JPH11194073A - Method for identifying inertia moment - Google Patents

Method for identifying inertia moment

Info

Publication number
JPH11194073A
JPH11194073A JP119398A JP119398A JPH11194073A JP H11194073 A JPH11194073 A JP H11194073A JP 119398 A JP119398 A JP 119398A JP 119398 A JP119398 A JP 119398A JP H11194073 A JPH11194073 A JP H11194073A
Authority
JP
Japan
Prior art keywords
inertia
model
term
dynamo
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP119398A
Other languages
Japanese (ja)
Other versions
JP3799790B2 (en
Inventor
Mitsutaka Hori
充孝 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP00119398A priority Critical patent/JP3799790B2/en
Publication of JPH11194073A publication Critical patent/JPH11194073A/en
Application granted granted Critical
Publication of JP3799790B2 publication Critical patent/JP3799790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To compensate an error by means of a viscosity item. SOLUTION: When a dynamo torque command TLC is inputted to one inertia model process 11, dynamo speed ND is obtained in output. Dynamo speed ND obtained at the output of one intertia model process 11 us inputted to a multiplication integration process 12. When the sine wave sin(ωn t) of a similar phase against dynamo speed ND is multiplied by a cosine wave cos(ωn t) shifted by am 90 deg. (π/2) in phase and they arc integrated in the process 12, the binary DC of an inertia item and the viscosity item are obtained in a DC generation process 13. Obtained binary DC are compared in a binary DC comparison process 14 and are compared with the error by the viscosity item in the result of an inertia identification method and the error by the viscosity item is compensated in a compensation Process 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、エンジン試験装
置において、エンジン制御を行う場合、プリ運転として
エンジン慣性を計測する慣性モーメント同定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inertia moment identification method for measuring engine inertia as a pre-operation when controlling an engine in an engine test apparatus.

【0002】[0002]

【従来の技術】従来のエンジン慣性モーメント同定方法
について述べるに、二慣性系は、反共振周波数ω1より
十分低い周波数領域においては一慣性系となる。図4は
一慣性系ブロック図で、エンジントルクTEは、同定中
においては常に零とする。図5に示すように、エンジン
慣性モーメントの同定は、ダイナモトルク指令TLCに低
周波正弦波sin(ωnt)を入力し、ダイナモ速度(実速
度)と一慣性系モデル速度の差が零となるように同定機
構によりモデル慣性を調整して行う。
To describe Conventional engine inertia identification method, two-inertia serves as an inertial system in sufficiently lower frequency range than the anti-resonance frequency omega 1. Figure 4 is one inertial system block diagram, the engine torque T E is always zero in during identification. As shown in FIG. 5, the identification of engine moment of inertia, enter a low-frequency sine wave sin (omega n t) to a dynamo torque command T LC, difference dynamo speed (actual speed) as one inertia model speed is zero The model inertia is adjusted by the identification mechanism so that

【0003】図5において、1は一慣性系モデル部で、
このモデル部1に低周波正弦波sin(ωnt)が供給され
る。低周波正弦波は、調整が可能なモデル慣性部2にも
供給される。一慣性系モデル部1とモデル慣性部2の出
力は、偏差部3に入力されて偏差が採られ、その偏差信
号は前記正弦波と90゜位相がずれた信号cos(ωnt)と
乗算されて直流分発生部4に入力される。この直流分発
生部4の直流分が同定機構部5に供給される。同定機構
部5は、直流分に従ってモデル慣性部2を調整してエン
ジン慣性モーメントを同定する。
In FIG. 5, reference numeral 1 denotes a one-inertia model part.
Low-frequency sine wave sin (ω n t) is supplied to the model unit 1. The low frequency sine wave is also supplied to the adjustable model inertia 2. Output one inertia model unit 1 and the model inertia unit 2 is inputted to the deviation portion 3 taken deviation, the deviation signal is multiplied by the sine wave and the 90 ° phase shifted signal cos (ω n t) Then, it is input to the DC component generator 4. The DC component of the DC component generator 4 is supplied to the identification mechanism 5. The identification mechanism unit 5 adjusts the model inertia unit 2 according to the DC component and identifies the engine inertia moment.

