnet 30
The two positive poles of B and 30D form a pair of square tops, and the two negative poles of electromagnets 30A and 30C form another pair of tops. Each pole is magnetically attracted by two adjacent poles of opposite magnetism and repels the same pole at the top. These four electromagnets 30A-30
D generate spherical magnetically affected areas, most of which extend above the electromagnet, form a magnetic field above a plane containing the poles of the electromagnet, and surround the helical portion 20B of the circulation pipe 20. Accordingly, in the charging process, the liquid to be charged crosses the magnetic field lines of the magnetic field when flowing through the spiral portion 20B of the circulation pipe 20. The colloidal particles in the liquid to be charged are negatively charged as a whole by traversing the lines of magnetic force.
【0026】なお、電磁石30A〜30D間の中央領域
30の少なくとも一部は実質的に無磁界領域である。即
ち、磁界は電磁石30A〜30Dの上方と下方(ただ
し、支持台18がステンレスのような磁性体で形成され
ている場合は、下方の磁界は支持台18によって吸収さ
れる。)に形成されるが、これら電磁石30A〜30D
間の中央部30は実質的に全ての磁界(地球磁界をも含
む)から遮断されている。It should be noted that at least a part of the central region 30 between the electromagnets 30A to 30D is a substantially magnetic field-free region. That is, the magnetic field is formed above and below the electromagnets 30A to 30D (however, when the support 18 is made of a magnetic material such as stainless steel, the lower magnetic field is absorbed by the support 18). However, these electromagnets 30A to 30D
The central portion 30 between them is isolated from substantially all magnetic fields (including the earth's magnetic field).
【0027】従って、被帯電処理液は、循環配管20の
螺旋状部20Bから下方に伸びる鉛直部20Cを流通す
る際に、支持台18の開孔18A部を通過する直前に、
この電磁石30A〜30D間の中央部の無電界領域30
を通過する。Therefore, when the liquid to be charged flows through the vertical portion 20 C extending downward from the spiral portion 20 B of the circulation pipe 20, immediately before passing through the opening 18 A of the support base 18,
The non-electric field region 30 at the center between the electromagnets 30A to 30D
Pass through.
【0028】なお、安定な無電界領域を形成するため
に、4個の電磁石30A〜30Dは、同一の磁力を有
し、互いに同軸的に、かつ等間隔で配置されていること
が望ましい。In order to form a stable non-electric field region, it is desirable that the four electromagnets 30A to 30D have the same magnetic force, are coaxial with each other, and are arranged at equal intervals.
【0029】上述の如く、被帯電処理液のシリカコロイ
ド粒子は循環配管20の螺旋状部20Bを通過するとき
に帯電し、帯電した粒子が循環配管20の鉛直部20C
の無磁界領域を通過するとき、コロイド粒子上の外的磁
力要因は取り除かれ、粒子はその電荷と内的な粒子結合
状態に応じた形態をとるようになり、比較的安定した状
態となる。この安定状態はコロイド粒子が無磁界領域か
ら出てくるときにも(電磁石30A〜30Dの下方にも
磁界が形成されているときには、更に、コロイド粒子が
この下方の磁界を通過するときにも)維持される。特
に、被帯電処理液流中にクエン酸又はその塩が含まれて
いる場合には、コロイド粒子の安定状態はより一層高め
られる。As described above, the silica colloid particles of the liquid to be charged are charged when passing through the spiral portion 20B of the circulation pipe 20, and the charged particles are charged in the vertical section 20C of the circulation pipe 20.
When passing through the no-magnetic-field region, the external magnetic force factor on the colloid particles is removed, and the particles take a form according to their charge and the internal particle bonding state, and become relatively stable. This stable state occurs even when the colloid particles come out of the non-magnetic field region (when a magnetic field is also formed below the electromagnets 30A to 30D, and also when the colloid particles pass below the magnetic field). Will be maintained. In particular, when the liquid to be charged contains citric acid or a salt thereof, the stable state of the colloid particles is further enhanced.
【0030】電磁石30A〜30Dとしては、各々約2
000〜3000ガウスの磁力を有する電磁石であれ
ば、十分な帯電処理を行える。なお、電磁石の数は4個
に限らず、安定な無磁界領域を形成するような配置であ
れば、その個数は任意である。また、電磁石の代りに永
久磁石を用いてもよい。Each of the electromagnets 30A to 30D has about 2
An electromagnet having a magnetic force of 000 to 3000 Gauss can perform a sufficient charging process. Note that the number of electromagnets is not limited to four, and the number is arbitrary as long as it is arranged to form a stable non-magnetic field region. Further, a permanent magnet may be used instead of the electromagnet.
【0031】このような帯電処理装置を用いて帯電シリ
カコロイド液を製造するには、まず、混合容器10を純
水で満たす。そして、ポンプ25により純水を、混合容
器10から循環配管20を流通させ磁界領域と無磁界領
域とを通過させて混合容器10へと戻す工程を10〜2
00分間行う。次に、3〜4NのNaOH水溶液とシリ
カコロイド液との混合液をSiO2 濃度として100〜
10000mg/Lとなるように加える。そして、この
被帯電処理液を1〜5時間循環させ、磁界領域と無磁界
領域とを通過させる。この循環工程中に、NaOHと等
モルのクエン酸又はその塩を、徐々に添加する。次い
で、この溶液のpHをpH7.6〜8.2に調整する。
この調整された溶液を、更に1〜3時間循環させる。得
られた溶液を純水によって希釈し、所望の帯電シリカコ
ロイド液を作る。In order to produce a charged silica colloid liquid using such a charging apparatus, first, the mixing vessel 10 is filled with pure water. The pump 25 returns the pure water from the mixing vessel 10 through the circulation pipe 20 through the magnetic field region and the non-magnetic field region to return to the mixing vessel 10 by 10-2.
Perform for 00 minutes. Next, a mixed solution of a 3 to 4 N NaOH aqueous solution and a silica colloid solution was used as a SiO 2 concentration of 100 to 100
Add so as to be 10,000 mg / L. The liquid to be charged is circulated for 1 to 5 hours to pass through the magnetic field region and the non-magnetic field region. During this circulation step, citric acid or a salt thereof equimolar to NaOH is gradually added. Next, the pH of this solution is adjusted to pH 7.6 to 8.2.
The conditioned solution is circulated for an additional 1-3 hours. The obtained solution is diluted with pure water to prepare a desired charged silica colloid solution.
【0032】得られた帯電シリカコロイド液は、バルブ
23を開として、分岐配管21より取り出す。The obtained charged silica colloid liquid is taken out from the branch pipe 21 with the valve 23 opened.
【0033】次に、このような帯電シリカコロイド液よ
りなる封鎖剤を用いる本発明の第一鉄イオンの封鎖方法
について図3を参照して説明する。Next, a method for blocking ferrous ions of the present invention using a blocking agent comprising such a charged colloidal silica solution will be described with reference to FIG.
【0034】図3は、汚染地下水の処理系統に本発明の
封鎖方法を適用した実施の形態を示す系統図であり、揚
水ポンプで汲み上げられた汚染地下水は、まず曝気塔4
1で空気と向流接触し、これにより含有される有機塩素
化合物等の揮発性汚染物質が揮散する。この揮発性汚染
物質を含むガスは送風機42により活性炭吸着塔43に
送給され、活性炭で揮発性汚染物質を吸着除去した後、
排ガスは系外へ排出される。揮発性汚染物質が除去され
た処理水は曝気塔41の下部より排出される。FIG. 3 is a system diagram showing an embodiment in which the sealing method of the present invention is applied to the treatment system of the contaminated groundwater. The contaminated groundwater pumped up by the pump is first supplied to the aeration tower 4.
At 1 the gas comes into countercurrent contact with the air, whereby volatile contaminants such as organochlorine compounds are volatilized. The gas containing the volatile contaminants is sent to the activated carbon adsorption tower 43 by the blower 42, and after the volatile contaminants are adsorbed and removed by the activated carbon,
The exhaust gas is discharged out of the system. The treated water from which the volatile contaminants have been removed is discharged from the lower part of the aeration tower 41.
【0035】本実施の形態では、曝気塔41に供給され
る汚染地下水に、封鎖剤貯槽44からポンプ45により
封鎖剤を添加し、曝気塔41における第一鉄イオンの酸
化による鉄の沈澱の析出を防止する。In the present embodiment, a blocking agent is added to the contaminated groundwater supplied to the aeration tower 41 by a pump 45 from a blocking agent storage tank 44, and the precipitation of iron precipitates by oxidation of ferrous ions in the aeration tower 41 To prevent
【0036】この場合、封鎖剤は、第一鉄イオン濃度1
mg/Lに対してシリカ0.1〜20mg/Lとなるよ
うに添加するのが好ましい。In this case, the blocking agent has a ferrous ion concentration of 1
It is preferable to add silica in an amount of 0.1 to 20 mg / L with respect to mg / L.
【0037】帯電シリカコロイド液は、第一鉄イオン含
有水に添加されると直ちに第一鉄イオンの封鎖作用を発
揮し、鉄沈澱の析出を効果的に防止する。As soon as the charged silica colloid liquid is added to the ferrous ion-containing water, the charged silica colloid liquid exerts a function of blocking ferrous ions and effectively prevents the precipitation of iron precipitates.
【0038】なお、本発明の処理対象とする第一鉄イオ
ン含有水としては、上述の汚染地下水の他、冷却水系の
補給水としての地下水等の第一鉄イオン含有水が挙げら
れる。The ferrous ion-containing water to be treated in the present invention includes, in addition to the above-mentioned contaminated groundwater, ferrous ion-containing water such as groundwater as makeup water for a cooling water system.
【0039】本発明によれば、このような第一鉄イオン
含有水に、適当量の帯電シリカコロイド液を添加するの
みで、特別な設備や操作を必要とすることなく、鉄沈澱
の析出を防止することができる。According to the present invention, the precipitation of iron precipitates can be achieved without adding any special equipment or operation only by adding an appropriate amount of the charged silica colloid to such ferrous ion-containing water. Can be prevented.
【0040】[0040]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。The present invention will be described more specifically below with reference to examples and comparative examples.
【0041】実施例1〜6,比較例1,2 図1,2に示す装置を用いて、帯電シリカコロイド液を
調製した。Examples 1 to 6, Comparative Examples 1 and 2 A charged silica colloid solution was prepared using the apparatus shown in FIGS.
【0042】まず、混合容器10に純水5Lを入れ、緩
速撹拌下、この純水を混合容器10から電磁石30A〜
30Dで発生する磁界領域と無磁界領域とをを通過させ
て再び混合容器10へと戻す工程を30分間行った。そ
の後、3モル濃度のNaOH水溶液内に27重量%のシ
リカを混合したシリカ溶液1Lをこの混合容器10内に
添加し、上記と同様に約4時間循環させた。First, 5 L of pure water is put into the mixing vessel 10, and the pure water is removed from the electromagnets 30 A to 30 A with gentle stirring.
A step of passing through the magnetic field region generated at 30D and the non-magnetic field region and returning the mixed container to the mixing container 10 again was performed for 30 minutes. Thereafter, 1 L of a silica solution obtained by mixing 27% by weight of silica in a 3 molar NaOH aqueous solution was added to the mixing vessel 10, and the mixture was circulated for about 4 hours in the same manner as described above.
【0043】この循環途中において、混合容器10にク
エン酸3カリウムをNaOHと等モル濃度となるように
添加した。この4時間の循環後に、溶液のpHが7.6
8となるように酢酸を添加し、その後更に2時間循環さ
せた。During this circulation, tripotassium citrate was added to the mixing vessel 10 so as to have an equimolar concentration with NaOH. After this 4 hour circulation, the pH of the solution is 7.6.
Acetic acid was added so as to be 8, and then circulated for another 2 hours.
【0044】その後、混合容器10内に更に純水を加え
てシリカ濃度500mg/Lの帯電シリカコロイド液を
得た。Thereafter, pure water was further added into the mixing vessel 10 to obtain a charged silica colloid liquid having a silica concentration of 500 mg / L.
【0045】得られた帯電シリカコロイド液を、表1に
示す第一鉄イオン濃度の汚染地下水に、表1に示す量添
加し(ただし、比較例1,2では帯電シリカコロイド液
を添加せず。)、その後この汚染地下水を250mLの
容器内で曝気処理した。The obtained charged silica colloid solution was added to contaminated groundwater having a ferrous ion concentration shown in Table 1 in an amount shown in Table 1 (however, in Comparative Examples 1 and 2, the charged silica colloid solution was not added. ), And then the contaminated groundwater was aerated in a 250 mL container.
【0046】容器内の沈澱の析出状況を目視にて観察
し、結果を表1に示した。The state of precipitation in the container was visually observed, and the results are shown in Table 1.
【0047】[0047]
【表1】 [Table 1]
【0048】表1より、本発明によれば第一鉄イオンを
封鎖して鉄の沈澱の析出を防止できることがわかる。Table 1 shows that according to the present invention, ferrous ions can be blocked to prevent precipitation of iron precipitate.
【0049】[0049]
【発明の効果】以上詳述した通り、本発明の第一鉄イオ
ンの封鎖剤及び封鎖方法によれば、第一鉄イオンを含む
水に本発明の封鎖剤を添加するのみで、第一鉄イオンを
封鎖して、第一鉄イオンが第二鉄イオンに酸化されて沈
澱となって析出するのを防止することができる。As described above in detail, according to the ferrous ion-sequestering agent and the method of the present invention, the ferrous ion-sequestering water is simply added to the ferrous ion-containing water. By blocking the ions, it is possible to prevent ferrous ions from being oxidized to ferric ions to form a precipitate.
【0050】このため、本発明によれば、特別な第一鉄
イオンの除去設備や沈澱の除去作業等を必要とすること
なく、鉄沈澱による配管の閉塞等の障害を容易に防止す
ることができる。Therefore, according to the present invention, it is possible to easily prevent an obstruction such as a blockage of a pipe due to an iron precipitate without requiring a special equipment for removing ferrous ions or a work for removing a precipitate. it can.
【図1】本発明の封鎖剤の製造に好適な帯電処理装置の
斜視図である。FIG. 1 is a perspective view of a charging apparatus suitable for producing a sealing agent of the present invention.
【図2】図1の−線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line-of FIG.
【図3】本発明の第一鉄イオンの封鎖方法の実施の形態
を示す系統図である。FIG. 3 is a system diagram showing an embodiment of the method for blocking ferrous ions of the present invention.
10 混合容器 10a 円錐部 15 モータ 20 循環配管 20B 螺旋状部 25 ポンプ 30A,30B,30C,30D 電磁石 31 直流電源 41 曝気塔 43 活性炭吸着塔 44 封鎖剤貯槽 DESCRIPTION OF SYMBOLS 10 Mixing container 10a Conical part 15 Motor 20 Circulation pipe 20B Spiral part 25 Pump 30A, 30B, 30C, 30D Electromagnet 31 DC power supply 41 Aeration tower 43 Activated carbon adsorption tower 44 Sealant storage tank
Claims (3)
過させて得られた帯電二酸化ケイ素コロイド液からなる
水中の第一鉄イオンの封鎖剤。1. A sequestering agent for ferrous ions in water, comprising a charged silicon dioxide colloid solution obtained by passing a silicon dioxide colloid solution through a magnetic field region.
クエン酸塩を含有することを特徴とする水中の第一鉄イ
オンの封鎖剤。2. The sequestering agent for ferrous ions in water according to claim 1, further comprising citric acid and / or citrate.
2の封鎖剤を添加する第一鉄イオンの封鎖方法。3. A method for blocking ferrous ions, wherein the blocking agent according to claim 1 is added to water containing ferrous ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17710597A JP3422223B2 (en) | 1997-07-02 | 1997-07-02 | Ferrous ion blocking agent and blocking method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17710597A JP3422223B2 (en) | 1997-07-02 | 1997-07-02 | Ferrous ion blocking agent and blocking method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1119688A true JPH1119688A (en) | 1999-01-26 |
JP3422223B2 JP3422223B2 (en) | 2003-06-30 |
Family
ID=16025245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17710597A Expired - Fee Related JP3422223B2 (en) | 1997-07-02 | 1997-07-02 | Ferrous ion blocking agent and blocking method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3422223B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6245439B1 (en) | 1994-08-09 | 2001-06-12 | Kabushiki Kaisha Toyoyta Chuo Kenkyusho | composite material and method for the manufacture |
-
1997
- 1997-07-02 JP JP17710597A patent/JP3422223B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6245439B1 (en) | 1994-08-09 | 2001-06-12 | Kabushiki Kaisha Toyoyta Chuo Kenkyusho | composite material and method for the manufacture |
Also Published As
Publication number | Publication date |
---|---|
JP3422223B2 (en) | 2003-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102264631B (en) | Magnetic nano-particle is utilized to carry out the method for liquid purifying | |
JPH0518635B2 (en) | ||
US20170266670A1 (en) | Liquid purification using magnetic nanoparticles | |
JP2005518280A5 (en) | ||
US20190193088A1 (en) | Liquid purification using magnetic nanoparticles | |
US6797159B2 (en) | Apparatus for recirculating vortex water fountain | |
JPH1119688A (en) | Ferrous ion chelating agent and chelating method | |
CN107935149A (en) | The stain disease processing method and system of coagulation flco reflux | |
JP3478321B2 (en) | Activated sludge settling promoter and activated sludge treatment method for wastewater using the same | |
KR101461128B1 (en) | System for water treatment with magnetic air treatment device using turbulent flow | |
JP3500925B2 (en) | Agglomeration treatment method and apparatus | |
JP3793937B2 (en) | Silicon wafer polishing wastewater treatment method | |
JP7475025B2 (en) | Water containing oxygen-containing nanoparticles | |
JP2002102894A (en) | Method for cleaning water by micronizing water molecule cluster and method for reducing sludge | |
JPH0642957B2 (en) | Hot spring water scale control method and hot spring water scale control device | |
JPH07284792A (en) | Method and apparatus for treatment waste water | |
KR101943703B1 (en) | Laccase encapsultaed magnetic Cu-alginate beads and the method of bioremediation of water pollutants using the same | |
JP2002219467A (en) | Water treatment system | |
CN110642446A (en) | Method and equipment for treating desulfurization wastewater | |
JPS624197B2 (en) | ||
JP3512108B2 (en) | Cooling water treatment method and treatment device | |
JPS63116797A (en) | Device for treating red water in water storage tank | |
JP2002361288A (en) | Scale preventing method for cooling water system | |
JP4088165B2 (en) | Purification device for cooling water circulation system for air conditioning | |
JP4043739B2 (en) | Electromagnetic treatment method and apparatus for circulating water in cooling tower |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |