JPH11195397A - Low energy heavy ion three-dimensional radiation method - Google Patents

Low energy heavy ion three-dimensional radiation method

Info

Publication number
JPH11195397A
JPH11195397A JP3193198A JP3193198A JPH11195397A JP H11195397 A JPH11195397 A JP H11195397A JP 3193198 A JP3193198 A JP 3193198A JP 3193198 A JP3193198 A JP 3193198A JP H11195397 A JPH11195397 A JP H11195397A
Authority
JP
Japan
Prior art keywords
plasma
ion
ion implantation
target material
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3193198A
Other languages
Japanese (ja)
Inventor
Masanobu Nunogaki
昌伸 布垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3193198A priority Critical patent/JPH11195397A/en
Publication of JPH11195397A publication Critical patent/JPH11195397A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify device constitution, and implant ions three-dimensionally to a material of a solid phase at a room temperature. SOLUTION: An ion material 1 is placed in a microwave chamber 5, and it is vaporzed by a laser beam 2 to generate gas plasma 3. The plasma 3 is diffused around an ion target material 4, plasma density and pulse width are adjusted to prevent arc discharge induced between the material 4 and the plasma 3, a DC pulse high voltage is applied between the plasma 3 at a negative potential and the target material 4, and heavy ions are implanted to the whole material surface. Appication of the laser beam 2 and the DC pulse high voltage is repeated and overlapped to increase ion implantation dosage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】イオン注入法は半導体産業で汎用
されており、その他の材料表面直接改質、例えば、耐食
性・耐摩耗性等機械的性質や伝熱・絶縁性等の電気的熱
的性質の改質、吸着・界面活性等化学的性質、反射・偏
光等光学的性質の改善、複合化材料の界面処理、非熱平
衡的不純物注入、薄膜被覆の前処理、スパッタ・エッチ
ング加工などのかなり広範な分野で利用され始めてはい
る。
[Industrial application] Ion implantation is widely used in the semiconductor industry, and directly modifies the surface of other materials, for example, mechanical properties such as corrosion resistance and wear resistance, and electrical and thermal properties such as heat transfer and insulation. Modification of properties, improvement of chemical properties such as adsorption and surface activity, improvement of optical properties such as reflection and polarization, interfacial treatment of composite materials, non-thermal equilibrium impurity implantation, pretreatment of thin film coating, spattering and etching, etc. It has begun to be used in a wide range of fields.

【0002】[0002]

【従来の技術】水素等常温で気相物質の大電流イオンビ
ーム化は核融合技術の転用により実用的に可能な技術と
なった。しかし、材料開発のために必要とされるイオン
ビームの原料物質は常温で多く固体である。従って、一
般的な重イオン注入法は、(イ)原料物質をオーブンで
気化させたりスパッタリングを用いるなどして原料を気
化させた後、(ロ)アーク放電等でソースプラズマを生
成する。その後、(ハ)静電界によりビームを生成・加
速し、(ニ)ビーム中の目的イオンを放電サステインガ
スイオンから電磁場を用いて弁別した後、(ホ)試料に
イオンを注入する諸過程から構成されている。しかし、
ビーム電流値はイオン種にもよるが数μA〜数mAと小
さく、ビーム断面積も小さいため、イオン注入を用いる
材料表面改質などで効果的な照射線量1016cm−3
を材料表面全体に実施するには数十時間などと長い照射
時間を必要とした。また、付加価値とコストの関係か
ら、イオンの持つ多様な物理化学的性質にもかかわら
ず、半導体産業以外でのイオンビームの工業的利用は電
子ビームに比べると極めて限定されている。
2. Description of the Related Art It has become practically feasible to convert a gas-phase substance into a high-current ion beam at room temperature such as hydrogen by diverting nuclear fusion technology. However, many ion beam raw materials required for material development are solid at room temperature. Therefore, in a general heavy ion implantation method, (a) a source material is vaporized in an oven or by sputtering, and then a source plasma is generated by (b) arc discharge or the like. After that, (c) the beam is generated and accelerated by the electrostatic field, (d) target ions in the beam are discriminated from the discharge sustain gas ions using an electromagnetic field, and (e) the process of injecting ions into the sample Have been. But,
Although the beam current value depends on the ion species, it is as small as several μA to several mA, and the beam cross-sectional area is small. Therefore, an effective irradiation dose of 10 16 cm −3 is effective for material surface modification using ion implantation.
In order to carry out over the entire material surface, a long irradiation time such as several tens of hours was required. In addition, due to the relationship between added value and cost, industrial use of ion beams outside the semiconductor industry is extremely limited compared to electron beams, despite the various physicochemical properties of ions.

【0003】[0003]

【発明が解決しようとする課題】従来の重イオンビーム
注入法では、3次元照射を行うには対照物を移動・回転
するなどの操作も必要となる。そこで、(イ)従来のイ
オン注入装置のビーム形成、及びイオン種弁別過程等を
割愛して装置構成を簡略化する。さらに(ロ)ビーム走
査や被照射体を移動する過程も割愛して、イオン注入材
料表面に3次元的にイオン注入が行なえるところの、簡
単な構造で高効率の新形式低エネルギー重イオン注入法
開発を課題とした。
In the conventional heavy ion beam implantation method, three-dimensional irradiation requires operations such as moving and rotating a control object. Therefore, (a) the beam formation and the ion species discrimination process of the conventional ion implantation apparatus are omitted to simplify the apparatus configuration. Furthermore, (2) a new type of low-energy heavy ion implantation with a simple structure and high efficiency, in which ion implantation can be performed three-dimensionally on the surface of the ion implantation material, omitting the beam scanning and the process of moving the irradiation object. The task was law development.

【0004】[0004]

【課題を解決するための手段】前項の課題(イ)を解決
するために、イオンビーム源のソースプラズマ発生に不
活性ガス等の放電支援ガスを用いないで、注入イオン発
生をレーザー光による気化とECR放電を用いることを
特徴とする。課題(ロ)を解決するために、注入イオン
をビーム化することなく、注入イオンを含むプラズマの
中にイオン注入標的材料を置き、同プラズマと標的材料
間にアーク放電を誘発しないような短い時間幅のパルス
電圧を印加して、材料表面に立体的にイオンを注入する
ことを特徴とする。
In order to solve the above-mentioned problem (a), the generation of implanted ions is vaporized by laser light without using a discharge assisting gas such as an inert gas for generating a source plasma of an ion beam source. And ECR discharge. In order to solve the problem (b), the ion implantation target material is placed in a plasma containing the implanted ions without forming the implanted ions into a beam, and a short period of time such that an arc discharge is not induced between the plasma and the target material. It is characterized in that a pulse voltage having a width is applied to implant ions three-dimensionally on the material surface.

【0005】[0005]

【発明実施の形態】図1のMW室(5)に置かれた重イ
オンの原料物質(1)をレーザー光(2)で気化させる
と、予めMW室に導入されたMW(マイクロウェーブ)
と同室外部に設置された電磁コイル(8〜15)による
強い磁界との共同作用により、ECR放電が発生してM
Wプラズマ(3)が生成される。同プラズマが消滅しな
い間に、イオン標的材料(4)に対して同シードプラズ
マを陽極とする高電圧直流短パルスを印加する構成によ
り、イオン標的材料に3次元空間的に原料イオンをパル
ス的に10keV程度以下のエネルギーで注入すること
ができる。印加電圧は数10kV以下、印加時間幅はプ
ラズマ・材料間にアーク放電を惹起させない程度に短く
する。レーザー光照射および高電圧印加過程を反復重畳
してイオン注入線量を増加させる。なお、シードプラズ
マのイオン注入標的に対する電位は、イオン注入室内
壁、或いは、同室内部に標的材料(4)に対向するよう
に設けられたプラズマ電極(7)の電位により決定され
る。従って、標的に対するイオン注入は3次元空間内で
行われる。
BEST MODE FOR CARRYING OUT THE INVENTION When a heavy ion source material (1) placed in a MW chamber (5) of FIG. 1 is vaporized by a laser beam (2), MW (microwave) previously introduced into the MW chamber is obtained.
And an electromagnetic coil (8 to 15) installed outside of the same room and a strong magnetic field, an ECR discharge is generated and M
W plasma (3) is generated. By applying a high-voltage direct-current short pulse to the ion target material (4) using the seed plasma as an anode while the plasma does not disappear, the source ions are three-dimensionally spatially pulsed onto the ion target material. It can be implanted with an energy of about 10 keV or less. The applied voltage is several tens of kV or less, and the application time width is set short enough not to cause an arc discharge between the plasma and the material. The irradiation of the laser beam and the high voltage application process are repeatedly superimposed to increase the ion implantation dose. The potential of the seed plasma with respect to the ion implantation target is determined by the potential of the plasma electrode (7) provided inside the ion implantation chamber or inside the chamber so as to face the target material (4). Therefore, ion implantation for the target is performed in a three-dimensional space.

【0006】[0006]

【実施例1】MW室を複数個設けてそこで発生した重イ
オンプラズマを大容積のイオン注入室に拡散集合させて
シードプラズマとし、大形材料のイオン注入を行う場合
の実施例を図1に示した。
Embodiment 1 FIG. 1 shows an embodiment in which a plurality of MW chambers are provided, and heavy ion plasma generated therefrom is diffused and collected in a large-capacity ion implantation chamber to be used as seed plasma for ion implantation of a large material. Indicated.

【0007】[0007]

【実施例2】MW室とイオン注入室を一体化させる。Embodiment 2 The MW chamber and the ion implantation chamber are integrated.

【0008】[0008]

【実施例3】シードプラズマの生成をバキュウムアーク
を用いて行う。
Embodiment 3 A seed plasma is generated using a vacuum arc.

【0009】[0009]

【実施例4】イオン化原料の気化を電気オーブンを用い
て行う。
Embodiment 4 Vaporization of an ionized raw material is performed using an electric oven.

【0010】[0010]

【発明の効果】従来型のイオンインプランター装置は注
入エネルギーが200keV前後と高すぎるため、イオ
ン濃度分布が表面改質には不適当となる。本考案の注入
法では注入エネルギーは数10keV以下に限定される
ので、最表面での注入線量の蓄積が早い効果がある。ま
た、本手法ではシードプラズマの空間電荷密度は低く、
注入イオンのエネルギー分布が広いので、従来のイオン
注入法のようにレンジ付近でイオン密度が顕著に高くな
るために生じる注入イオンの深さ方向密度の不均一性が
軽減され、改質を深さ方向に均一化する効果がある。従
来型のイオンインプランター装置をその他材料の表面改
質に用いてもイオン種が限定されており効果が発現して
も小さく見過ごされがちであった。その結果イオン種の
持つ多くの物性にも拘わらずイオン注入を用いての材料
研究にイオンインプランターを用いる例は少なかった。
しかし、本考案装置が簡便、廉価、高能率な装置として
普及すれば、イオンビーム応用については基礎研究およ
び応用分野の開拓の端緒は既に開かれているので、イオ
ンビーム応用分野の拡大と工業応用進展に対する本発明
の効果は大きい。
According to the conventional ion implanter, the implantation energy is too high, around 200 keV, and the ion concentration distribution becomes unsuitable for surface modification. In the implantation method of the present invention, since the implantation energy is limited to several tens keV or less, there is an effect that accumulation of the implantation dose on the outermost surface is quick. In this method, the space charge density of the seed plasma is low,
Since the energy distribution of implanted ions is wide, the non-uniformity of the implanted ions in the depth direction due to the remarkable increase in ion density near the range as in the conventional ion implantation method is reduced, and the This has the effect of equalizing in the direction. Even when a conventional ion implanter apparatus is used for surface modification of other materials, the ion species is limited, and even if the effect is exhibited, it is often overlooked. As a result, despite the many physical properties of ion species, there have been few examples of using an ion implanter for material research using ion implantation.
However, if the device of the present invention spreads as a simple, inexpensive, and highly efficient device, the basics of ion beam application and the pioneering of application fields have already been opened, so the expansion of ion beam application fields and industrial application The effect of the present invention on progress is great.

【図面の簡単な説明】[Brief description of the drawings]

【図 1】(実施例1)MW室をイオン注入室の2個設
けてそこで発生した重イオンプラズマを大容積のイオン
注入室に拡散集合させてシードプラズマとし、大形材料
のイオン注入を行う場合の実施例を図示した(別紙の図
1参照)。
FIG. 1 (Example 1) Two MW chambers are provided in an ion implantation chamber, and heavy ion plasma generated therein is diffused and collected in a large-volume ion implantation chamber to be used as seed plasma to perform ion implantation of a large-sized material. An example of such a case is shown (see FIG. 1 of the attached sheet).

【符号の説明】 イオン化原料 レーザービーム MW重イオンプ
ラズマ 標的材料 MW(マイクロウエーブ)室
イオン注入室 プラズマ電極 〜▲15▼電磁コ
イル ▲16▼カスプ磁場 ▲17▼真空ポンプ ▲1
8▼プラズマプローブ ▲19▼高速シャッター
[Explanation of symbols] Ionized material Laser beam MW heavy ion plasma Target material MW (microwave) room
Ion implantation chamber Plasma electrode ▲ 15 ▼ Electromagnetic coil ▲ 16 ▼ Cusp magnetic field ▲ 17 ▼ Vacuum pump ▲ 1
8 ▼ Plasma probe ▲ 19 ▼ High speed shutter

Claims (1)

【特許請求の範囲】[Claims] 真空容器の一部に設けられたMW室(5)におかれたイ
オン化原料(1)をレーザー光(2)で気化させ、MW
プラズマ(3)を発生させた後、イオン注入室(6)の
同プラズマとイオン標的材料(4)との間に、同プラズ
マを正電位とし同イオン標的材料を負電位とする直流高
電圧短パルスを印加することによりイオン標的材料表面
に重イオンを立体的に注入する構成の重イオン注入法。
(図1参照)
The ionized raw material (1) placed in the MW chamber (5) provided in a part of the vacuum vessel is vaporized by the laser beam (2),
After the generation of the plasma (3), a direct current high voltage short-circuit between the plasma in the ion implantation chamber (6) and the ion target material (4), where the plasma is positive and the ion target material is negative. A heavy ion implantation method in which heavy ions are three-dimensionally implanted into the surface of an ion target material by applying a pulse.
(See Fig. 1)
JP3193198A 1998-01-05 1998-01-05 Low energy heavy ion three-dimensional radiation method Pending JPH11195397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193198A JPH11195397A (en) 1998-01-05 1998-01-05 Low energy heavy ion three-dimensional radiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193198A JPH11195397A (en) 1998-01-05 1998-01-05 Low energy heavy ion three-dimensional radiation method

Publications (1)

Publication Number Publication Date
JPH11195397A true JPH11195397A (en) 1999-07-21

Family

ID=12344727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193198A Pending JPH11195397A (en) 1998-01-05 1998-01-05 Low energy heavy ion three-dimensional radiation method

Country Status (1)

Country Link
JP (1) JPH11195397A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000036440A (en) * 2000-03-14 2000-07-05 이준상 Method for forming a electric region by the three dimentional ion implantation
KR100443279B1 (en) * 2002-01-25 2004-08-09 서광석 Transparent anti-static spacer for flexible printed circuit board
KR100585160B1 (en) 2004-09-20 2006-05-30 삼성전자주식회사 Ion implanter having arc chamber for enhancing ion current density
JP2010541022A (en) * 2007-10-08 2010-12-24 アプライド マテリアルズ インコーポレイテッド Fast phase scrambling of coherent beams using plasma.
JP2015081358A (en) * 2013-10-22 2015-04-27 三井造船株式会社 Coating film formation apparatus and method of forming coating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000036440A (en) * 2000-03-14 2000-07-05 이준상 Method for forming a electric region by the three dimentional ion implantation
KR100443279B1 (en) * 2002-01-25 2004-08-09 서광석 Transparent anti-static spacer for flexible printed circuit board
KR100585160B1 (en) 2004-09-20 2006-05-30 삼성전자주식회사 Ion implanter having arc chamber for enhancing ion current density
JP2010541022A (en) * 2007-10-08 2010-12-24 アプライド マテリアルズ インコーポレイテッド Fast phase scrambling of coherent beams using plasma.
JP2015081358A (en) * 2013-10-22 2015-04-27 三井造船株式会社 Coating film formation apparatus and method of forming coating film

Similar Documents

Publication Publication Date Title
JP2556637B2 (en) Deposition system on substrate by magnetron cathode
TW200830390A (en) Method and apparatus for manufacturing cleaned substrates or clean substrates which are further processed
US4739170A (en) Plasma generator
CN111088472A (en) Coating system
CA1252581A (en) Electron beam-excited ion beam source
JPH11195397A (en) Low energy heavy ion three-dimensional radiation method
JPH04235276A (en) Device for coating substrate
Kolpakov et al. Formation of an out-of-electrode plasma in a high-voltage gas discharge
Le Coeur et al. Distributed electron cyclotron resonance plasma immersion for large area ion implantation
JPH0770512B2 (en) Low energy ionized particle irradiation device
JPH01302645A (en) Discharging device
JPS63472A (en) Vacuum device for forming film
JP2849771B2 (en) Sputter type ion source
JPH11335832A (en) Ion implantation and ion implantation device
JPS6298542A (en) Ion source
JPH08165563A (en) Electron-beam annealing device
JP4997596B2 (en) Ion plating method
JPH04236774A (en) Plasma source
JP2620474B2 (en) Ion plating equipment
JPS63301455A (en) Ion beam radiation device
US20080087539A1 (en) Apparatus and Method for Materials Processing with Ion-Ion Plasma
Stinnett et al. LiF ion source performance on PBFA II
JPH02123640A (en) Discharge device
AU581516B2 (en) Plasma generator
JP2000265277A (en) Formation of film using electron beam plasma