【0004】次に、図5のように構成されたエンジン慣
性モーメント同定方法の動作を述べる。一慣性系モデル
部1とモデル慣性部2におけるダイナモ速度とモデル速
度は、両者の慣性モーメント差により速度誤差が(1)
式に示すようになる。
Next, the operation of the method for identifying the moment of inertia of the engine configured as shown in FIG. 5 will be described. The speed error between the dynamo speed and the model speed in the one inertia system model unit 1 and the model inertia unit 2 is (1) due to the difference between the two inertia moments.
It becomes as shown in the formula.

【0005】[0005]

【数1】 (Equation 1)

【0006】なお、(1)式を周波数伝達関数で表現す
ると(2)式のようになる。
[0006] Expression (1) is represented by expression (2) when expressed by a frequency transfer function.

【0007】[0007]

【数2】 (Equation 2)

【0008】ここで、同定信号として、ダイナモトルク
指令TLC=sin(ωnt)(ωn<<ω1、ωn:同定信号の周
波数成分、ω1:反共振周波数)を一慣性系モデル部1
とモデル慣性部2に入力した時、誤差分は、次式(3)
のようになる。
[0008] Here, as the identification signal, dynamo torque command T LC = sin (ω n t ) (ω n << ω 1, ω n: frequency components of the identification signal, omega 1: anti-resonance frequency) of an inertial system Model part 1
Is input to the model inertia unit 2, the error is given by the following equation (3)
become that way.

【0009】[0009]

【数3】 (Equation 3)

【0010】上記(3)式と同定信号に対して90゜位
相のずれた信号cos(ωnt)を乗算し、積分することによ
り、慣性項と粘性項の差により、e(t)に、次の(4)式
に示す慣性モーメント差による速度差の直流分m(t)が生
ずる。
[0010] By multiplying the equation (3) of 90 ° phase with respect to the identification signal shifted signal cos (omega n t), it is integrated by the difference between the inertia term and viscosity term, the e (t) A DC component m (t) of the speed difference due to the inertia moment difference shown in the following equation (4) is generated.

【0011】[0011]

【数4】 (Equation 4)

【0012】エンジン慣性モーメントは、得られた直流
分m(t)が零であるとき、モデルと真値の慣性モーメント
が等しくなり、ダイナモ慣性も既知であることから真値
に同定される。
When the obtained DC component m (t) is zero, the engine moment of inertia is identified as a true value because the model and the true moment of inertia are equal and the dynamo inertia is also known.

【0013】[0013]

【発明が解決しようとする課題】上記のように構成され
た慣性モーメント同定方法は、直流分m(t)によってモデ
ル慣性モーメントを同定すると、一周期T(秒)毎の調
整が必要になり、収束性が低下し、また直流分m(t)が零
となる時、粘性項(機械損失分)が含まれる場合、粘性
項により同定されるモデル慣性Jmは、次の(5)式のよ
うになり、同定結果は(5)式の右辺第2項の粘性項に
よる誤差が生じるという問題があった。
According to the method for identifying the moment of inertia constituted as described above, when the moment of inertia of the model is identified by the DC component m (t), it is necessary to adjust every cycle T (second). When the convergence is reduced and the DC component m (t) becomes zero, if the viscous term (mechanical loss) is included, the model inertia Jm identified by the viscous term is expressed by the following equation (5). And the identification result has a problem that an error is caused by the viscosity term of the second term on the right side of the equation (5).

【0014】[0014]

【数5】 (Equation 5)

【0015】この発明は上記の事情に鑑みてなされたも
ので、粘性項による誤差分を補償することができるよう
にした慣性モーメント同定方法を提供することを課題と
する。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an inertia moment identification method capable of compensating for an error due to a viscosity term.

【0016】[0016]

【課題を解決するための手段】この発明は、上記の課題
を達成するために、ダイナモトルク指令を一慣性モデル
工程に入力して出力にダイナモ速度を得た後、そのダイ
ナモ速度に同位相の正弦波と90゜位相がずれた余弦波
を乗算し積分した後、慣性項と粘性項の二値の直流分を
得、この二値の直流分を比較して比を取り、この比と粘
性項による誤差分とを対比した後、粘性項による誤差分
を補償するようにしたことを特徴とするものである。
According to the present invention, in order to achieve the above-mentioned object, a dynamo torque command is input to a one inertia model process to obtain a dynamo speed as an output, and the dynamo speed is in phase with the dynamo speed. After multiplying and integrating a sine wave and a cosine wave whose phase is shifted by 90 °, a binary DC component of an inertia term and a viscosity term is obtained, and the two DC components are compared to obtain a ratio. After comparing with the error due to the term, the error due to the viscosity term is compensated.

【0017】[0017]

【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明するに、前述した粘性項による誤差分を
補償するために、ダイナモトルク指令に正弦波TLC=si
n(ωnt)を挿入した時、検出したダイナモ速度NDからω
n・J(ωn:モータ回転数検出値、:真の慣性モーメン
ト)とD(ダイナモ慣性モーメント)に基づく直流分を
慣性同定方法を同じ原理で取り出す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. In order to compensate for the error due to the above-mentioned viscosity term, a sine wave T LC = si
When n (ω n t) is inserted, ω is calculated from the detected dynamo speed N D
DC components based on n · J (ω n : detected value of motor rotation speed,: true moment of inertia) and D (dynamo moment of inertia) are extracted by the same principle of inertia identification.

【0018】図1において、まず、一慣性モデル工程1
1は、ダイナモトルク指令とダイナモ速度の関係から
(6)式のように近似できる。
In FIG. 1, first, one inertia model process 1
1 can be approximated as in equation (6) from the relationship between the dynamo torque command and the dynamo speed.

【0019】[0019]

【数6】 (Equation 6)

【0020】なお、(6)式を周波数伝達関数で表現す
ると、次式に示す(7)式のようになる。
When the equation (6) is expressed by a frequency transfer function, the following equation (7) is obtained.

【0021】[0021]

【数7】 (Equation 7)

【0022】ここで、ダイナモトルク指令TLCを一慣性
モデル工程11に入力すると、出力には、次の(8)式
に示すようなダイナモ速度NDが得られる。
[0022] Here, entering a dynamo torque command T LC to an inertial model step 11, the output, the dynamo speed N D as shown in the following (8) is obtained.

【0023】[0023]

【数8】 (Equation 8)

【0024】一慣性モデル工程11の出力に得られたダ
イナモ速度NDを乗算積分工程12に入力し、この工程
12で、ダイナモ速度NDに対して同位相の正弦波sin
nt)と、90゜(π/2)位相のずれた余弦波cos(ω
nt)をそれぞれ乗算し、積分すると、次式(9)、(1
0)により慣性項と粘性項の二値の直流分が直流分発生
工程13で得られる。
The obtained dynamo speed N D is input to the output of the one inertia model process 11 to the multiplication and integration process 12. In this process 12, the sine wave sin having the same phase as the dynamo speed N D is obtained.
n t) and the cosine wave cos (ω
n t) are multiplied and integrated, and the following equations (9) and (1) are obtained.
0), a binary DC component of an inertia term and a viscosity term is obtained in a DC component generation step 13.

【0025】[0025]

【数9】 (Equation 9)

【0026】[0026]

【数10】 (Equation 10)

【0027】上記(9)式、(10)式で得られた二値
直流分は、二値直流分比較工程14で比較されると、次
式(11)のようになる。
When the binary DC components obtained by the above equations (9) and (10) are compared in the binary DC component comparison step 14, the following equation (11) is obtained.

【0028】[0028]

【数11】 [Equation 11]

【0029】ここで、前述した慣性同定方法の結果にお
ける粘性項による誤差分と、上記(11)式とを対比す
ると、次の(12)式の関係が得られる。
Here, when the error due to the viscosity term in the result of the inertial identification method described above is compared with the above equation (11), the following equation (12) is obtained.

【0030】[0030]

【数12】 (Equation 12)

【0031】上記関係を用いて同定されたモデル慣性
(5)式を書く直すと、次の(13)式が得られる。
When the model inertia (5) identified using the above relation is rewritten, the following equation (13) is obtained.

【0032】[0032]

【数13】 (Equation 13)

【0033】よって、粘性項による誤差分を補償工程1
5で補償するため、同定されたモデル慣性を、以下の
(14)式で補正することにより、真の慣性モーメント
を同定することができるようになる。
Therefore, the compensation step 1 for the error due to the viscosity term
By correcting the identified model inertia by the following equation (14), the true moment of inertia can be identified.

【0034】[0034]

【数14】 [Equation 14]

【0035】なお、上記(14)式による粘性項補償法
を用いた同定法の妥当性を確認するためシミュレーショ
ンにより検証した。図2に示す実一慣性モデルで、慣性
モーメント(単位慣性モーメント:1.89)、粘性項(2.
0)として同定シミュレーションを行った。その結果を
図3に示す。図3から粘性項が含まれている場合におい
て、慣性モデルを1.5倍ずらして設定しても、真値に同
定されることが明らかである。
The validity of the identification method using the viscous term compensation method according to the above equation (14) was verified by simulation to confirm the validity. In the real-inertia model shown in Fig. 2, the moment of inertia (unit moment of inertia: 1.89) and the viscosity term (2.
The identification simulation was performed as 0). The result is shown in FIG. It is clear from FIG. 3 that when the viscous term is included, even if the inertial model is set to be shifted by 1.5 times, it is identified as a true value.

【0036】[0036]

【発明の効果】以上述べたように、この発明によれば、
ダイナモトルク指令に正弦波を入力し、検出したダイナ
モ速度を用いて慣性項と粘性項の直流分を検出し、これ
らから誤差分を補償するようにしたことにより、粘性項
を含む場合においても、慣性モデルは真値を同定するこ
とができる利点がある。
As described above, according to the present invention,
By inputting a sine wave to the dynamo torque command, detecting the DC component of the inertia term and the viscous term using the detected dynamo speed, and compensating for the error component from these, even when the viscous term is included, The inertial model has an advantage that a true value can be identified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を述べる工程図。FIG. 1 is a process chart illustrating an embodiment of the present invention.

【図2】実一慣性モデルを示すブロック図。FIG. 2 is a block diagram showing a real one inertia model.

【図3】実施の形態を用いた同定シミュレーション結果
を示す特性図。
FIG. 3 is a characteristic diagram showing an identification simulation result using the embodiment.

【図4】一慣性系を示すブロック図。FIG. 4 is a block diagram showing one inertial system.

【図5】エンジン慣性モーメント同定方法を示すブロッ
ク図。
FIG. 5 is a block diagram illustrating a method for identifying an engine inertia moment.

【符号の説明】[Explanation of symbols]

11…一慣性モデル工程 12…乗算積分工程 13…直流分発生工程 14…二値直流分比較工程 15…補償工程 11: One inertia model process 12: Multiplication and integration process 13: DC component generation process 14: Binary DC component comparison process 15: Compensation process

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一慣性モデル部と調整可能なモデル慣性
部を備え、モデル部と慣性部との偏差出力信号に正弦波
と90゜位相のずれた余弦波を乗算積分して慣性項と粘
性項の差による直流分を得、その直流分を同定機構に供
給してモデル慣性部を同定する際に、粘性項による誤差
分が生じる慣性モーメント同定方法において、 ダイナモトルク指令を一慣性モデル工程に入力して出力
にダイナモ速度を得た後、そのダイナモ速度に同位相の
正弦波と90゜位相がずれた余弦波を乗算し積分した
後、慣性項と粘性項の二値の直流分を得、この二値の直
流分を比較して比を取り、この比と前記粘性項による誤
差分とを対比した後、前記粘性項による誤差分を補償す
るようにしたことを特徴とする慣性モーメント同定方
法。
An inertia model and an adjustable model inertia unit are provided. A deviation output signal between the model unit and the inertia unit is multiplied by a sine wave and a cosine wave whose phase is shifted by 90 ° to be integrated. When the DC component due to the term difference is obtained and the DC component is supplied to the identification mechanism to identify the model inertia part, in the method of identifying the moment of inertia in which an error component due to the viscous term occurs, After inputting and obtaining a dynamo speed at the output, the dynamo speed is multiplied by a sine wave having the same phase and a cosine wave whose phase is shifted by 90 °, integrated, and then a binary DC component of an inertia term and a viscous term is obtained. Comparing the binary DC component to obtain a ratio, comparing the ratio with the error due to the viscosity term, and then compensating for the error due to the viscosity term, wherein the moment of inertia is characterized. Method.
JP00119398A 1998-01-07 1998-01-07 Moment of inertia identification method Expired - Lifetime JP3799790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00119398A JP3799790B2 (en) 1998-01-07 1998-01-07 Moment of inertia identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00119398A JP3799790B2 (en) 1998-01-07 1998-01-07 Moment of inertia identification method

Publications (2)

Publication Number Publication Date
JPH11194073A true JPH11194073A (en) 1999-07-21
JP3799790B2 JP3799790B2 (en) 2006-07-19

Family

ID=11494632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00119398A Expired - Lifetime JP3799790B2 (en) 1998-01-07 1998-01-07 Moment of inertia identification method

Country Status (1)

Country Link
JP (1) JP3799790B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021762A1 (en) * 2001-09-04 2003-03-13 Kabushiki Kaisha Yaskawa Denki Machine model predicting device of motor control device
JP2006300683A (en) * 2005-04-20 2006-11-02 Meidensha Corp Device for measuring moment of inertia of engine
JP2006322914A (en) * 2005-04-20 2006-11-30 Meidensha Corp Measuring apparatus of engine generating torque
JP2008298793A (en) * 2008-07-25 2008-12-11 National Traffic Safety & Environment Laboratory Method for measuring engine inertia
JP6149948B1 (en) * 2016-01-07 2017-06-21 株式会社明電舎 Specimen characteristic estimation method and specimen characteristic estimation apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021762A1 (en) * 2001-09-04 2003-03-13 Kabushiki Kaisha Yaskawa Denki Machine model predicting device of motor control device
US6903528B2 (en) 2001-09-04 2005-06-07 Kabushiki Kaisha Yaskawa Denki Machine model estimating device of electric motor control apparatus
KR100711072B1 (en) * 2001-09-04 2007-04-24 가부시키가이샤 야스카와덴키 Machine model predicting device of motor control device
JP2006300683A (en) * 2005-04-20 2006-11-02 Meidensha Corp Device for measuring moment of inertia of engine
JP2006322914A (en) * 2005-04-20 2006-11-30 Meidensha Corp Measuring apparatus of engine generating torque
JP4591176B2 (en) * 2005-04-20 2010-12-01 株式会社明電舎 Engine inertia moment measurement device
JP4591333B2 (en) * 2005-04-20 2010-12-01 株式会社明電舎 Measuring device for engine generated torque
JP2008298793A (en) * 2008-07-25 2008-12-11 National Traffic Safety & Environment Laboratory Method for measuring engine inertia
JP6149948B1 (en) * 2016-01-07 2017-06-21 株式会社明電舎 Specimen characteristic estimation method and specimen characteristic estimation apparatus
JP2017122642A (en) * 2016-01-07 2017-07-13 株式会社明電舎 Specimen characteristic estimation method and specimen characteristic estimation device
WO2017119243A1 (en) * 2016-01-07 2017-07-13 株式会社明電舎 Test piece characteristic estimation method and test piece characteristic estimation device
US10605689B2 (en) 2016-01-07 2020-03-31 Meidensha Corporation Test piece characteristic estimation method and test piece characteristic estimation device

Also Published As

Publication number Publication date
JP3799790B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US6683428B2 (en) Method for controlling torque in a rotational sensorless induction motor control system with speed and rotor flux estimation
EP1470988B1 (en) Electric power steering apparatus
KR100222358B1 (en) Apparatus and method for controlling torque of induction motor through vector control type inverter
US6037742A (en) Method for the field-oriented control of an induction motor
KR100329247B1 (en) Variable speed control device of induction motor
JP2003299381A (en) Sensorless control device and method for alternator
JPH02132341A (en) Dynamometer
EP1493225B1 (en) System and method for controlling a permanent magnet electric motor
JPH11194073A (en) Method for identifying inertia moment
US6075337A (en) Speed control apparatus for induction motor
US20200162001A1 (en) Apparatus and method for controlling motor
JP2001197765A (en) Torque ripple reducing device
US11101752B2 (en) Torque ripple compensation apparatus and method
JP2001352798A (en) Control equipment and control method of permanent magnet synchronous motor
US5150029A (en) Method and apparatus for controlling the magnetic flux of an induction motor
JP3053121B2 (en) Control method of induction motor
JP3528108B2 (en) Adaptive slip frequency type vector control method and apparatus for induction motor
JP2003047269A (en) Servo controller
JP2000134942A (en) Voltage type inverter system and its control
JP2912965B2 (en) Electric inertia compensation control method for driving test machine
KR20020014948A (en) Vector control apparatus for induction motor
JP2933733B2 (en) Induction motor control device
JPH0530792A (en) Equipment for controlling induction motor
JPH09140200A (en) Speed sensorless vector controller
JPS6387192A (en) Vector control of induction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

EXPY Cancellation because of completion of term