JPH11193462A - Method for vaporizing organic alkaline-earth metal complex in cvd process - Google Patents

Method for vaporizing organic alkaline-earth metal complex in cvd process

Info

Publication number
JPH11193462A
JPH11193462A JP36685497A JP36685497A JPH11193462A JP H11193462 A JPH11193462 A JP H11193462A JP 36685497 A JP36685497 A JP 36685497A JP 36685497 A JP36685497 A JP 36685497A JP H11193462 A JPH11193462 A JP H11193462A
Authority
JP
Japan
Prior art keywords
earth metal
alkaline earth
metal complex
raw material
organic alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36685497A
Other languages
Japanese (ja)
Other versions
JP3998309B2 (en
Inventor
Yuzo Tazaki
雄三 田▲崎▼
Junichi Ishiai
淳一 石合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP36685497A priority Critical patent/JP3998309B2/en
Publication of JPH11193462A publication Critical patent/JPH11193462A/en
Application granted granted Critical
Publication of JP3998309B2 publication Critical patent/JP3998309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To vaporize an organic alkaline-earth metal complex as the raw material substance of alkaline-earth metal in such a manner that a secular change does not occur therein, and also, a high film forming rate can be obtd. at the time of producing alkaline-earth metal-contg. thin film by a CVD process. SOLUTION: An organic alkaline-earth metal complex 1 is once heated to the m.p. or above and is melted. Then, the molten body is cooled to solidify in a raw material vessel 2, and this solidified organic alkaline-earth metal complex is vaporized at the m.p. thereof or below. Furthermore, the molten body is cast into a cylindrical vessel in such a manner that a solidified layer with an almost fixed thickness stretching in the direction of the longitudinal axis of the vessel is formed, and a carrier gas is allowed to flow through the inside of the vessel in the direction of the longitudinal axis thereof to vaporize the organic alkaline-earth metal complex from the solidified layer at the m.p. thereof or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はCVD法によってア
ルカリ土類金属含有薄膜を製造するさいに,アルカリ土
類金属の原料物質を安定して気化させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably vaporizing a raw material of an alkaline earth metal when producing an alkaline earth metal-containing thin film by a CVD method.

【0002】[0002]

【従来の技術】アルカリ土類金属を成分として含む薄膜
は,強誘電体材料,EL素子材料,超電導体材料などに
有用なことから,該薄膜の製法が盛んに研究されてい
る。
2. Description of the Related Art Thin films containing an alkaline earth metal as a component are useful for ferroelectric materials, EL device materials, superconductor materials, and the like, and therefore, methods for producing the thin films have been actively studied.

【0003】薄膜作製技術として,真空蒸着法,スパッ
タリング法などの物理的成膜法と,化学的気相蒸着(C
VD)法のような化学的成膜法が良く知られている。C
VD法は,成膜速度の制御性,膜組成の制御性,高速成
膜性,大面積への成膜性等に優れまた量産向きであるの
で広く利用されており,特に,現在開発が進められてい
るギガビット級DRAMのキャパシタ膜などの作製にお
いては,段差被膜性に優れたCVD法が最も有望な薄膜
作製方法として注目されている。
[0003] As thin film production techniques, physical film forming methods such as vacuum deposition and sputtering, and chemical vapor deposition (C
Chemical film forming methods such as the VD) method are well known. C
The VD method is widely used because it is excellent in controllability of film formation rate, controllability of film composition, high-speed film formability, film formability in a large area, and is suitable for mass production. In manufacturing a capacitor film of a gigabit-class DRAM, a CVD method having excellent step coverage has attracted attention as a most promising thin film manufacturing method.

【0004】CVD法において,薄膜を構成する金属成
分を供給する原料物質としては,有機金属錯体も用いら
れており,有機金属錯体を気化用原料とする成膜法は特
にMOCVD法と呼ばれている。DRAMのキャパシタ
に用いる強誘電体薄膜や電極薄膜,酸化物超伝導薄膜な
どの作製においては,このMOCVD法が広く検討され
ており,配位子にβージケトンを有する有機金属錯体が
使用されている。なかでもジピバロイルメタン(DP
M)を配位子とする錯体は,一般に気化性が良好で,熱
分解温度が高く,膜への不純物混入が少ない,といった
利点があり,最も多く使用されている。
In the CVD method, an organic metal complex is also used as a raw material for supplying a metal component constituting a thin film. A film forming method using the organic metal complex as a raw material for vaporization is particularly called an MOCVD method. I have. The MOCVD method has been widely studied in the fabrication of ferroelectric thin films, electrode thin films, oxide superconducting thin films, etc. used for DRAM capacitors, and organometallic complexes having β-diketone as a ligand have been used. . Dipivaloylmethane (DP)
Complexes having M) as a ligand generally have the advantages of good vaporization, high thermal decomposition temperature, and low contamination of the film with impurities, and are most frequently used.

【0005】アルカリ土類金属を構成成分とする強誘電
体薄膜や酸化物超伝導薄膜などの作製においても,その
原料物質として有機アルカリ土類金属錯体が使用され,
この錯体もβージケトン系のもの,特にジピバロイルメ
タン(DPM)を配位子とするものが使用されている。
In the production of ferroelectric thin films and oxide superconducting thin films containing alkaline earth metals as constituents, organic alkaline earth metal complexes are used as raw materials.
This complex is also a β-diketone-based complex, particularly one having dipivaloylmethane (DPM) as a ligand.

【0006】[0006]

【発明が解決しようとする課題】CVD法でアルカリ土
類金属含有物質の成膜を行うさいに,前記のように有機
アルカリ土類金属錯体を気化用原料として使用すること
が推奨されてきた。このような有機アルカリ土類金属錯
体は,通常,粉末状で合成され,その融点が一般に高い
(DPM錯体では通常200℃以上)。そして,アルカ
リ土類金属のDPM錯体は分解温度が比較的低いので,
高温にしすぎると分解が生じことや,200℃以上では
CVD装置のバルブ類が機能に支障をきたすことなどか
ら,この原料をCVD法で気化させるさいには,融点以
下の温度の粉末状態から気化させるのが一般であるが,
この場合には,本発明者らの経験によると,時間の経過
とともに成膜速度が変化(減少)し,成膜中のアルカリ
土類金属含有量に変化を生ずることがわかった。
In forming an alkaline earth metal-containing material by a CVD method, it has been recommended to use an organic alkaline earth metal complex as a raw material for vaporization as described above. Such an organic alkaline earth metal complex is usually synthesized in the form of a powder, and generally has a high melting point (usually 200 ° C. or higher for a DPM complex). Since the decomposition temperature of the alkaline earth metal DPM complex is relatively low,
If the temperature is too high, decomposition will occur, and if the temperature is higher than 200 ° C, the valves of the CVD equipment will be affected. It is common to make
In this case, according to the experience of the present inventors, it has been found that the film formation rate changes (decreases) with the passage of time, and that the alkaline earth metal content during the film formation changes.

【0007】すなわち,粉体原料の有機アルカリ土類金
属錯体をその粉体状態から昇華させると,一定した成膜
速度を長時間確保することが困難である。これは,昇華
の進行につれて原料粒子の表面積が減少し,この表面積
の減少が気化速度を遅くすること,また,粉末同士の部
分的な融着などにより気化速度が変動すること等が原因
ではないかと考えられる。このようなことから,粉末状
態からの気化では経時的に蒸気量が減少したり蒸気量の
変動が不可避的に生ずるのである。気化速度が変化する
と,アルカリ土類金属含有薄膜(たとえばSrTiO3
など)を作製する場合,その成膜の制御が困難になる。
That is, when the organic alkaline earth metal complex as a powder raw material is sublimated from its powder state, it is difficult to maintain a constant film forming rate for a long time. This is not due to the fact that the surface area of the raw material particles decreases as the sublimation progresses, and this decrease in the surface area slows down the evaporation rate, and the evaporation rate fluctuates due to partial fusion of the powders. It is thought. For this reason, in the case of vaporization from the powder state, the amount of steam decreases with time and the fluctuation of the amount of steam inevitably occurs. When the vaporization rate changes, the alkaline earth metal-containing thin film (eg, SrTiO 3
), It is difficult to control the film formation.

【0008】原料錯体を有機溶媒に溶かし,液体流量制
御によって気化器に送り込まれた溶液を全量気化させる
溶液気化CVD法も開発されているが,この方法では,
固体昇華による気化より30〜50℃程度高温に加熱し
なければ同様な成膜速度が得られない。このため,原料
の気化器中での分解による気化器内の配管の詰まりや,
大量に使用される溶媒の分解物の膜中への混入など,解
決されるべき問題点は多い。
[0008] A solution vaporization CVD method in which the raw material complex is dissolved in an organic solvent and the entire amount of the solution fed into the vaporizer by liquid flow rate control is vaporized has been developed.
A similar film formation rate cannot be obtained unless the film is heated to a temperature higher by about 30 to 50 ° C. than vaporization by solid sublimation. For this reason, clogging of piping in the vaporizer due to decomposition of the raw material in the vaporizer,
There are many problems to be solved, such as the incorporation of decomposition products of solvents used in large amounts into the membrane.

【0009】したがって,本発明の課題は,アルカリ土
類金属含有薄膜を製作するCVD法において,有機アル
カリ土類金属錯体の気化を安定して行えるようにするこ
とにある。
Accordingly, an object of the present invention is to stably vaporize an organic alkaline earth metal complex in a CVD method for producing an alkaline earth metal-containing thin film.

【0010】[0010]

【課題を解決するための手段】本発明は,CVD法によ
り有機アルカリ土類金属錯体を気化用原料としてアルカ
リ土類金属を含有する薄膜を作製するさいに,該有機ア
ルカリ土類金属錯体をいったん融点以上に加熱して溶融
し,その融体を原料容器内で冷却固化させ,この固化し
た有機アルカリ土類金属錯体をその融点以下の温度で気
化させることを特徴とする。
According to the present invention, an organic alkaline earth metal complex is prepared by vapor deposition using an organic alkaline earth metal complex as a raw material for vaporization. It is characterized in that it is heated to a temperature higher than its melting point to be melted, the melt is solidified by cooling in a raw material container, and this solidified organic alkaline earth metal complex is vaporized at a temperature lower than its melting point.

【0011】さらに本発明は,CVD法により有機アル
カリ土類金属錯体を気化用原料としてアルカリ土類金属
を含有する薄膜を作製するさいに,該有機アルカリ土類
金属錯体を融点以上に加熱して溶融し,その融体を,筒
状の容器内に,該容器の長手軸方向に延びる厚みが略一
定の凝固層が形成されるように鋳込み,該容器内にその
長手軸方向にキャリヤガスを通流させて該凝固層から有
機アルカリ土類金属錯体をその融点以下の温度で気化さ
せることを特徴とする。
Further, in the present invention, when a thin film containing an alkaline earth metal is produced by a CVD method using an organic alkaline earth metal complex as a raw material for vaporization, the organic alkaline earth metal complex is heated to a melting point or higher. The molten material is cast into a cylindrical container so as to form a solidified layer having a substantially constant thickness extending in the longitudinal axis direction of the container, and a carrier gas is injected into the container in the longitudinal axis direction. The organic alkaline earth metal complex is vaporized from the solidified layer at a temperature equal to or lower than the melting point of the solidified layer.

【0012】[0012]

【発明の実施の形態】本発明者らは前記の課題を解決す
るため種々の試験研究を重ねたところ,有機アルカリ土
類金属錯体を成膜用原料として使用する前に,いったん
融点以上に加熱して溶融し,これを冷却固化(凝固)さ
せたものを使用すると,安定な成膜が可能となり,前記
の課題が解決できることを見いだした。特に,その融体
を筒状の容器内に鋳込んで容器長手軸方向に延びる厚み
が略一定の凝固層を形成させ,その凝固層表面にキャリ
ヤガスを容器軸方向に通流させて気化させると,一層安
定して成膜できることがわかった。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have conducted various tests and researches to solve the above-mentioned problems. It has been found that the use of a material that is melted and solidified by cooling (solidification) enables stable film formation and solves the above-mentioned problems. In particular, the melt is cast into a cylindrical container to form a solidified layer having a substantially constant thickness extending in the longitudinal axis direction of the container, and the carrier gas is passed through the solidified layer surface in the container axial direction to vaporize the solidified layer. It was found that the film could be formed more stably.

【0013】本発明で使用する有機アルカリ土類金属錯
体は,アルカリ土類金属例えばBe,Mg,Ca,S
r,Ba等のβ−ジケトネートが適し,特にジピバロイ
ルメタン(DPM)を配位子とする有機アルカリ土類金
属錯体が好適である。また,このようなアルカリ土類金
属β−ジケトネートは,とくに無水溶媒または無溶媒中
で合成したものは,一時的に融点以上に加熱しても分解
は起こらないことが分かった。したがって,無水溶媒ま
たは無溶媒中で合成したアルカリ土類金属β−ジケトネ
ートが本発明の実施に好適に使用できる。
The organic alkaline earth metal complex used in the present invention is an alkaline earth metal such as Be, Mg, Ca, S
β-diketonates such as r and Ba are suitable, and organic alkaline earth metal complexes having dipivaloylmethane (DPM) as a ligand are particularly suitable. It was also found that such alkaline earth metal β-diketonates, especially those synthesized in an anhydrous solvent or without a solvent, did not undergo decomposition even when temporarily heated above the melting point. Therefore, an alkaline earth metal β-diketonate synthesized in an anhydrous solvent or without a solvent can be suitably used in the practice of the present invention.

【0014】以下に図面を参照しながら,本発明の好ま
しい実施の形態を説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

【0015】図1は,有機アルカリ土類金属錯体1を装
填した原料容器2を,所定温度に維持される恒温槽3内
にセットし,原料容器2で気化する錯体蒸気をキャリヤ
ガス(図例ではアルゴンガス)によって管路4を経てリ
アクター5に導き,リアクター5内にセットされた基板
6の表面に析出させるようにしたCVD設備を示してい
る。本設備において,錯体蒸気を導く管路4とは別途
に,酸素ガスをリアクター5に導く管路7が設けられ,
この酸素ガス管路7がリアクター5の直前の位置で管路
4に接続されており,この合流位置で錯体蒸気と酸素ガ
スが調整された量比で混合することにより,両者が反応
して基板6の表面に意図する成分の薄膜が生成する。
FIG. 1 shows that a raw material container 2 loaded with an organic alkaline earth metal complex 1 is set in a constant temperature bath 3 maintained at a predetermined temperature, and a complex vapor vaporized in the raw material container 2 is subjected to a carrier gas (FIG. 1). In the figure, there is shown a CVD facility in which a gas is introduced into a reactor 5 through a pipe 4 by an argon gas, and is deposited on a surface of a substrate 6 set in the reactor 5. In this facility, a pipe 7 for introducing oxygen gas to the reactor 5 is provided separately from the pipe 4 for guiding the complex vapor.
The oxygen gas line 7 is connected to the line 4 at a position immediately before the reactor 5, and at the junction, the complex vapor and the oxygen gas are mixed at an adjusted volume ratio so that the two react and react with each other. A thin film of the intended component is formed on the surface of No. 6.

【0016】図1において,8は系内を減圧にする排気
装置(ロータリーポンプ),9は排気弁,10は冷却ト
ラップを示しており,恒温槽3からリアクター5に至る
錯体蒸気の供給管路4はその外周が保温層11で取り巻
かれている。保温層11内には図示しないヒータが内装
され,恒温槽3の温度よりも5〜50℃高い温度に管路
4の内壁温度が維持されるようにしてある。またリアク
ター5は,その外周に取り付けたヒータ12により所定
温度に加熱され,このヒータ12付きのリアクター5が
そっくり熱分解炉13内にセットされている。
In FIG. 1, reference numeral 8 denotes an exhaust device (rotary pump) for reducing the pressure in the system, 9 denotes an exhaust valve, 10 denotes a cooling trap, and a supply line for supplying complex vapor from the constant temperature bath 3 to the reactor 5. 4 is surrounded by a heat insulating layer 11 at its outer periphery. A heater (not shown) is provided in the heat insulating layer 11 so that the temperature of the inner wall of the pipe 4 is maintained at a temperature higher by 5 to 50 ° C. than the temperature of the thermostatic bath 3. The reactor 5 is heated to a predetermined temperature by a heater 12 attached to the outer periphery of the reactor 5, and the reactor 5 with the heater 12 is set in the pyrolysis furnace 13.

【0017】本発明においては,有機アルカリ土類金属
錯体1を,いったんその融点以上の温度に加熱して融体
化し,その融体を原料容器2内で冷却固化するという操
作を行う。この場合,原料容器2として筒状のものを使
用し,その筒状の容器の長手軸方向に延びる厚みが略一
定の凝固層が形成されるように冷却固化する。以下にこ
の態様を具体的に説明する。
In the present invention, an operation is performed in which the organic alkaline earth metal complex 1 is once heated to a temperature higher than its melting point to be melted, and the melt is cooled and solidified in the raw material container 2. In this case, a cylindrical container is used as the raw material container 2, and the cylindrical container is cooled and solidified so as to form a solidified layer having a substantially constant thickness extending in the longitudinal axis direction. Hereinafter, this embodiment will be specifically described.

【0018】図1のCVD設備において,恒温槽3内に
は同形の筒状の原料容器2をシリーズに2個接続した状
態でセットされている。この筒状の原料容器2の具体例
を図2に示した。この原料容器2は,両端が閉じたパイ
プ15の端近傍に同方向の分岐管16と17を接続し,
この分岐管16と17にそれぞれ弁18と19を取付け
たものである。パイプ16は軸方向に断面が等しい等径
管であり,その断面形状は図3に示すように,円形のも
の(15a),方形のもの(15b),楕円形のもの
(15c)などが適用できる。図1の設備では,このよ
うな筒状の原料容器2を2個使用したものであり,その
一方の容器の分岐管16にキャリヤガス管20を接続
し,他方の分岐管17を接続管21を介して,他方の容
器の分岐管16に接続し,他方の容器の分岐管17を錯
体蒸気管路4に接続してある。これにより,弁18と1
9が全て開いた状態では,キャリヤガスが先ず一方の容
器内に入ってから接続管21を経て他方の容器に入り,
管路4へと流れる。
In the CVD equipment shown in FIG. 1, a constant-temperature bath 3 is set with two cylindrical raw material containers 2 of the same shape connected in series. FIG. 2 shows a specific example of the cylindrical raw material container 2. In this raw material container 2, branch pipes 16 and 17 in the same direction are connected near the end of a pipe 15 having both ends closed,
Valves 18 and 19 are attached to the branch pipes 16 and 17, respectively. The pipe 16 is an equal-diameter pipe having the same cross-section in the axial direction. As shown in FIG. 3, the cross-sectional shape may be circular (15a), square (15b), elliptical (15c), or the like. it can. In the equipment shown in FIG. 1, two such cylindrical raw material containers 2 are used. A carrier gas pipe 20 is connected to a branch pipe 16 of one of the containers, and a connection pipe 21 is connected to the other branch pipe 17. Is connected to the branch pipe 16 of the other vessel, and the branch pipe 17 of the other vessel is connected to the complex vapor line 4. This allows valves 18 and 1
When all 9 are open, the carrier gas first enters into one container and then into the other container via the connecting pipe 21,
It flows to line 4.

【0019】図4は,筒状原料容器2に有機アルカリ土
類金属錯体1を装入する操作態様を図解したものであ
る。図4に従って,その操作を説明すると,原料の有機
アルカリ土類金属錯体の粉末23を,底部にノズル24
をもつ容器25内に不活性ガス雰囲気下で装填し,この
容器25の底部ノズル24に,筒状原料容器2の分岐管
17を,その弁19を閉じた状態で,接続するととも
に,他方の分岐管16と容器25の上部開口26とを接
続管27で連結して閉回路を形成し,この閉回路内雰囲
気を全て不活性ガスで置換したうえ,筒状原料容器2が
水平状態となるようにして,そっくり電気炉28(破線
で示す)にセットする。これにより,容器25内の粉末
を融点以上に昇温させて融解させる。ここまでが,図4
の最上段に示す段階である。
FIG. 4 illustrates an operation mode of charging the organic alkaline earth metal complex 1 into the cylindrical raw material container 2. The operation will be described with reference to FIG. 4. A powder 23 of the organic alkaline earth metal complex as a raw material is
Is charged in a container 25 having an inert gas atmosphere, and the branch pipe 17 of the cylindrical raw material container 2 is connected to the bottom nozzle 24 of the container 25 with its valve 19 closed, and The branch pipe 16 and the upper opening 26 of the vessel 25 are connected by a connection pipe 27 to form a closed circuit. The atmosphere in the closed circuit is completely replaced with an inert gas, and the cylindrical raw material vessel 2 is in a horizontal state. Thus, it is set in the electric furnace 28 (shown by a broken line). As a result, the powder in the container 25 is heated to the melting point or higher and melted. Up to this point, Figure 4
At the uppermost stage.

【0020】原料粉末が容器25内で完全に融解した
ら,弁19を開いて容器25内から筒状原料容器2内に
その融体を流し込む。図4の中段の図は,この流し込み
の途中段階を示している。この流し込みを続け,水平状
態にある筒状原料容器2内に水平な液面をもって該融体
が所定の深さで装填された状態で,流し込みを終了し,
次いで,筒状原料容器2を常温にまで冷却することによ
り,筒状原料容器2の長手軸方向に延びる厚みが略一定
の凝固層が形成される。図4の最下段の図はこの状態を
示しており,その凝固層を29で示す。凝固層29は容
器断面の一部を占める深さまでとし,その上部にはキャ
リヤガスが通流する空間を開けておく。このようにし
て,有機アルカリ土類金属錯体の鋳込みが終えると,弁
18と19を閉じて,分岐管付きのままこの装填設備か
ら切り離し,CVD設備に移動し,例えば図1のように
恒温槽3内にセットする。
When the raw material powder is completely melted in the container 25, the valve 19 is opened and the melt is poured from the container 25 into the cylindrical raw material container 2. The middle diagram in FIG. 4 shows a halfway stage of the pouring. The pouring is continued, and the pouring is completed in a state where the melt is loaded at a predetermined depth with a horizontal liquid level in the cylindrical raw material container 2 in a horizontal state.
Next, by cooling the cylindrical raw material container 2 to normal temperature, a solidified layer having a substantially constant thickness extending in the longitudinal axis direction of the cylindrical raw material container 2 is formed. The lowermost diagram in FIG. 4 shows this state, and the solidified layer is indicated by 29. The solidified layer 29 has a depth occupying a part of the cross section of the container, and a space through which the carrier gas flows is opened above the solidified layer 29. When the casting of the organic alkaline earth metal complex is completed in this way, the valves 18 and 19 are closed, the pipe is disconnected from the loading equipment with the branch pipe attached, and moved to the CVD equipment, for example, as shown in FIG. Set in 3.

【0021】このようにして,粉末状の有機アルカリ土
類金属錯体原料をいったん加熱溶融して原料容器2内で
冷却固化させると,その表面積は粉体原料よりも遙かに
小さくなるが,蒸発量の経時変化をほぼ完全に抑制でき
ることがわかった。これは蒸発が進行しても,その表面
積の変動が極めて小さいことによると考えられる。ま
た,キャリヤガスを筒状原料容器2内に通流しても,粉
末から蒸発させる場合のように,粉末がキャリヤガス中
に同伴することも抑制できる。このため,粉末がリアク
ター5にまで到達して膜を汚染するということも防止で
きる。
In this way, once the powdered organic alkaline earth metal complex raw material is heated and melted and cooled and solidified in the raw material container 2, its surface area is much smaller than that of the powdered raw material, It was found that the change with time in the amount could be almost completely suppressed. This is considered to be due to the fact that the fluctuation of the surface area is extremely small even when the evaporation proceeds. Further, even when the carrier gas flows through the cylindrical raw material container 2, it is possible to suppress the entrainment of the powder in the carrier gas as in the case of evaporating from the powder. Therefore, it is possible to prevent the powder from reaching the reactor 5 and contaminating the film.

【0022】特に,前記のように軸方向に長く延びた筒
状原料容器2内に,その軸方向に厚みが略一定の凝固層
が形成されるように有機アルカリ土類金属錯体1を冷却
固化させた場合には,キャリヤガスを容器軸方向に一方
向に通流させると,固体状態からの気化であるにも拘わ
らず,容器出口側の分岐管17の近傍ではほぼ飽和蒸気
圧に近い原料蒸気が得られることがわかった。
In particular, the organic alkaline earth metal complex 1 is cooled and solidified so that a solidified layer having a substantially constant thickness in the axial direction is formed in the cylindrical raw material container 2 extended in the axial direction as described above. When the carrier gas is allowed to flow in one direction in the axial direction of the container, the raw material near the saturated vapor pressure near the branch pipe 17 on the outlet side of the container is obtained despite the vaporization from the solid state. It was found that steam was obtained.

【0023】この関係は,筒状原料容器2が長ければ長
い程,そして,長さ/口径(管の内径)の比が大きけれ
ば大きいほど良好となる。実際には,容器出口側の分岐
管17の近傍でほぼ飽和蒸気圧が得られるように容器寸
法やキャリヤガス流量などを装置条件に応じて適切に選
定すればよい。また,筒状原料容器2をシリーズに接続
すれば原料を無駄なく使用することもできる。図1の例
では,2個の筒状原料容器2を接続した態様を示してい
る。
This relationship becomes better as the length of the cylindrical raw material container 2 is longer and as the ratio of length / diameter (inner diameter of the pipe) is larger. In practice, the dimensions of the container, the flow rate of the carrier gas, and the like may be appropriately selected so as to obtain a substantially saturated vapor pressure near the branch pipe 17 on the container outlet side. If the cylindrical raw material containers 2 are connected in series, the raw materials can be used without waste. The example of FIG. 1 shows an embodiment in which two cylindrical raw material containers 2 are connected.

【0024】このような筒状原料容器2では,キャリヤ
ガスの流れ方向において,上流側ほど錯体蒸気の濃度が
低く下流側ほど高くなる。したがって,該容器の出口付
近でちょうど飽和蒸気圧が得られるような長さに設計し
た筒状原料容器2を複数個シリーズに連結し,これを順
送りするようにすれば,半永久的な連続運転が可能とな
る。この態様を図5に従って説明する。
In such a cylindrical raw material container 2, in the flow direction of the carrier gas, the concentration of the complex vapor is lower on the upstream side and higher on the downstream side. Therefore, semi-permanent continuous operation can be achieved by connecting a plurality of cylindrical raw material containers 2 designed in a length such that a saturated vapor pressure can be obtained near the outlet of the container in a series and feeding them sequentially. It becomes possible. This embodiment will be described with reference to FIG.

【0025】図5は,いったん溶融して冷却固化した有
機アルカリ土類金属錯体を所定量装填した2個の筒状原
料容器2aと2bを接続管21を介してシリーズに連結
し,上流側容器2aの分岐管16の側からキャリヤガス
を導入し,下流側容器2bの分岐管17の側からリアク
ター5に送気する状態(恒温槽は省略してある)を示し
ている。このようにして,上流側容器2aの出口付近で
錯体の飽和蒸気圧が得られるように固体錯体からの気化
を開始すると,下流側容器2bでは飽和蒸気圧に近い気
体が送り込まれるので僅かしか蒸発せず,殆んどの錯体
蒸気は上流側容器2aから気化したものとなるので,上
流側容器2aの固体原料1aが優先的に減少してゆき,
図5のAの状態からBの状態へと上流側容器2aの固体
原料1aの厚みが減り,やがて図5のCの状態のように
上流側容器2aは空になるが,この状態でも下流側容器
2bでは固体原料1bは十分に存在する。
FIG. 5 shows that two cylindrical raw material containers 2a and 2b, each of which is charged with a predetermined amount of an organic alkaline earth metal complex once melted and cooled and solidified, are connected in series via a connecting pipe 21, and are connected to an upstream container. A state is shown in which the carrier gas is introduced from the side of the branch pipe 16 of 2a and is supplied to the reactor 5 from the side of the branch pipe 17 of the downstream vessel 2b (the constant temperature bath is omitted). In this way, when vaporization from the solid complex is started so as to obtain a saturated vapor pressure of the complex near the outlet of the upstream vessel 2a, a gas close to the saturated vapor pressure is fed into the downstream vessel 2b, so that only a small amount is evaporated. Instead, most of the complex vapor is vaporized from the upstream vessel 2a, so that the solid raw material 1a in the upstream vessel 2a is reduced preferentially.
The thickness of the solid raw material 1a of the upstream container 2a decreases from the state A in FIG. 5 to the state B, and the upstream container 2a eventually becomes empty as in the state C in FIG. In the container 2b, the solid raw material 1b is sufficiently present.

【0026】そこで,空の上流側容器2aを取り外し,
下流側容器2bを上流側に繰り上げると共に,新たな筒
状原料容器2cを下流側に接続して新規補給する。この
状態を図5のDに示す。これにより,今度は下流側容器
2bから優先的に蒸発し,図5のAの状態に戻る。以
後,これを繰り返すことにより,略同一濃度の錯体蒸気
を連続的にリアクターに搬送することができる。しか
も,原料錯体がほぼ空になったら新規補給すればよいの
で,原料を無駄なく使用しきることができる。
Then, the empty upstream container 2a is removed and
The downstream-side container 2b is moved up to the upstream side, and a new cylindrical raw material container 2c is connected to the downstream side to newly supply. This state is shown in FIG. This causes the downstream container 2b to evaporate preferentially, returning to the state of FIG. 5A. Thereafter, by repeating this, the complex vapor having substantially the same concentration can be continuously transferred to the reactor. In addition, it is only necessary to newly supply the starting complex when it is almost empty, so that the starting material can be used up without waste.

【0027】以上のようにして,本発明によれば,有機
アルカリ土類金属錯体の一定濃度の蒸気を安定して発生
させることができる。このため,時間を経ても成膜速度
が安定し,均質な膜を形成できる。なお,前記の態様で
は,有機アルカリ土類金属錯体の蒸発を中心として説明
したが,他の原料の蒸気も同時にリアクターに導く場合
には,リアクターに他の原料の蒸気を導入する設備を付
設すればよい。また,別の容器で有機アルカリ土類金属
錯体を溶融し,これを原料容器2内に注入して冷却固化
する図4の態様のほか,CVD設備にセットする原料容
器2内に粉末原料を入れ,この原料容器2内で粉末原料
を融解し,そのまま原料容器2内で冷却固化させること
もできる。
As described above, according to the present invention, it is possible to stably generate a constant concentration of the vapor of the organic alkaline earth metal complex. Therefore, the film forming rate is stable even after a lapse of time, and a uniform film can be formed. In the above-described embodiment, the description has been made mainly on the evaporation of the organic alkaline earth metal complex. However, when the vapor of another raw material is simultaneously introduced into the reactor, a facility for introducing the vapor of another raw material into the reactor may be provided. I just need. Further, in addition to the embodiment shown in FIG. 4 in which the organic alkaline earth metal complex is melted in another container and injected into the raw material container 2 to be cooled and solidified, the powder raw material is put into the raw material container 2 set in the CVD equipment. Alternatively, the powder raw material can be melted in the raw material container 2 and cooled and solidified in the raw material container 2 as it is.

【0028】[0028]

【実施例】以下に,図1に示したCVD設備により,有
機アルカリ土類金属錯体としてビス〔ジピバロイルメタ
ナト〕ストロンチウム [Sr(DPM)2] を用いて, シ
リコン基板上に酸化ストロンチウムを成膜した本発明の
実施例を挙げる。
EXAMPLE Hereinafter, strontium oxide was deposited on a silicon substrate using bis [dipivaloylmethanato] strontium [Sr (DPM) 2 ] as an organic alkaline earth metal complex by the CVD equipment shown in FIG. Examples of the present invention in which a film is formed will be described.

【0029】〔実施例1〕使用した [Sr(DPM)2]
は脱水トルエン中で金属ストロンチウムとジピバロイル
メタンを反応させて得た粉体であり,この粉体を図4で
説明したように,いったん溶融して長さ50cm,内径
1cmのパイプ形状の筒状原料容器に注入し,この容器
内で冷却固化させた。
Example 1 [Sr (DPM) 2 ] used
Is a powder obtained by reacting metal strontium and dipivaloylmethane in dehydrated toluene. As shown in FIG. 4, the powder is once melted and formed into a pipe having a length of 50 cm and an inner diameter of 1 cm. It was poured into a cylindrical raw material container and cooled and solidified in this container.

【0030】このものを図1のように2個直列に連結
し,200℃に維持した恒温槽3内にセットし,またリ
アクター5内のSi基板6をヒータ12によって600
℃に加熱保持した。そして,100mL/分の流量でA
rガスを上流側筒状原料容器2に送り込み,また,気体
酸素を管路7から同じく100mL/分の流量で送り込
み,ロータリーポンプ8を駆動することによりリアクタ
ー5内の圧力を10トールに保持した状態で成膜を行っ
た。そのさい,筒状原料容器2からリアクター5までの
管路4には,ヒータ付きの保温槽11を設け,管路4の
内壁温度が220℃に維持されるようにした。
As shown in FIG. 1, two of these are connected in series, set in a thermostat 3 maintained at 200 ° C., and the Si substrate 6 in the reactor 5 is
Heated and maintained at ° C. And A at a flow rate of 100 mL / min.
The r gas is fed into the upstream cylindrical raw material container 2, and the gaseous oxygen is fed from the pipe 7 at the same flow rate of 100 mL / min, and the pressure inside the reactor 5 is maintained at 10 Torr by driving the rotary pump 8. Film formation was performed in this state. At that time, a heating tank 11 with a heater was provided in the pipe 4 from the cylindrical raw material container 2 to the reactor 5 so that the inner wall temperature of the pipe 4 was maintained at 220 ° C.

【0031】この条件下で30分間の成膜を行ったとこ
ろ,厚さ330nm(1時間当り約650nm)の酸化
ストロンチウムの薄膜が得られた。
When a film was formed under these conditions for 30 minutes, a strontium oxide thin film having a thickness of 330 nm (about 650 nm per hour) was obtained.

【0032】再び同じ条件下で5時間ずつ成膜時間を増
加させた実験を35時間のものまで行ない,各時間での
成膜厚みを測定することにより,酸化ストロンチウムの
成膜速度を測定した。その結果を図6に示した。
An experiment was conducted again under the same conditions in which the film formation time was increased by 5 hours each up to 35 hours, and the film formation rate at each time was measured to determine the film formation rate of strontium oxide. FIG. 6 shows the result.

【0033】図6の結果に見られるように,30時間ま
では成膜速度は約650nm/時間の一定値を示してお
り,成膜速度が経時変化しないことがわかる。
As can be seen from the results of FIG. 6, the film formation rate shows a constant value of about 650 nm / hour up to 30 hours, indicating that the film formation rate does not change with time.

【0034】また,図6の結果によれば,35時間のも
のでは成膜速度が低下しているが,このものでは,上流
側の筒状原料容器は空になっており,下流側の筒状原料
容器には残存していた。したがって,30時間から35
時間の間に,上流側の筒状原料容器の原料が蒸発し尽く
したものと考えられる。このため,空の容器を取外し,
下流側の筒状原料容器を図5のDの状態のように上流側
に移動し,その下流側には新たな原料容器を接続して再
び同じ条件で成膜を行ったところ,前記と同じ成膜速度
に復帰した。
According to the results shown in FIG. 6, the film formation rate was reduced for 35 hours, but in this case, the upstream cylindrical raw material container was empty and the downstream cylindrical material container was empty. It remained in the raw material container. Therefore, 30 hours to 35
It is considered that the raw material in the upstream cylindrical raw material container was completely evaporated during the time. Therefore, remove the empty container,
The downstream cylindrical raw material container was moved to the upstream side as shown in FIG. 5D, a new raw material container was connected to the downstream side, and film formation was performed again under the same conditions. It returned to the film forming speed.

【0035】〔比較例〕高さが11cmで直径が4cm
の蓋付き円筒容器に [Sr(DPM)2] の粉末を不活性
雰囲気中で20g装填した。蓋にはArガスを容器内に
送入する送気管と,容器内からリアクターに蒸気を導く
管を取付けておき,前者の送気管の下端開口を粉末層の
底部近くに位置させた。このようにして,粉末状態から
気化させた以外は,実施例1と同じ条件で30分間成膜
したところ,厚さ240nmの酸化ストロンチウムの薄
膜が得られた。
[Comparative Example] A height of 11 cm and a diameter of 4 cm
20 g of the powder of [Sr (DPM) 2 ] was charged in an inert atmosphere into a cylindrical container with a lid. An air supply pipe for feeding Ar gas into the container and a pipe for guiding vapor from the container to the reactor were attached to the lid, and the lower end opening of the former air supply pipe was located near the bottom of the powder layer. A thin film of strontium oxide having a thickness of 240 nm was obtained by forming a film for 30 minutes under the same conditions as in Example 1 except that the powder was vaporized from the powder state.

【0036】また,この比較例の方法における成膜速度
を実施例1の場合と同じようにして測定したところ,図
7の結果が得られた。図6の実施例1のものと比較する
と明らかなように,表面積が多い筈の粉体からの蒸発か
らでも成膜速度は遅く且つ時間の経過とともに成膜速度
が徐々に低下していることがわかる。
When the film forming speed in the method of the comparative example was measured in the same manner as in Example 1, the result shown in FIG. 7 was obtained. As is clear from the comparison with that of Example 1 in FIG. 6, it is clear that the film formation rate is slow even from evaporation from the powder having a large surface area, and that the film formation rate gradually decreases with time. Recognize.

【0037】[0037]

【発明の効果】以上説明したように,本発明によると,
CVD法により有機アルカリ土類金属錯体を基体上に析
出させるさいに,有機アルカリ土類金属錯体の気化を効
率よく且つ経時的に安定して行うことができる。このた
め,品質のよいアルカリ土類金属含有薄膜を高い成膜速
度で安定して製造することができる。
As described above, according to the present invention,
When the organic alkaline earth metal complex is deposited on the substrate by the CVD method, the organic alkaline earth metal complex can be vaporized efficiently and stably with time. Therefore, a high-quality alkaline earth metal-containing thin film can be stably manufactured at a high film forming rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CVD法で成膜する設備例を示す機器配置図で
ある。
FIG. 1 is an equipment layout showing an example of equipment for forming a film by a CVD method.

【図2】CVD法で使用する原料容器の例を示す側面図
である。
FIG. 2 is a side view showing an example of a raw material container used in a CVD method.

【図3】図2の原料容器のX−X線矢視部の拡大断面図
である。
3 is an enlarged cross-sectional view of the raw material container of FIG. 2 taken along the line XX.

【図4】筒状原料容器に有機アルカリ土類金属錯体を融
解して装填する設備の略断面図である。
FIG. 4 is a schematic sectional view of equipment for melting and loading an organic alkaline earth metal complex into a cylindrical raw material container.

【図5】筒状原料容器をシリーズに連結して有機アルカ
リ土類金属錯体を蒸発させる例を示す原料容器の略断面
図である。
FIG. 5 is a schematic cross-sectional view of a raw material container showing an example of connecting a cylindrical raw material container to a series and evaporating an organic alkaline earth metal complex.

【図6】本発明法を実施したさいの成膜速度の測定結果
を示す図である。
FIG. 6 is a diagram showing a measurement result of a film forming rate when the method of the present invention was performed.

【図7】比較法を実施したさいの成膜速度の測定結果を
示す図である。
FIG. 7 is a diagram showing a measurement result of a film forming speed when a comparative method is performed.

【符号の説明】[Explanation of symbols]

1 有機アルカリ土類金属錯体 2 有機アルカリ土類金属錯体の原料容器 3 恒温槽 4 有機アルカリ土類金属錯体蒸気をリアクターに導く
管路 5 リアクター 6 基板 7 気体酸素をリアクターに導く管路 8 排気装置 11 保温層
REFERENCE SIGNS LIST 1 organic alkaline earth metal complex 2 raw material container for organic alkaline earth metal complex 3 constant temperature bath 4 conduit for guiding organic alkaline earth metal complex vapor to reactor 5 reactor 6 substrate 7 conduit for guiding gaseous oxygen to reactor 8 exhaust device 11 Insulation layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CVD法により有機アルカリ土類金属錯
体を気化用原料としてアルカリ土類金属を含有する薄膜
を作製するさいに,該有機アルカリ土類金属錯体をいっ
たん融点以上に加熱して溶融し,その融体を原料容器内
で冷却固化させ,この固化した有機アルカリ土類金属錯
体をその融点以下の温度で気化させることを特徴とする
CVD法における有機アルカリ土類金属錯体の気化方
法。
When a thin film containing an alkaline earth metal is produced by a CVD method using an organic alkaline earth metal complex as a raw material for vaporization, the organic alkaline earth metal complex is once heated to a melting point or higher and melted. A method for vaporizing an organic alkaline earth metal complex in a CVD method, wherein the melt is cooled and solidified in a raw material container, and the solidified organic alkaline earth metal complex is vaporized at a temperature lower than its melting point.
【請求項2】 CVD法により有機アルカリ土類金属錯
体を気化用原料としてアルカリ土類金属を含有する薄膜
を作製するさいに,該有機アルカリ土類金属錯体を融点
以上に加熱して溶融し,その融体を,筒状の容器内に,
該容器の長手軸方向に延びる厚みが略一定の凝固層が形
成されるように鋳込み,該容器内にその長手軸方向にキ
ャリヤガスを通流させて該凝固層から有機アルカリ土類
金属錯体をその融点以下の温度で気化させることを特徴
とするCVD法における有機アルカリ土類金属錯体の気
化方法。
2. A method for producing a thin film containing an alkaline earth metal using an organic alkaline earth metal complex as a raw material for vaporization by a CVD method, wherein the organic alkaline earth metal complex is heated to a melting point or higher and melted. The melt is placed in a cylindrical container,
The container is cast so as to form a solidified layer having a substantially constant thickness extending in a longitudinal axis direction of the container, and a carrier gas is passed through the container in the longitudinal axis direction to remove the organic alkaline earth metal complex from the solidified layer. A method for vaporizing an organic alkaline earth metal complex in a CVD method, comprising vaporizing at a temperature not higher than its melting point.
【請求項3】 有機アルカリ土類金属錯体は,アルカリ
土類金属β−ジケトネートである請求項1または2に記
載の気化方法。
3. The vaporization method according to claim 1, wherein the organic alkaline earth metal complex is an alkaline earth metal β-diketonate.
【請求項4】 アルカリ土類金属β−ジケトネートは,
アルカリ土類金属とβ−ジケトンを無水溶媒または無溶
媒中で合成したものである請求項1,2または3に記載
の気化方法。
4. An alkaline earth metal β-diketonate,
4. The vaporization method according to claim 1, wherein the alkaline earth metal and the [beta] -diketone are synthesized in an anhydrous solvent or in the absence of a solvent.
JP36685497A 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method Expired - Fee Related JP3998309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36685497A JP3998309B2 (en) 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36685497A JP3998309B2 (en) 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method

Publications (2)

Publication Number Publication Date
JPH11193462A true JPH11193462A (en) 1999-07-21
JP3998309B2 JP3998309B2 (en) 2007-10-24

Family

ID=18487849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36685497A Expired - Fee Related JP3998309B2 (en) 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method

Country Status (1)

Country Link
JP (1) JP3998309B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538393A (en) * 2004-05-20 2007-12-27 アクゾ ノーベル ナムローゼ フェンノートシャップ Bubbler for constant supply of solid compound vapor
JP2013028854A (en) * 2011-07-29 2013-02-07 Air Liquide Japan Ltd Device and method for supplying solid material gas
JP2015038252A (en) * 2012-05-27 2015-02-26 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Container having filter
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538393A (en) * 2004-05-20 2007-12-27 アクゾ ノーベル ナムローゼ フェンノートシャップ Bubbler for constant supply of solid compound vapor
US8170404B2 (en) 2004-05-20 2012-05-01 Akzo Nobel N.V. Bubbler for constant vapor delivery of a solid chemical
US10895010B2 (en) 2006-08-31 2021-01-19 Entegris, Inc. Solid precursor-based delivery of fluid utilizing controlled solids morphology
JP2013028854A (en) * 2011-07-29 2013-02-07 Air Liquide Japan Ltd Device and method for supplying solid material gas
JP2015038252A (en) * 2012-05-27 2015-02-26 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Container having filter
US9598766B2 (en) 2012-05-27 2017-03-21 Air Products And Chemicals, Inc. Vessel with filter

Also Published As

Publication number Publication date
JP3998309B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US5945162A (en) Method and device for introducing precursors into chamber for chemical vapor deposition
JP3547471B2 (en) Vapor phase growth method of dielectric film
JP7434698B2 (en) Solid material pretreatment method and solid material product filled with solid material produced by the solid material pretreatment method
JP5015408B2 (en) Manufacturing method of high current coated high temperature superconducting tape
JP3967455B2 (en) Potassium-containing thin film and method for producing the same
JPH0598445A (en) Starting material vessel for chemical vapor deposition of organometallic compound
WO2005087975A1 (en) Material carburetor for organic metal chemical vapor phase deposition equipment
JP3998309B2 (en) Vaporization method of organic alkaline earth metal complex in CVD method
US20070148345A1 (en) Process for the deposition by cvd of a silver film on a substrate
JP3235176B2 (en) Organic metal compound vaporizer
JPS63243264A (en) Apparatus for producing thin film
US5952047A (en) CVD precursors and film preparation method using the same
WO2006009872A1 (en) Direct injection chemical vapor deposition method
JP3393135B2 (en) Apparatus and method for delivering non-volatile reactants
TW200425289A (en) Vaporizer
JPH04333572A (en) Method for gasifying mo stock for oxide superconductor
JP3818691B2 (en) Raw material compound for CVD of rare earth elements and film forming method using the same
JPH10324970A (en) Raw material for cvd and film-forming method using the same
JP3964976B2 (en) Strontium source material for CVD and film forming method using the same
JP5624744B2 (en) Vaporizer, vaporization method and CVD apparatus
JP4180235B2 (en) Liquid material supply device for CVD
JP4236807B2 (en) Manufacturing method of oxide superconductor
JPH03253570A (en) Production of metal oxide by chemical vapor deposition method
JPH03287768A (en) Vaporizer for cvd material to produce oxide superconductor
JPH0953177A (en) Copper source material for cvd and film formation using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees