JP3422223B2 - Ferrous ion blocking agent and blocking method - Google Patents

Ferrous ion blocking agent and blocking method

Info

Publication number
JP3422223B2
JP3422223B2 JP17710597A JP17710597A JP3422223B2 JP 3422223 B2 JP3422223 B2 JP 3422223B2 JP 17710597 A JP17710597 A JP 17710597A JP 17710597 A JP17710597 A JP 17710597A JP 3422223 B2 JP3422223 B2 JP 3422223B2
Authority
JP
Japan
Prior art keywords
magnetic field
charged
blocking
silica
ferrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17710597A
Other languages
Japanese (ja)
Other versions
JPH1119688A (en
Inventor
康有 美坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17710597A priority Critical patent/JP3422223B2/en
Publication of JPH1119688A publication Critical patent/JPH1119688A/en
Application granted granted Critical
Publication of JP3422223B2 publication Critical patent/JP3422223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水中の第一鉄イオ
ンを封鎖するための封鎖剤及び封鎖方法に係り、詳しく
は汲み上げた地下水などに含まれる第一鉄イオンが第二
鉄イオンに酸化されて析出することを防止する第一鉄イ
オンの封鎖剤及び封鎖方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blocking agent and a blocking method for blocking ferrous ions in water, and more specifically, ferrous ions contained in pumped groundwater are oxidized to ferric ions. The present invention relates to a ferrous ion sequestering agent and a method for sequestering the ferrous ion.

【0002】[0002]

【従来の技術】揮発性有機塩素化合物等の揮発性汚染物
質により汚染された地下水の揚水設備では、含有される
揮発性汚染物質を除去するために曝気装置が設けられ、
曝気処理により揮発性汚染物質を除去した後、放水され
ている。この場合、地下水中には還元状態で第一鉄イオ
ンが含まれているため、この第一鉄イオンが曝気処理で
第二鉄イオンに酸化され、沈澱となって曝気装置や後段
の設備等の配管や放水路等において堆積し、これらの設
備を閉塞させるなどの障害をもたらす。
2. Description of the Related Art In a groundwater pumping facility contaminated with volatile pollutants such as volatile organic chlorine compounds, an aeration device is provided to remove the volatile pollutants contained therein.
After removing volatile pollutants by aeration treatment, water is discharged. In this case, since ferrous ions are contained in the groundwater in a reduced state, the ferrous ions are oxidized to ferric ions in the aeration process and become a precipitate, which causes the aeration device and the equipment in the subsequent stage to be exposed. It accumulates in pipes and drainage channels, and causes obstacles such as blocking these facilities.

【0003】このため、曝気装置の前段に、地下水中の
第一鉄イオンを第二鉄イオンに酸化して凝集処理し、沈
澱を固液分離する除鉄装置を設けたり、定期的に或いは
必要に応じて曝気装置の内部洗浄を行ったりして上記障
害を防止している。
For this reason, an iron removing device for oxidizing ferrous ions in groundwater into ferric ions for aggregating treatment and solid-liquid separation of precipitates is provided in front of the aeration device, or periodically or as necessary. Depending on the situation, the inside of the aeration device is washed to prevent the above-mentioned trouble.

【0004】このような鉄の沈澱による問題は、地下水
を補給水とする冷却水系においても起こり得る。
Such a problem due to the precipitation of iron can occur in a cooling water system using groundwater as makeup water.

【0005】このようなことから、特別な装置や操作を
要することなく、第一鉄イオンが第二鉄イオンに酸化さ
れることによる鉄の沈澱の生成を防止する技術の開発が
望まれている。
Therefore, there is a demand for the development of a technique for preventing the formation of iron precipitates due to the oxidation of ferrous ions to ferric ions without requiring any special equipment or operation. .

【0006】なお、特表平7−508886号公報に
は、帯電シリカコロイドよりなる味増進剤が記載されて
いるが、帯電シリカコロイドで第一鉄イオンを封鎖する
技術思想はない。
In addition, Japanese Patent Publication No. 7-508886 discloses a taste enhancer composed of a charged silica colloid, but there is no technical idea of blocking ferrous ions with the charged silica colloid.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記従来の実
情に鑑みてなされたものであって、水中の第一鉄イオン
を封鎖することにより、第一鉄イオンが第二鉄イオンに
酸化されて析出することを防止する第一鉄イオンの封鎖
剤及び封鎖方法を提出することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and by blocking the ferrous ion in water, the ferrous ion is oxidized to ferric ion. The purpose of the present invention is to provide a sequestering agent for ferrous ions and a sequestering method for preventing the precipitation thereof.

【0008】[0008]

【課題を解決するための手段】本発明の第一鉄イオンの
封鎖剤は、二酸化ケイ素コロイド液を磁界領域を通過さ
せて得られた帯電二酸化ケイ素コロイド液からなる水中
の第一鉄イオンの封鎖剤であって、クエン酸及び/又は
クエン酸塩を含有することを特徴とする。
The ferrous ion sequestering agent of the present invention is an aqueous solution of a charged silicon dioxide colloidal solution obtained by passing a silicon dioxide colloidal solution through a magnetic field region.
And a citric acid and / or citrate .

【0009】本発明の第一鉄イオンの封鎖方法は、第一
鉄イオンを含む水に、この第一鉄イオンの封鎖剤を添加
することを特徴とする。
The method for sequestering ferrous ions of the present invention is characterized in that the sequestering agent for ferrous ions is added to water containing ferrous ions.

【0010】二酸化ケイ素(シリカ:SiO2 )コロイ
ド液中では、シリカ粒子はSi−O−Si結合により互
いに絡み合った三次元網目構造のコロイド粒子として存
在する。このシリカコロイド液を磁界領域に通過させる
とシリカ粒子はマイナスに帯電する。このようにマイナ
スに帯電したシリカコロイド粒子は、プラスイオンの第
一鉄イオンを吸引する。
In the silicon dioxide (silica: SiO 2 ) colloidal solution, the silica particles are present as colloidal particles having a three-dimensional network structure in which they are entangled with each other by Si--O--Si bonds. When the silica colloidal liquid is passed through the magnetic field region, the silica particles are negatively charged. Thus, the negatively charged silica colloidal particles attract the positive ferrous iron ions.

【0011】このように、マイナスに帯電した三次元網
目構造のシリカコロイド粒子に第一鉄イオンが吸着する
ことにより該第一鉄イオンが封鎖され(即ち、酸素又は
酸素イオンの第一鉄イオンへの接近が阻止され)、第一
鉄イオンが第二鉄イオンへと酸化されて沈澱として析出
するのを防止すると考えられる。
As described above, the adsorption of ferrous ions on the negatively charged silica colloidal particles having a three-dimensional network structure sequesters the ferrous ions (ie, oxygen or oxygen ions to ferrous ions). It is considered that the ferrous ion is prevented from being oxidized to ferric ion and deposited as a precipitate.

【0012】なお、シリカコロイド粒子は、pHの低下
等により更に互いに凝集し合って成長し、ゲル化する
が、ゲル化した粒子では第一鉄イオンが吸着すべき表面
がきわめて少ないため良好な封鎖効果を得ることができ
ない。シリカコロイド液を磁界領域を通過させると、シ
リカコロイド粒子が負に帯電し互いに反発し合うように
なるため、粒子凝集によるゲル化が抑制され優れた封鎖
効果を得ることができる。
The silica colloidal particles further agglomerate and grow with each other due to a decrease in pH and grow into a gel, but the gelled particles have a very small surface on which ferrous ions should be adsorbed, which results in good blocking. You can't get the effect. When the silica colloid liquid passes through the magnetic field region, the silica colloid particles are negatively charged and repel each other, so that gelation due to particle aggregation is suppressed and an excellent blocking effect can be obtained.

【0013】特に、シリカコロイド液クエン酸及び/
又はその塩を含むため、三次元網目構造のシリカコロイ
ド粒子が安定化され凝集が防止されるようになり、きわ
めて良好な封鎖効果を得ることができる。
In particular, the silica colloidal solution is citric acid and / or
Alternatively, since it contains a salt thereof, the silica colloidal particles having a three-dimensional network structure are stabilized and agglomeration is prevented, and a very good blocking effect can be obtained.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0015】本発明の第一鉄イオンの封鎖剤の帯電シリ
カコロイド液を調製するには、例えば、1〜5Nとくに
3〜4NのNaOH水溶液と10〜40重量%のシリカ
コロイド液を混合した液(以下「被帯電処理液」と称す
場合がある。)を磁界領域に通過させる。この被帯電処
理液を、磁界領域を通過させる前、又は通過している間
に、必要に応じて、コロイド粒子の安定化のためにNa
OHとほぼ等モルのクエン酸及び/又はクエン酸塩を添
加する。その後、必要に応じ酢酸、塩酸等を添加してp
Hを7.6〜8.2に調整し、次いで所定のシリカ濃度
となるように純水などの水で希釈する。
To prepare the charged silica colloidal solution of the ferrous ion sequestering agent of the present invention, for example, a solution prepared by mixing 1 to 5N, especially 3 to 4N NaOH aqueous solution and 10 to 40% by weight of silica colloidal solution. (Hereinafter, it may be referred to as a "charged liquid".) Is passed through the magnetic field region. Before or during passing through the magnetic field region, the liquid to be charged may be adjusted with Na to stabilize the colloidal particles, if necessary.
Approximately equimolar to OH is added citric acid and / or citrate. After that, add acetic acid, hydrochloric acid, etc. if necessary.
H is adjusted to 7.6 to 8.2, and then diluted with water such as pure water so as to have a predetermined silica concentration.

【0016】ここで、クエン酸塩としては、クエン酸3
カリウム、クエン酸3ナトリウム等が挙げられる。
Here, the citric acid salt is citric acid 3
Examples thereof include potassium and trisodium citrate.

【0017】また、最終的に得られる帯電シリカコロイ
ド液のシリカ濃度は、過度に高濃度であるとシリカコロ
イドのゲル化の恐れがあり、過度に低濃度であると封鎖
剤としての使用に当り、大量の封鎖剤を添加することが
必要となることから、100〜10000mg/L程度
であることが好ましい。このシリカ濃度において、帯電
シリカコロイド液中のシリカコロイド粒子は、一般に1
0〜100Å程度の大きさの、マイナスに帯電した三次
元網目構造の粒子となっている。
If the silica concentration of the finally obtained charged silica colloidal solution is excessively high, the silica colloid may gel, and if it is excessively low, it may be used as a blocking agent. Since it is necessary to add a large amount of the sequestering agent, it is preferably about 100 to 10,000 mg / L. At this silica concentration, the silica colloid particles in the charged silica colloid solution generally have a particle size of 1
The particles are negatively charged and have a three-dimensional mesh structure with a size of 0 to 100Å.

【0018】なお、上記帯電処理は、シリカコロイド液
を磁界領域と無磁界領域とを交互に通過させるように行
うのが好ましい。このように、磁界領域と無磁界領域と
を交互に通過させると、磁界領域を通過することで帯電
したシリカコロイド粒子が、無磁界領域を通過する間に
粒子上の外的磁力要因が取り除かれ、電荷と内的な粒子
結合状態に応じた形態をとるようになり、コロイド粒子
が安定化される。この安定状態はコロイド粒子が無磁界
領域から出て再び磁界領域を通過するときにも維持され
る。
The above-mentioned charging treatment is preferably carried out so that the silica colloidal liquid passes through the magnetic field regions and the non-magnetic field regions alternately. As described above, when the magnetic field region and the non-magnetic field region are alternately passed, the silica colloidal particles charged by passing through the magnetic field region remove the external magnetic force factor on the particle while passing through the non-magnetic field region. , The colloidal particles are stabilized by taking a morphology according to the electric charge and the internal particle binding state. This stable state is maintained even when the colloidal particles leave the non-magnetic field region and again pass through the magnetic field region.

【0019】このような帯電シリカコロイド液は、好ま
しくは、特表平7−508886号公報に記載される装
置を用いて製造される。
Such a charged silica colloidal solution is preferably produced by using the apparatus described in JP-A-7-508886.

【0020】以下に、特表平7−508886号公報記
載の装置を示す図1,2を参照して、本発明に係る帯電
シリカコロイド液の製造方法をより詳細に説明する。
Hereinafter, the method for producing a charged silica colloidal solution according to the present invention will be described in more detail with reference to FIGS. 1 and 2 showing the apparatus described in Japanese Patent Publication No. 7-508886.

【0021】図1は本発明に係る帯電シリカコロイド液
の製造に好適な帯電処理装置の斜視図であり、図2は図
1の−線に沿う断面図である。
FIG. 1 is a perspective view of a charging treatment apparatus suitable for producing a charged silica colloidal liquid according to the present invention, and FIG. 2 is a sectional view taken along line-in FIG.

【0022】混合容器10は支持脚12にネジ13によ
って固定され、基礎台11の上方に固定されている。上
板14は支持脚12の上部に搭載され混合容器10の上
方の位置でモータ15を支持している。シャフト16は
モータ15から下方に延び、混合容器10内の混合羽根
17を保持している。混合容器10の下部は下方に縮径
する円錐形状である。混合容器10と支持脚12はプラ
スチックや木材等の非磁性材料で製造することが好まし
い。
The mixing container 10 is fixed to the supporting legs 12 by screws 13 and fixed above the base 11. The upper plate 14 is mounted on the upper portion of the support leg 12 and supports the motor 15 at a position above the mixing container 10. The shaft 16 extends downward from the motor 15 and holds a mixing blade 17 in the mixing container 10. The lower portion of the mixing container 10 has a conical shape whose diameter is reduced downward. The mixing container 10 and the support legs 12 are preferably made of a non-magnetic material such as plastic or wood.

【0023】混合容器10の下方には、電磁石30A,
30B,30C,30Dの支持台18が設置されてい
る。
Below the mixing container 10, electromagnets 30A,
30B, 30C, 30D support stand 18 is installed.

【0024】また、混合容器10の下部円錐部10aの
下端から、非磁性材料製の循環配管20(20A)が円
錐部10aの上方に延び、この循環配管20は更に、円
錐部10aの外側面に上方から下方に螺旋状に巻き付け
られている(なお、この螺旋状部20Bは、液体容器か
ら液体が排水口を通して通常に排水されるときに渦巻く
方向、即ち、北半球においては反時計回り、南半球にお
いては時計回りに循環するように設計されていることが
望ましい。)。循環配管20は、この螺旋状部20Bの
下部から、更に、支持台18の上板の中央の開孔18A
を通って、ポンプ25に延び、ポンプ25から更に、分
岐配管21の取付部22を経て混合容器10の上部開口
に延設されている。23は分岐配管21の流量調整バル
ブであり、15A,25Aはそれぞれモータ15、ポン
プ25に駆動電力を供給するコードである。また、31
は電磁石30A〜30Dに電力を供給する直流電源であ
り、31A,31Bはコードである。
Further, a circulation pipe 20 (20A) made of a non-magnetic material extends above the cone portion 10a from the lower end of the lower cone portion 10a of the mixing container 10, and this circulation pipe 20 further has an outer surface of the cone portion 10a. Is spirally wound from the upper side to the lower side (Note that the spiral portion 20B swirls in the direction in which the liquid is normally drained from the liquid container through the drain port, that is, counterclockwise in the northern hemisphere, and the southern hemisphere. In it is desirable to be designed to circulate clockwise). The circulation pipe 20 is provided with a hole 18A at the center of the upper plate of the support 18 from the lower part of the spiral portion 20B.
To the pump 25, and further extends from the pump 25 to the upper opening of the mixing container 10 via the attachment portion 22 of the branch pipe 21. Reference numeral 23 is a flow rate adjusting valve of the branch pipe 21, and 15A and 25A are codes for supplying drive power to the motor 15 and the pump 25, respectively. Also, 31
Is a DC power supply for supplying electric power to the electromagnets 30A to 30D, and 31A and 31B are cords.

【0025】4個の電磁石30A,30B,30C及び
30Dは、その底部が支持台18上の上板に設けられた
凹部にはめ込まれ、支持台18上に安定的に搭載されて
いる。電磁石30A〜30Dは、各々の磁極が同一平面
上に存在し、かつその平面内で四角形の頂点を形成する
ように配列される。好適には、この四角形は図示のごと
く正方形である。隣り合う電磁石の磁性は互いに反対磁
極とされ、このような配列によって、例えば電磁石30
Bと30Dの2個の正の磁極は四角形の1対の対頂部を
形成し、電磁石30Aと30Cの2個の負の磁極は他の
1対の対頂部を形成する。磁極の各々は反対磁性の2個
の隣接磁極によって磁石的に引き付けられ、対頂部の同
一磁極とは反発する。これら4個の電磁石30A〜30
Dは互いに球状磁的影響領域を発生するが、その殆どは
電磁石の上方に広がって、電磁石の極を含む平面上方に
磁界を形成し、循環配管20の螺旋状部20Bを包囲す
る。従って、帯電処理工程において被帯電処理液はこの
循環配管20の螺旋状部20Bを流通するときに、磁界
の磁力線を横断する。そして、この磁力線の横断によっ
て、被帯電処理液中のコロイド粒子は全体としてマイナ
スに帯電する。
The bottoms of the four electromagnets 30A, 30B, 30C and 30D are fitted in the recesses provided in the upper plate on the support 18 and are stably mounted on the support 18. The electromagnets 30A to 30D are arranged such that their magnetic poles are on the same plane and form a rectangular vertex in that plane. Preferably, this quadrilateral is a square as shown. The magnets of adjacent electromagnets have opposite magnetic poles, and by such an arrangement, for example, the electromagnets 30
The two positive poles of B and 30D form a pair of square-shaped apexes, and the two negative poles of electromagnets 30A and 30C form the other pair of apexes. Each of the poles is magnetically attracted by two adjacent poles of opposite magnetism and repels the same pole at the apex. These four electromagnets 30A to 30
D generate mutually spherical magnetically influential regions, but most of them spread above the electromagnet to form a magnetic field above the plane containing the poles of the electromagnet and surround the spiral portion 20B of the circulation pipe 20. Therefore, in the charging process, the liquid to be charged crosses the magnetic lines of force of the magnetic field when flowing through the spiral portion 20B of the circulation pipe 20. Then, by crossing the lines of magnetic force, the colloidal particles in the liquid to be charged are negatively charged as a whole.

【0026】なお、電磁石30A〜30D間の中央領域
30の少なくとも一部は実質的に無磁界領域である。即
ち、磁界は電磁石30A〜30Dの上方と下方(ただ
し、支持台18がステンレスのような磁性体で形成され
ている場合は、下方の磁界は支持台18によって吸収さ
れる。)に形成されるが、これら電磁石30A〜30D
間の中央部30は実質的に全ての磁界(地球磁界をも含
む)から遮断されている。
At least a part of the central region 30 between the electromagnets 30A to 30D is substantially a magnetic field-free region. That is, the magnetic field is formed above and below the electromagnets 30A to 30D (however, when the support 18 is made of a magnetic material such as stainless steel, the lower magnetic field is absorbed by the support 18). However, these electromagnets 30A to 30D
The central portion 30 therebetween is shielded from substantially all magnetic fields (including the earth's magnetic field).

【0027】従って、被帯電処理液は、循環配管20の
螺旋状部20Bから下方に伸びる鉛直部20Cを流通す
る際に、支持台18の開孔18A部を通過する直前に、
この電磁石30A〜30D間の中央部の無電界領域30
を通過する。
Therefore, when the liquid to be charged flows through the vertical portion 20C extending downward from the spiral portion 20B of the circulation pipe 20, immediately before passing through the opening 18A of the support base 18,
The electric field-free region 30 in the central portion between the electromagnets 30A to 30D
Pass through.

【0028】なお、安定な無電界領域を形成するため
に、4個の電磁石30A〜30Dは、同一の磁力を有
し、互いに同軸的に、かつ等間隔で配置されていること
が望ましい。
In order to form a stable non-electric field region, it is desirable that the four electromagnets 30A to 30D have the same magnetic force and are coaxially arranged at equal intervals.

【0029】上述の如く、被帯電処理液のシリカコロイ
ド粒子は循環配管20の螺旋状部20Bを通過するとき
に帯電し、帯電した粒子が循環配管20の鉛直部20C
の無磁界領域を通過するとき、コロイド粒子上の外的磁
力要因は取り除かれ、粒子はその電荷と内的な粒子結合
状態に応じた形態をとるようになり、比較的安定した状
態となる。この安定状態はコロイド粒子が無磁界領域か
ら出てくるときにも(電磁石30A〜30Dの下方にも
磁界が形成されているときには、更に、コロイド粒子が
この下方の磁界を通過するときにも)維持される。特
に、被帯電処理液流中にクエン酸又はその塩が含まれて
いる場合には、コロイド粒子の安定状態はより一層高め
られる。
As described above, the silica colloidal particles of the liquid to be charged are charged when passing through the spiral portion 20B of the circulation pipe 20, and the charged particles are vertical portions 20C of the circulation pipe 20.
When passing through the non-magnetic field of, the external magnetic force factor on the colloidal particles is removed, and the particles come to have a morphology according to the electric charge and the internal particle binding state, and are in a relatively stable state. This stable state is obtained even when colloidal particles come out of the non-magnetic field region (when a magnetic field is formed below the electromagnets 30A to 30D, and when the colloidal particles pass through the magnetic field below this). Maintained. In particular, when citric acid or its salt is contained in the liquid to be charged, the stable state of the colloidal particles is further enhanced.

【0030】電磁石30A〜30Dとしては、各々約2
000〜3000ガウスの磁力を有する電磁石であれ
ば、十分な帯電処理を行える。なお、電磁石の数は4個
に限らず、安定な無磁界領域を形成するような配置であ
れば、その個数は任意である。また、電磁石の代りに永
久磁石を用いてもよい。
The electromagnets 30A to 30D each have about 2
If the electromagnet has a magnetic force of 000 to 3000 Gauss, sufficient charging processing can be performed. The number of electromagnets is not limited to four, and any number may be used as long as it is arranged so as to form a stable non-magnetic field region. A permanent magnet may be used instead of the electromagnet.

【0031】このような帯電処理装置を用いて帯電シリ
カコロイド液を製造するには、まず、混合容器10を純
水で満たす。そして、ポンプ25により純水を、混合容
器10から循環配管20を流通させ磁界領域と無磁界領
域とを通過させて混合容器10へと戻す工程を10〜2
00分間行う。次に、3〜4NのNaOH水溶液とシリ
カコロイド液との混合液をSiO2 濃度として100〜
10000mg/Lとなるように加える。そして、この
被帯電処理液を1〜5時間循環させ、磁界領域と無磁界
領域とを通過させる。この循環工程中に、NaOHと等
モルのクエン酸又はその塩を、徐々に添加する。次い
で、この溶液のpHをpH7.6〜8.2に調整する。
この調整された溶液を、更に1〜3時間循環させる。得
られた溶液を純水によって希釈し、所望の帯電シリカコ
ロイド液を作る。
In order to produce a charged silica colloidal liquid using such a charging apparatus, first, the mixing container 10 is filled with pure water. Then, the steps of circulating pure water by the pump 25 from the mixing container 10 through the circulation pipe 20 to pass through the magnetic field region and the non-magnetic field region and returning to the mixing container 10 are performed 10-2.
Do it for 00 minutes. Next, a mixture of a 3 to 4 N NaOH aqueous solution and a silica colloidal solution is used as a SiO 2 concentration of 100 to
Add so that it becomes 10000 mg / L. Then, the liquid to be charged is circulated for 1 to 5 hours to pass through the magnetic field region and the non-magnetic field region. During this circulation step, citric acid or its salt equimolar to NaOH is gradually added. The pH of this solution is then adjusted to pH 7.6-8.2.
The conditioned solution is circulated for another 1-3 hours. The obtained solution is diluted with pure water to prepare a desired charged silica colloidal solution.

【0032】得られた帯電シリカコロイド液は、バルブ
23を開として、分岐配管21より取り出す。
The obtained charged silica colloidal liquid is taken out from the branch pipe 21 with the valve 23 opened.

【0033】次に、このような帯電シリカコロイド液よ
りなる封鎖剤を用いる本発明の第一鉄イオンの封鎖方法
について図3を参照して説明する。
Next, the method for sealing ferrous ions of the present invention using a blocking agent composed of such a charged silica colloidal liquid will be described with reference to FIG.

【0034】図3は、汚染地下水の処理系統に本発明の
封鎖方法を適用した実施の形態を示す系統図であり、揚
水ポンプで汲み上げられた汚染地下水は、まず曝気塔4
1で空気と向流接触し、これにより含有される有機塩素
化合物等の揮発性汚染物質が揮散する。この揮発性汚染
物質を含むガスは送風機42により活性炭吸着塔43に
送給され、活性炭で揮発性汚染物質を吸着除去した後、
排ガスは系外へ排出される。揮発性汚染物質が除去され
た処理水は曝気塔41の下部より排出される。
FIG. 3 is a system diagram showing an embodiment in which the blocking method of the present invention is applied to a contaminated groundwater treatment system. Contaminated groundwater pumped up by a pump is first aerated tower 4
In the case of 1, countercurrent contact with air occurs, whereby volatile pollutants such as organic chlorine compounds contained therein are volatilized. The gas containing the volatile pollutants is sent to the activated carbon adsorption tower 43 by the blower 42, and after removing the volatile pollutants with the activated carbon,
Exhaust gas is discharged outside the system. The treated water from which the volatile pollutants have been removed is discharged from the lower part of the aeration tower 41.

【0035】本実施の形態では、曝気塔41に供給され
る汚染地下水に、封鎖剤貯槽44からポンプ45により
封鎖剤を添加し、曝気塔41における第一鉄イオンの酸
化による鉄の沈澱の析出を防止する。
In the present embodiment, a sequestering agent is added to the contaminated groundwater supplied to the aeration tower 41 by the pump 45 from the sequestering agent storage tank 44, and the precipitation of iron due to the oxidation of ferrous ions in the aeration tower 41 is precipitated. Prevent.

【0036】この場合、封鎖剤は、第一鉄イオン濃度1
mg/Lに対してシリカ0.1〜20mg/Lとなるよ
うに添加するのが好ましい。
In this case, the blocking agent has a ferrous ion concentration of 1
It is preferable to add silica in an amount of 0.1 to 20 mg / L with respect to mg / L.

【0037】帯電シリカコロイド液は、第一鉄イオン含
有水に添加されると直ちに第一鉄イオンの封鎖作用を発
揮し、鉄沈澱の析出を効果的に防止する。
The charged silica colloidal liquid exerts a blocking action of ferrous ions immediately when added to ferrous ion-containing water, and effectively prevents the precipitation of iron precipitates.

【0038】なお、本発明の処理対象とする第一鉄イオ
ン含有水としては、上述の汚染地下水の他、冷却水系の
補給水としての地下水等の第一鉄イオン含有水が挙げら
れる。
Examples of the ferrous ion-containing water to be treated in the present invention include the above-mentioned contaminated groundwater, and ferrous ion-containing water such as groundwater as make-up water for the cooling water system.

【0039】本発明によれば、このような第一鉄イオン
含有水に、適当量の帯電シリカコロイド液を添加するの
みで、特別な設備や操作を必要とすることなく、鉄沈澱
の析出を防止することができる。
According to the present invention, by adding an appropriate amount of the charged silica colloidal solution to such ferrous ion-containing water, the precipitation of iron precipitates can be performed without requiring any special equipment or operation. Can be prevented.

【0040】[0040]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0041】実施例1〜6,比較例1,2 図1,2に示す装置を用いて、帯電シリカコロイド液を
調製した。
Examples 1 to 6 and Comparative Examples 1 and 2 Charged silica colloidal solutions were prepared using the apparatus shown in FIGS.

【0042】まず、混合容器10に純水5Lを入れ、緩
速撹拌下、この純水を混合容器10から電磁石30A〜
30Dで発生する磁界領域と無磁界領域とをを通過させ
て再び混合容器10へと戻す工程を30分間行った。そ
の後、3モル濃度のNaOH水溶液内に27重量%のシ
リカを混合したシリカ溶液1Lをこの混合容器10内に
添加し、上記と同様に約4時間循環させた。
First, 5 L of pure water was placed in the mixing container 10 and the pure water was introduced from the mixing container 10 to the electromagnets 30A.about.
The step of passing through the magnetic field region and the non-magnetic field region generated at 30D and returning to the mixing container 10 again was performed for 30 minutes. Thereafter, 1 L of a silica solution prepared by mixing 27% by weight of silica in a 3 molar NaOH aqueous solution was added into the mixing container 10 and circulated for about 4 hours as described above.

【0043】この循環途中において、混合容器10にク
エン酸3カリウムをNaOHと等モル濃度となるように
添加した。この4時間の循環後に、溶液のpHが7.6
8となるように酢酸を添加し、その後更に2時間循環さ
せた。
During this circulation, tripotassium citrate was added to the mixing vessel 10 so as to have an equimolar concentration with NaOH. After this 4 hour circulation, the pH of the solution was 7.6.
Acetic acid was added to 8 and then circulated for another 2 hours.

【0044】その後、混合容器10内に更に純水を加え
てシリカ濃度500mg/Lの帯電シリカコロイド液を
得た。
Thereafter, pure water was further added to the mixing container 10 to obtain a charged silica colloidal liquid having a silica concentration of 500 mg / L.

【0045】得られた帯電シリカコロイド液を、表1に
示す第一鉄イオン濃度の汚染地下水に、表1に示す量添
加し(ただし、比較例1,2では帯電シリカコロイド液
を添加せず。)、その後この汚染地下水を250mLの
容器内で曝気処理した。
The obtained charged silica colloidal liquid was added to the contaminated groundwater having the ferrous ion concentration shown in Table 1 in the amount shown in Table 1 (however, in Comparative Examples 1 and 2, the charged silica colloidal liquid was not added. .) And then the contaminated groundwater was aerated in a 250 mL container.

【0046】容器内の沈澱の析出状況を目視にて観察
し、結果を表1に示した。
The state of precipitation in the container was visually observed, and the results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】表1より、本発明によれば第一鉄イオンを
封鎖して鉄の沈澱の析出を防止できることがわかる。
From Table 1, it can be seen that according to the present invention, the precipitation of iron precipitates can be prevented by sequestering ferrous ions.

【0049】[0049]

【発明の効果】以上詳述した通り、本発明の第一鉄イオ
ンの封鎖剤及び封鎖方法によれば、第一鉄イオンを含む
水に本発明の封鎖剤を添加するのみで、第一鉄イオンを
封鎖して、第一鉄イオンが第二鉄イオンに酸化されて沈
澱となって析出するのを防止することができる。
As described above in detail, according to the ferrous ion sequestering agent and the sequestering method of the present invention, the ferrous iron is simply added to the water containing ferrous ion. The ions can be sequestered to prevent ferrous ions from oxidizing to ferric ions to form a precipitate.

【0050】このため、本発明によれば、特別な第一鉄
イオンの除去設備や沈澱の除去作業等を必要とすること
なく、鉄沈澱による配管の閉塞等の障害を容易に防止す
ることができる。
Therefore, according to the present invention, it is possible to easily prevent obstruction such as blockage of the pipe due to iron precipitation without requiring special ferrous ion removal equipment or precipitation removal work. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の封鎖剤の製造に好適な帯電処理装置の
斜視図である。
FIG. 1 is a perspective view of an electrification processing apparatus suitable for producing a blocking agent of the present invention.

【図2】図1の−線に沿う断面図である。FIG. 2 is a sectional view taken along the line − in FIG.

【図3】本発明の第一鉄イオンの封鎖方法の実施の形態
を示す系統図である。
FIG. 3 is a system diagram showing an embodiment of a ferrous ion sequestering method of the present invention.

【符号の説明】[Explanation of symbols]

10 混合容器 10a 円錐部 15 モータ 20 循環配管 20B 螺旋状部 25 ポンプ 30A,30B,30C,30D 電磁石 31 直流電源 41 曝気塔 43 活性炭吸着塔 44 封鎖剤貯槽 10 mixing vessels 10a cone part 15 motor 20 circulation piping 20B spiral part 25 pumps 30A, 30B, 30C, 30D Electromagnet 31 DC power supply 41 aeration tower 43 Activated carbon adsorption tower 44 Blocking agent storage tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23F 11/18 101 C23F 11/18 101 (58)調査した分野(Int.Cl.7,DB名) C02F 5/00 - 5/14 C23F 11/00 - 11/18 C23F 14/00 - 17/00 B01F 17/00 - 17/56 C09K 3/00 C11D 1/00 - 19/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C23F 11/18 101 C23F 11/18 101 (58) Fields investigated (Int.Cl. 7 , DB name) C02F 5/00-5 / 14 C23F 11/00-11/18 C23F 14/00-17/00 B01F 17/00-17/56 C09K 3/00 C11D 1/00-19/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二酸化ケイ素コロイド液を磁界領域を通
過させて得られた帯電二酸化ケイ素コロイド液からなる
水中の第一鉄イオンの封鎖剤であって、クエン酸及び/
又はクエン酸塩を含有することを特徴とする水中の第一
鉄イオンの封鎖剤。
1. A sequestering agent for ferrous ions in water, which comprises a charged silicon dioxide colloidal solution obtained by passing a silicon dioxide colloidal solution through a magnetic field region.
Or a first in water characterized by containing citrate
Sequestering agent for iron ions.
【請求項2】 第一鉄イオンを含む水に、請求項1の
鎖剤を添加する第一鉄イオンの封鎖方法。
To 2. A water containing ferrous ions, sequestering method of ferrous ions added sealing <br/> chain agent according to claim 1.
JP17710597A 1997-07-02 1997-07-02 Ferrous ion blocking agent and blocking method Expired - Fee Related JP3422223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17710597A JP3422223B2 (en) 1997-07-02 1997-07-02 Ferrous ion blocking agent and blocking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17710597A JP3422223B2 (en) 1997-07-02 1997-07-02 Ferrous ion blocking agent and blocking method

Publications (2)

Publication Number Publication Date
JPH1119688A JPH1119688A (en) 1999-01-26
JP3422223B2 true JP3422223B2 (en) 2003-06-30

Family

ID=16025245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17710597A Expired - Fee Related JP3422223B2 (en) 1997-07-02 1997-07-02 Ferrous ion blocking agent and blocking method

Country Status (1)

Country Link
JP (1) JP3422223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245439B1 (en) 1994-08-09 2001-06-12 Kabushiki Kaisha Toyoyta Chuo Kenkyusho composite material and method for the manufacture

Also Published As

Publication number Publication date
JPH1119688A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
CN102264631B (en) Magnetic nano-particle is utilized to carry out the method for liquid purifying
JPH0518635B2 (en)
US20190193088A1 (en) Liquid purification using magnetic nanoparticles
JP3422223B2 (en) Ferrous ion blocking agent and blocking method
JP2003525111A (en) Method for cleaning device for disinfecting and decontaminating filter bed of particle dispersion type
JP2009183906A (en) Waste liquid treatment method and apparatus
JP3500925B2 (en) Agglomeration treatment method and apparatus
JP4037620B2 (en) Method for imparting fungus generation suppression characteristics to cooling liquid
CN206720811U (en) High-intensity magnetic field water treatment facilities
JP3512108B2 (en) Cooling water treatment method and treatment device
JP2002102894A (en) Method for cleaning water by micronizing water molecule cluster and method for reducing sludge
CN206720812U (en) High-intensity magnetic field hydrotreater
JP2002219467A (en) Water treatment system
JPH0642957B2 (en) Hot spring water scale control method and hot spring water scale control device
CN109851144A (en) It is a kind of to magnetize powder reinforced nitrate nitrogen and Phos minimizing technology
TW401379B (en) The treatment for the phosphoric ion acid-containing waste water
CN105859017B (en) A kind of pre-treating method of UF membrane
JP2006175398A (en) Water treatment method and water treatment apparatus
JP2021115507A (en) Water containing oxygen-containing nanoparticles
JP4088165B2 (en) Purification device for cooling water circulation system for air conditioning
JP2002361288A (en) Scale preventing method for cooling water system
JP4043739B2 (en) Electromagnetic treatment method and apparatus for circulating water in cooling tower
KR100454335B1 (en) Filtering method for water treatment procss by using magnetite
JP3088404U (en) Circulating magnetic water treatment equipment
JPS63116797A (en) Device for treating red water in water storage tank

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees