JP3998309B2 - Vaporization method of organic alkaline earth metal complex in CVD method - Google Patents

Vaporization method of organic alkaline earth metal complex in CVD method Download PDF

Info

Publication number
JP3998309B2
JP3998309B2 JP36685497A JP36685497A JP3998309B2 JP 3998309 B2 JP3998309 B2 JP 3998309B2 JP 36685497 A JP36685497 A JP 36685497A JP 36685497 A JP36685497 A JP 36685497A JP 3998309 B2 JP3998309 B2 JP 3998309B2
Authority
JP
Japan
Prior art keywords
earth metal
alkaline earth
container
raw material
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36685497A
Other languages
Japanese (ja)
Other versions
JPH11193462A (en
Inventor
雄三 田▲崎▼
淳一 石合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP36685497A priority Critical patent/JP3998309B2/en
Publication of JPH11193462A publication Critical patent/JPH11193462A/en
Application granted granted Critical
Publication of JP3998309B2 publication Critical patent/JP3998309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はCVD法によってアルカリ土類金属含有薄膜を製造するさいに,アルカリ土類金属の原料物質を安定して気化させる方法に関する。
【0002】
【従来の技術】
アルカリ土類金属を成分として含む薄膜は,強誘電体材料,EL素子材料,超電導体材料などに有用なことから,該薄膜の製法が盛んに研究されている。
【0003】
薄膜作製技術として,真空蒸着法,スパッタリング法などの物理的成膜法と,化学的気相蒸着(CVD)法のような化学的成膜法が良く知られている。CVD法は,成膜速度の制御性,膜組成の制御性,高速成膜性,大面積への成膜性等に優れまた量産向きであるので広く利用されており,特に,現在開発が進められているギガビット級DRAMのキャパシタ膜などの作製においては,段差被膜性に優れたCVD法が最も有望な薄膜作製方法として注目されている。
【0004】
CVD法において,薄膜を構成する金属成分を供給する原料物質としては,有機金属錯体も用いられており,有機金属錯体を気化用原料とする成膜法は特にMOCVD法と呼ばれている。DRAMのキャパシタに用いる強誘電体薄膜や電極薄膜,酸化物超伝導薄膜などの作製においては,このMOCVD法が広く検討されており,配位子にβージケトンを有する有機金属錯体が使用されている。なかでもジピバロイルメタン(DPM)を配位子とする錯体は,一般に気化性が良好で,熱分解温度が高く,膜への不純物混入が少ない,といった利点があり,最も多く使用されている。
【0005】
アルカリ土類金属を構成成分とする強誘電体薄膜や酸化物超伝導薄膜などの作製においても,その原料物質として有機アルカリ土類金属錯体が使用され,この錯体もβージケトン系のもの,特にジピバロイルメタン(DPM)を配位子とするものが使用されている。
【0006】
【発明が解決しようとする課題】
CVD法でアルカリ土類金属含有物質の成膜を行うさいに,前記のように有機アルカリ土類金属錯体を気化用原料として使用することが推奨されてきた。このような有機アルカリ土類金属錯体は,通常,粉末状で合成され,その融点が一般に高い(DPM錯体では通常200℃以上)。そして,アルカリ土類金属のDPM錯体は分解温度が比較的低いので,高温にしすぎると分解が生じことや,200℃以上ではCVD装置のバルブ類が機能に支障をきたすことなどから,この原料をCVD法で気化させるさいには,融点以下の温度の粉末状態から気化させるのが一般であるが,この場合には,本発明者らの経験によると,時間の経過とともに成膜速度が変化(減少)し,成膜中のアルカリ土類金属含有量に変化を生ずることがわかった。
【0007】
すなわち,粉体原料の有機アルカリ土類金属錯体をその粉体状態から昇華させると,一定した成膜速度を長時間確保することが困難である。これは,昇華の進行につれて原料粒子の表面積が減少し,この表面積の減少が気化速度を遅くすること,また,粉末同士の部分的な融着などにより気化速度が変動すること等が原因ではないかと考えられる。このようなことから,粉末状態からの気化では経時的に蒸気量が減少したり蒸気量の変動が不可避的に生ずるのである。気化速度が変化すると,アルカリ土類金属含有薄膜(たとえばSrTiO3 など)を作製する場合,その成膜の制御が困難になる。
【0008】
原料錯体を有機溶媒に溶かし,液体流量制御によって気化器に送り込まれた溶液を全量気化させる溶液気化CVD法も開発されているが,この方法では,固体昇華による気化より30〜50℃程度高温に加熱しなければ同様な成膜速度が得られない。このため,原料の気化器中での分解による気化器内の配管の詰まりや,大量に使用される溶媒の分解物の膜中への混入など,解決されるべき問題点は多い。
【0009】
したがって,本発明の課題は,アルカリ土類金属含有薄膜を製作するCVD法において,有機アルカリ土類金属錯体の気化を安定して行えるようにすることにある。
【0010】
【課題を解決するための手段】
本発明は,CVD法により有機アルカリ土類金属錯体を気化用原料としてアルカリ土類金属を含有する薄膜を作製するさいに,該有機アルカリ土類金属錯体をいったん融点以上に加熱して溶融し,その融体を原料容器内で冷却固化させ,この固化した有機アルカリ土類金属錯体をその融点以下の温度で気化させることを特徴とする。
【0011】
さらに本発明は,CVD法により有機アルカリ土類金属錯体を気化用原料としてアルカリ土類金属を含有する薄膜を作製するさいに,該有機アルカリ土類金属錯体を融点以上に加熱して溶融し,その融体を,筒状の容器内に,該容器の長手軸方向に延びる厚みが略一定の凝固層が形成されるように鋳込み,該容器内にその長手軸方向にキャリヤガスを通流させて該凝固層から有機アルカリ土類金属錯体をその融点以下の温度で気化させることを特徴とする。
【0012】
【発明の実施の形態】
本発明者らは前記の課題を解決するため種々の試験研究を重ねたところ,有機アルカリ土類金属錯体を成膜用原料として使用する前に,いったん融点以上に加熱して溶融し,これを冷却固化(凝固)させたものを使用すると,安定な成膜が可能となり,前記の課題が解決できることを見いだした。特に,その融体を筒状の容器内に鋳込んで容器長手軸方向に延びる厚みが略一定の凝固層を形成させ,その凝固層表面にキャリヤガスを容器軸方向に通流させて気化させると,一層安定して成膜できることがわかった。
【0013】
本発明で使用する有機アルカリ土類金属錯体は,アルカリ土類金属例えばBe,Mg,Ca,Sr,Ba等のβ−ジケトネートが適し,特にジピバロイルメタン(DPM)を配位子とする有機アルカリ土類金属錯体が好適である。また,このようなアルカリ土類金属β−ジケトネートは,とくに無水溶媒または無溶媒中で合成したものは,一時的に融点以上に加熱しても分解は起こらないことが分かった。したがって,無水溶媒または無溶媒中で合成したアルカリ土類金属β−ジケトネートが本発明の実施に好適に使用できる。
【0014】
以下に図面を参照しながら,本発明の好ましい実施の形態を説明する。
【0015】
図1は,有機アルカリ土類金属錯体1を装填した原料容器2を,所定温度に維持される恒温槽3内にセットし,原料容器2で気化する錯体蒸気をキャリヤガス(図例ではアルゴンガス)によって管路4を経てリアクター5に導き,リアクター5内にセットされた基板6の表面に析出させるようにしたCVD設備を示している。本設備において,錯体蒸気を導く管路4とは別途に,酸素ガスをリアクター5に導く管路7が設けられ,この酸素ガス管路7がリアクター5の直前の位置で管路4に接続されており,この合流位置で錯体蒸気と酸素ガスが調整された量比で混合することにより,両者が反応して基板6の表面に意図する成分の薄膜が生成する。
【0016】
図1において,8は系内を減圧にする排気装置(ロータリーポンプ),9は排気弁,10は冷却トラップを示しており,恒温槽3からリアクター5に至る錯体蒸気の供給管路4はその外周が保温層11で取り巻かれている。保温層11内には図示しないヒータが内装され,恒温槽3の温度よりも5〜50℃高い温度に管路4の内壁温度が維持されるようにしてある。またリアクター5は,その外周に取り付けたヒータ12により所定温度に加熱され,このヒータ12付きのリアクター5がそっくり熱分解炉13内にセットされている。
【0017】
本発明においては,有機アルカリ土類金属錯体1を,いったんその融点以上の温度に加熱して融体化し,その融体を原料容器2内で冷却固化するという操作を行う。この場合,原料容器2として筒状のものを使用し,その筒状の容器の長手軸方向に延びる厚みが略一定の凝固層が形成されるように冷却固化する。以下にこの態様を具体的に説明する。
【0018】
図1のCVD設備において,恒温槽3内には同形の筒状の原料容器2をシリーズに2個接続した状態でセットされている。この筒状の原料容器2の具体例を図2に示した。この原料容器2は,両端が閉じたパイプ15の端近傍に同方向の分岐管16と17を接続し,この分岐管16と17にそれぞれ弁18と19を取付けたものである。パイプ16は軸方向に断面が等しい等径管であり,その断面形状は図3に示すように,円形のもの(15a),方形のもの(15b),楕円形のもの(15c)などが適用できる。図1の設備では,このような筒状の原料容器2を2個使用したものであり,その一方の容器の分岐管16にキャリヤガス管20を接続し,他方の分岐管17を接続管21を介して,他方の容器の分岐管16に接続し,他方の容器の分岐管17を錯体蒸気管路4に接続してある。これにより,弁18と19が全て開いた状態では,キャリヤガスが先ず一方の容器内に入ってから接続管21を経て他方の容器に入り,管路4へと流れる。
【0019】
図4は,筒状原料容器2に有機アルカリ土類金属錯体1を装入する操作態様を図解したものである。図4に従って,その操作を説明すると,原料の有機アルカリ土類金属錯体の粉末23を,底部にノズル24をもつ容器25内に不活性ガス雰囲気下で装填し,この容器25の底部ノズル24に,筒状原料容器2の分岐管17を,その弁19を閉じた状態で,接続するとともに,他方の分岐管16と容器25の上部開口26とを接続管27で連結して閉回路を形成し,この閉回路内雰囲気を全て不活性ガスで置換したうえ,筒状原料容器2が水平状態となるようにして,そっくり電気炉28(破線で示す)にセットする。これにより,容器25内の粉末を融点以上に昇温させて融解させる。ここまでが,図4の最上段に示す段階である。
【0020】
原料粉末が容器25内で完全に融解したら,弁19を開いて容器25内から筒状原料容器2内にその融体を流し込む。図4の中段の図は,この流し込みの途中段階を示している。この流し込みを続け,水平状態にある筒状原料容器2内に水平な液面をもって該融体が所定の深さで装填された状態で,流し込みを終了し,次いで,筒状原料容器2を常温にまで冷却することにより,筒状原料容器2の長手軸方向に延びる厚みが略一定の凝固層が形成される。図4の最下段の図はこの状態を示しており,その凝固層を29で示す。凝固層29は容器断面の一部を占める深さまでとし,その上部にはキャリヤガスが通流する空間を開けておく。このようにして,有機アルカリ土類金属錯体の鋳込みが終えると,弁18と19を閉じて,分岐管付きのままこの装填設備から切り離し,CVD設備に移動し,例えば図1のように恒温槽3内にセットする。
【0021】
このようにして,粉末状の有機アルカリ土類金属錯体原料をいったん加熱溶融して原料容器2内で冷却固化させると,その表面積は粉体原料よりも遙かに小さくなるが,蒸発量の経時変化をほぼ完全に抑制できることがわかった。これは蒸発が進行しても,その表面積の変動が極めて小さいことによると考えられる。また,キャリヤガスを筒状原料容器2内に通流しても,粉末から蒸発させる場合のように,粉末がキャリヤガス中に同伴することも抑制できる。このため,粉末がリアクター5にまで到達して膜を汚染するということも防止できる。
【0022】
特に,前記のように軸方向に長く延びた筒状原料容器2内に,その軸方向に厚みが略一定の凝固層が形成されるように有機アルカリ土類金属錯体1を冷却固化させた場合には,キャリヤガスを容器軸方向に一方向に通流させると,固体状態からの気化であるにも拘わらず,容器出口側の分岐管17の近傍ではほぼ飽和蒸気圧に近い原料蒸気が得られることがわかった。
【0023】
この関係は,筒状原料容器2が長ければ長い程,そして,長さ/口径(管の内径)の比が大きければ大きいほど良好となる。実際には,容器出口側の分岐管17の近傍でほぼ飽和蒸気圧が得られるように容器寸法やキャリヤガス流量などを装置条件に応じて適切に選定すればよい。また,筒状原料容器2をシリーズに接続すれば原料を無駄なく使用することもできる。図1の例では,2個の筒状原料容器2を接続した態様を示している。
【0024】
このような筒状原料容器2では,キャリヤガスの流れ方向において,上流側ほど錯体蒸気の濃度が低く下流側ほど高くなる。したがって,該容器の出口付近でちょうど飽和蒸気圧が得られるような長さに設計した筒状原料容器2を複数個シリーズに連結し,これを順送りするようにすれば,半永久的な連続運転が可能となる。この態様を図5に従って説明する。
【0025】
図5は,いったん溶融して冷却固化した有機アルカリ土類金属錯体を所定量装填した2個の筒状原料容器2aと2bを接続管21を介してシリーズに連結し,上流側容器2aの分岐管16の側からキャリヤガスを導入し,下流側容器2bの分岐管17の側からリアクター5に送気する状態(恒温槽は省略してある)を示している。このようにして,上流側容器2aの出口付近で錯体の飽和蒸気圧が得られるように固体錯体からの気化を開始すると,下流側容器2bでは飽和蒸気圧に近い気体が送り込まれるので僅かしか蒸発せず,殆んどの錯体蒸気は上流側容器2aから気化したものとなるので,上流側容器2aの固体原料1aが優先的に減少してゆき,図5のAの状態からBの状態へと上流側容器2aの固体原料1aの厚みが減り,やがて図5のCの状態のように上流側容器2aは空になるが,この状態でも下流側容器2bでは固体原料1bは十分に存在する。
【0026】
そこで,空の上流側容器2aを取り外し,下流側容器2bを上流側に繰り上げると共に,新たな筒状原料容器2cを下流側に接続して新規補給する。この状態を図5のDに示す。これにより,今度は下流側容器2bから優先的に蒸発し,図5のAの状態に戻る。以後,これを繰り返すことにより,略同一濃度の錯体蒸気を連続的にリアクターに搬送することができる。しかも,原料錯体がほぼ空になったら新規補給すればよいので,原料を無駄なく使用しきることができる。
【0027】
以上のようにして,本発明によれば,有機アルカリ土類金属錯体の一定濃度の蒸気を安定して発生させることができる。このため,時間を経ても成膜速度が安定し,均質な膜を形成できる。なお,前記の態様では,有機アルカリ土類金属錯体の蒸発を中心として説明したが,他の原料の蒸気も同時にリアクターに導く場合には,リアクターに他の原料の蒸気を導入する設備を付設すればよい。また,別の容器で有機アルカリ土類金属錯体を溶融し,これを原料容器2内に注入して冷却固化する図4の態様のほか,CVD設備にセットする原料容器2内に粉末原料を入れ,この原料容器2内で粉末原料を融解し,そのまま原料容器2内で冷却固化させることもできる。
【0028】
【実施例】
以下に,図1に示したCVD設備により,有機アルカリ土類金属錯体としてビス〔ジピバロイルメタナト〕ストロンチウム [Sr(DPM)2] を用いて, シリコン基板上に酸化ストロンチウムを成膜した本発明の実施例を挙げる。
【0029】
〔実施例1〕
使用した [Sr(DPM)2] は脱水トルエン中で金属ストロンチウムとジピバロイルメタンを反応させて得た粉体であり,この粉体を図4で説明したように,いったん溶融して長さ50cm,内径1cmのパイプ形状の筒状原料容器に注入し,この容器内で冷却固化させた。
【0030】
このものを図1のように2個直列に連結し,200℃に維持した恒温槽3内にセットし,またリアクター5内のSi基板6をヒータ12によって600℃に加熱保持した。そして,100mL/分の流量でArガスを上流側筒状原料容器2に送り込み,また,気体酸素を管路7から同じく100mL/分の流量で送り込み,ロータリーポンプ8を駆動することによりリアクター5内の圧力を10トールに保持した状態で成膜を行った。そのさい,筒状原料容器2からリアクター5までの管路4には,ヒータ付きの保温槽11を設け,管路4の内壁温度が220℃に維持されるようにした。
【0031】
この条件下で30分間の成膜を行ったところ,厚さ330nm(1時間当り約650nm)の酸化ストロンチウムの薄膜が得られた。
【0032】
再び同じ条件下で5時間ずつ成膜時間を増加させた実験を35時間のものまで行ない,各時間での成膜厚みを測定することにより,酸化ストロンチウムの成膜速度を測定した。その結果を図6に示した。
【0033】
図6の結果に見られるように,30時間までは成膜速度は約650nm/時間の一定値を示しており,成膜速度が経時変化しないことがわかる。
【0034】
また,図6の結果によれば,35時間のものでは成膜速度が低下しているが,このものでは,上流側の筒状原料容器は空になっており,下流側の筒状原料容器には残存していた。したがって,30時間から35時間の間に,上流側の筒状原料容器の原料が蒸発し尽くしたものと考えられる。このため,空の容器を取外し,下流側の筒状原料容器を図5のDの状態のように上流側に移動し,その下流側には新たな原料容器を接続して再び同じ条件で成膜を行ったところ,前記と同じ成膜速度に復帰した。
【0035】
〔比較例〕
高さが11cmで直径が4cmの蓋付き円筒容器に [Sr(DPM)2] の粉末を不活性雰囲気中で20g装填した。蓋にはArガスを容器内に送入する送気管と,容器内からリアクターに蒸気を導く管を取付けておき,前者の送気管の下端開口を粉末層の底部近くに位置させた。このようにして,粉末状態から気化させた以外は,実施例1と同じ条件で30分間成膜したところ,厚さ240nmの酸化ストロンチウムの薄膜が得られた。
【0036】
また,この比較例の方法における成膜速度を実施例1の場合と同じようにして測定したところ,図7の結果が得られた。図6の実施例1のものと比較すると明らかなように,表面積が多い筈の粉体からの蒸発からでも成膜速度は遅く且つ時間の経過とともに成膜速度が徐々に低下していることがわかる。
【0037】
【発明の効果】
以上説明したように,本発明によると,CVD法により有機アルカリ土類金属錯体を基体上に析出させるさいに,有機アルカリ土類金属錯体の気化を効率よく且つ経時的に安定して行うことができる。このため,品質のよいアルカリ土類金属含有薄膜を高い成膜速度で安定して製造することができる。
【図面の簡単な説明】
【図1】CVD法で成膜する設備例を示す機器配置図である。
【図2】CVD法で使用する原料容器の例を示す側面図である。
【図3】図2の原料容器のX−X線矢視部の拡大断面図である。
【図4】筒状原料容器に有機アルカリ土類金属錯体を融解して装填する設備の略断面図である。
【図5】筒状原料容器をシリーズに連結して有機アルカリ土類金属錯体を蒸発させる例を示す原料容器の略断面図である。
【図6】本発明法を実施したさいの成膜速度の測定結果を示す図である。
【図7】比較法を実施したさいの成膜速度の測定結果を示す図である。
【符号の説明】
1 有機アルカリ土類金属錯体
2 有機アルカリ土類金属錯体の原料容器
3 恒温槽
4 有機アルカリ土類金属錯体蒸気をリアクターに導く管路
5 リアクター
6 基板
7 気体酸素をリアクターに導く管路
8 排気装置
11 保温層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stably vaporizing a raw material of an alkaline earth metal when producing an alkaline earth metal-containing thin film by a CVD method.
[0002]
[Prior art]
A thin film containing an alkaline earth metal as a component is useful for a ferroelectric material, an EL element material, a superconductor material, and the like. Therefore, a method for producing the thin film has been actively studied.
[0003]
As a thin film manufacturing technique, a physical film forming method such as a vacuum deposition method and a sputtering method and a chemical film forming method such as a chemical vapor deposition (CVD) method are well known. The CVD method is widely used because it is excellent in controllability of film formation rate, controllability of film composition, high-speed film formation property, film formation property over a large area, etc. and is suitable for mass production. In the production of a capacitor film of a gigabit class DRAM, which has been used, the CVD method having excellent step film property has attracted attention as the most promising thin film production method.
[0004]
In the CVD method, an organic metal complex is also used as a source material for supplying a metal component constituting a thin film, and a film forming method using an organometallic complex as a raw material for vaporization is particularly called an MOCVD method. The MOCVD method has been widely studied in the production of ferroelectric thin films, electrode thin films, oxide superconducting thin films, etc. used in DRAM capacitors, and organometallic complexes having β-diketones as ligands are used. . Among these, complexes containing dipivaloylmethane (DPM) as a ligand have the advantages of generally good vaporization, high thermal decomposition temperature, and low impurity contamination into the film, and are most often used. Yes.
[0005]
In the production of ferroelectric thin films and oxide superconducting thin films containing alkaline earth metals as constituents, organic alkaline earth metal complexes are used as raw materials, and these complexes are also β-diketone series, What uses pivaloylmethane (DPM) as a ligand is used.
[0006]
[Problems to be solved by the invention]
When forming an alkaline earth metal-containing material by CVD, it has been recommended to use an organic alkaline earth metal complex as a raw material for vaporization as described above. Such an organic alkaline earth metal complex is usually synthesized in a powder form and generally has a high melting point (usually 200 ° C. or higher for a DPM complex). The alkaline earth metal DPM complex has a relatively low decomposition temperature, so decomposition occurs when the temperature is too high, and the valves of the CVD apparatus interfere with the function at 200 ° C. or higher. When vaporizing by the CVD method, it is common to vaporize from a powder state at a temperature below the melting point, but in this case, according to the experience of the present inventors, the deposition rate changes with the passage of time ( It was found that the alkaline earth metal content during film formation changed.
[0007]
That is, if the powdered organic alkaline earth metal complex is sublimated from its powder state, it is difficult to ensure a constant film formation rate for a long time. This is because the surface area of the raw material particles decreases as the sublimation progresses, the decrease in the surface area slows the vaporization rate, and the vaporization rate fluctuates due to partial fusion between the powders. It is thought. For this reason, vaporization from a powder state inevitably results in a decrease in the amount of steam over time and fluctuations in the amount of steam. When the vaporization rate changes, when an alkaline earth metal-containing thin film (for example, SrTiO 3 ) is produced, it becomes difficult to control the film formation.
[0008]
A solution vaporization CVD method has also been developed in which the raw material complex is dissolved in an organic solvent and the entire solution sent to the vaporizer is vaporized by controlling the liquid flow rate. A similar film forming speed cannot be obtained unless heated. For this reason, there are many problems to be solved such as clogging of piping in the vaporizer due to decomposition of the raw material in the vaporizer and mixing of a large amount of solvent decomposition products into the film.
[0009]
Accordingly, an object of the present invention is to enable stable vaporization of an organic alkaline earth metal complex in a CVD method for producing an alkaline earth metal-containing thin film.
[0010]
[Means for Solving the Problems]
In the present invention, when a thin film containing an alkaline earth metal is prepared by vapor deposition using an organic alkaline earth metal complex as a raw material for CVD, the organic alkaline earth metal complex is once heated to a melting point or higher and melted. The melt is cooled and solidified in a raw material container, and the solidified organic alkaline earth metal complex is vaporized at a temperature below its melting point.
[0011]
Furthermore, the present invention provides a method for producing a thin film containing an alkaline earth metal using an organic alkaline earth metal complex as a raw material for vaporization by a CVD method. The melt is cast into a cylindrical container so that a solidified layer having a substantially constant thickness extending in the longitudinal axis direction of the container is formed, and a carrier gas is passed through the container in the longitudinal axis direction. The organic alkaline earth metal complex is vaporized from the solidified layer at a temperature below its melting point.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above problems, the present inventors have conducted various test studies. Before using the organic alkaline earth metal complex as a film-forming raw material, it was once heated to a melting point or higher and melted. It has been found that the use of a material that has been cooled and solidified (solidified) enables stable film formation and solves the above-mentioned problems. In particular, the melt is cast into a cylindrical container to form a solidified layer having a substantially constant thickness extending in the longitudinal direction of the container, and a carrier gas is passed through the surface of the solidified layer in the axial direction of the container and vaporized. It was found that the film can be formed more stably.
[0013]
The organic alkaline earth metal complex used in the present invention is preferably an alkaline earth metal, for example, β-diketonate such as Be, Mg, Ca, Sr, Ba, etc., and particularly dipivaloylmethane (DPM) as a ligand. Organic alkaline earth metal complexes are preferred. It was also found that such alkaline earth metal β-diketonate synthesized in an anhydrous solvent or without a solvent did not decompose even when temporarily heated to the melting point or higher. Therefore, alkaline earth metal β-diketonate synthesized in an anhydrous solvent or in the absence of a solvent can be preferably used in the practice of the present invention.
[0014]
A preferred embodiment of the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 shows that a raw material container 2 loaded with an organic alkaline earth metal complex 1 is set in a thermostat 3 maintained at a predetermined temperature, and a complex vapor vaporized in the raw material container 2 is a carrier gas (in the example, argon gas). ) Shows the CVD equipment which is led to the reactor 5 through the pipe line 4 and is deposited on the surface of the substrate 6 set in the reactor 5. In this facility, a pipe 7 for introducing oxygen gas to the reactor 5 is provided separately from the pipe 4 for introducing the complex vapor, and this oxygen gas pipe 7 is connected to the pipe 4 at a position immediately before the reactor 5. When the complex vapor and oxygen gas are mixed at the merging position at an adjusted quantity ratio, both react to produce a thin film of the intended component on the surface of the substrate 6.
[0016]
In FIG. 1, 8 is an exhaust device (rotary pump) for reducing the pressure in the system, 9 is an exhaust valve, 10 is a cooling trap, and the complex vapor supply line 4 from the thermostat 3 to the reactor 5 is The outer periphery is surrounded by a heat insulating layer 11. A heater (not shown) is provided in the heat retaining layer 11 so that the inner wall temperature of the pipe line 4 is maintained at a temperature 5 to 50 ° C. higher than the temperature of the thermostatic chamber 3. The reactor 5 is heated to a predetermined temperature by a heater 12 attached to the outer periphery thereof, and the reactor 5 with the heater 12 is set in the pyrolysis furnace 13 in its entirety.
[0017]
In the present invention, the organic alkaline earth metal complex 1 is once heated to a temperature equal to or higher than its melting point to be melted, and the melt is cooled and solidified in the raw material container 2. In this case, a cylindrical container is used as the raw material container 2 and cooled and solidified so that a solidified layer having a substantially constant thickness extending in the longitudinal axis direction of the cylindrical container is formed. This embodiment will be specifically described below.
[0018]
In the CVD facility shown in FIG. 1, a thermostat 3 is set with two identical cylindrical raw material containers 2 connected in series. A specific example of the cylindrical raw material container 2 is shown in FIG. In this raw material container 2, branch pipes 16 and 17 in the same direction are connected in the vicinity of the end of a pipe 15 whose both ends are closed, and valves 18 and 19 are attached to the branch pipes 16 and 17, respectively. The pipe 16 is an equal-diameter pipe having the same cross section in the axial direction, and the cross-sectional shape thereof is circular (15a), square (15b), elliptical (15c), etc. as shown in FIG. it can. In the facility of FIG. 1, two such cylindrical raw material containers 2 are used. The carrier gas pipe 20 is connected to the branch pipe 16 of one of the containers, and the other branch pipe 17 is connected to the connection pipe 21. Is connected to the branch pipe 16 of the other container, and the branch pipe 17 of the other container is connected to the complex vapor line 4. As a result, in the state in which the valves 18 and 19 are all open, the carrier gas first enters one container, then enters the other container via the connecting pipe 21 and flows to the conduit 4.
[0019]
FIG. 4 illustrates an operation mode in which the organic alkaline earth metal complex 1 is charged into the cylindrical raw material container 2. The operation will be described with reference to FIG. 4. A raw material organic alkaline earth metal complex powder 23 is loaded in a container 25 having a nozzle 24 at the bottom in an inert gas atmosphere, and the bottom nozzle 24 of the container 25 is loaded. The branch pipe 17 of the cylindrical raw material container 2 is connected with the valve 19 closed, and the other branch pipe 16 and the upper opening 26 of the container 25 are connected by a connection pipe 27 to form a closed circuit. Then, the atmosphere in the closed circuit is completely replaced with an inert gas, and the cylindrical raw material container 2 is set in an electric furnace 28 (shown by a broken line) so that it is in a horizontal state. Thereby, the powder in the container 25 is heated to a melting point or higher and melted. This is the stage shown in the uppermost stage of FIG.
[0020]
When the raw material powder is completely melted in the container 25, the valve 19 is opened and the melt is poured from the container 25 into the cylindrical raw material container 2. The middle diagram of FIG. 4 shows the middle stage of the pouring. The pouring is continued, and the pouring is finished in a state where the melt is loaded at a predetermined depth with a horizontal liquid surface in the cylindrical raw material container 2 in a horizontal state. The solidified layer having a substantially constant thickness extending in the longitudinal axis direction of the cylindrical raw material container 2 is formed by cooling to. The lowermost diagram in FIG. 4 shows this state, and the solidified layer is indicated by 29. The solidified layer 29 is formed to a depth that occupies a part of the cross section of the container, and a space through which the carrier gas flows is opened above. When the casting of the organic alkaline earth metal complex is completed in this way, the valves 18 and 19 are closed, separated from the loading equipment with the branch pipe, and moved to the CVD equipment. For example, as shown in FIG. Set in 3.
[0021]
Thus, once the powdered organic alkaline earth metal complex raw material is heated and melted and cooled and solidified in the raw material container 2, its surface area becomes much smaller than that of the powder raw material, It was found that the change can be suppressed almost completely. This is thought to be due to the fact that the fluctuation of the surface area is extremely small even when evaporation proceeds. Further, even if the carrier gas is passed through the cylindrical raw material container 2, it is possible to suppress the entrainment of the powder in the carrier gas as in the case of evaporating from the powder. For this reason, it is possible to prevent the powder from reaching the reactor 5 and contaminating the membrane.
[0022]
In particular, when the organic alkaline earth metal complex 1 is cooled and solidified so that a solidified layer having a substantially constant thickness in the axial direction is formed in the cylindrical raw material container 2 extending in the axial direction as described above. In this case, when the carrier gas is allowed to flow in one direction along the axis of the container, a raw material vapor close to the saturation vapor pressure is obtained in the vicinity of the branch pipe 17 on the container outlet side in spite of vaporization from the solid state. I found out that
[0023]
This relationship becomes better as the cylindrical material container 2 is longer and as the ratio of length / bore (inner diameter of the pipe) is larger. In practice, the container dimensions, carrier gas flow rate, and the like may be appropriately selected according to the apparatus conditions so that a saturated vapor pressure is obtained in the vicinity of the branch pipe 17 on the container outlet side. Moreover, if the cylindrical raw material container 2 is connected to the series, the raw material can be used without waste. In the example of FIG. 1, the aspect which connected the two cylindrical raw material containers 2 is shown.
[0024]
In such a cylindrical raw material container 2, the concentration of the complex vapor is lower at the upstream side and higher at the downstream side in the flow direction of the carrier gas. Therefore, if a plurality of cylindrical raw material containers 2 designed so as to obtain a saturated vapor pressure in the vicinity of the outlet of the container are connected in series and fed forward, a semi-permanent continuous operation can be achieved. It becomes possible. This aspect will be described with reference to FIG.
[0025]
FIG. 5 shows a case where two cylindrical raw material containers 2a and 2b loaded with a predetermined amount of an organic alkaline earth metal complex that has been once melted and cooled and solidified are connected in series via a connecting pipe 21 to branch the upstream container 2a. A state is shown in which the carrier gas is introduced from the pipe 16 side and is supplied to the reactor 5 from the branch pipe 17 side of the downstream side container 2b (the thermostat is omitted). In this way, when vaporization from the solid complex is started so that the saturated vapor pressure of the complex is obtained in the vicinity of the outlet of the upstream side container 2a, a gas close to the saturated vapor pressure is sent into the downstream side container 2b, so that it is slightly evaporated. However, since most of the complex vapor is vaporized from the upstream container 2a, the solid raw material 1a in the upstream container 2a is preferentially reduced, and the state from A to B in FIG. The thickness of the solid raw material 1a in the upstream container 2a decreases and eventually the upstream container 2a becomes empty as in the state of FIG. 5C, but even in this state, the solid raw material 1b is sufficiently present in the downstream container 2b.
[0026]
Therefore, the empty upstream side container 2a is removed, the downstream side container 2b is moved upstream, and a new cylindrical raw material container 2c is connected to the downstream side and newly replenished. This state is shown in FIG. This preferentially evaporates from the downstream container 2b and returns to the state of FIG. Thereafter, by repeating this, the complex vapor having substantially the same concentration can be continuously transferred to the reactor. Moreover, since the raw material complex is almost empty, it can be replenished, so that the raw material can be used without waste.
[0027]
As described above, according to the present invention, it is possible to stably generate a vapor having a certain concentration of the organic alkaline earth metal complex. For this reason, the deposition rate is stable over time, and a homogeneous film can be formed. In the above embodiment, the explanation has been made mainly on the evaporation of the organic alkaline earth metal complex. However, when the vapors of other raw materials are also led to the reactor at the same time, a facility for introducing the vapors of the other raw materials is attached to the reactor. That's fine. In addition to the embodiment shown in FIG. 4 in which the organic alkaline earth metal complex is melted in another container and poured into the raw material container 2 and cooled and solidified, the powder raw material is put in the raw material container 2 set in the CVD facility. The powder raw material can be melted in the raw material container 2 and cooled and solidified in the raw material container 2 as it is.
[0028]
【Example】
In the following, a strontium oxide film is formed on a silicon substrate using bis [dipivaloylmethanato] strontium [Sr (DPM) 2 ] as an organic alkaline earth metal complex by the CVD equipment shown in FIG. Examples of the invention are given.
[0029]
[Example 1]
The [Sr (DPM) 2 ] used was a powder obtained by reacting metal strontium with dipivaloylmethane in dehydrated toluene. This powder was once melted and long as explained in FIG. It was poured into a pipe-shaped cylindrical raw material container having a length of 50 cm and an inner diameter of 1 cm, and cooled and solidified in this container.
[0030]
Two of these were connected in series as shown in FIG. 1 and set in a thermostat 3 maintained at 200 ° C., and the Si substrate 6 in the reactor 5 was heated and held at 600 ° C. by a heater 12. Then, Ar gas is sent to the upstream cylindrical raw material container 2 at a flow rate of 100 mL / min, and gaseous oxygen is similarly sent from the pipe 7 at a flow rate of 100 mL / min, and the rotary pump 8 is driven to drive the reactor 5 into the reactor 5. The film was formed while maintaining the pressure at 10 torr. At that time, a heat insulating tank 11 with a heater is provided in the pipe line 4 from the cylindrical raw material container 2 to the reactor 5 so that the inner wall temperature of the pipe line 4 is maintained at 220 ° C.
[0031]
When film formation was performed for 30 minutes under these conditions, a thin film of strontium oxide having a thickness of 330 nm (about 650 nm per hour) was obtained.
[0032]
Again, an experiment was performed in which the film formation time was increased by 5 hours under the same conditions up to 35 hours, and the film formation rate at each time was measured to measure the film formation rate of strontium oxide. The results are shown in FIG.
[0033]
As can be seen from the results of FIG. 6, the deposition rate shows a constant value of about 650 nm / hour up to 30 hours, and it can be seen that the deposition rate does not change with time.
[0034]
Further, according to the result of FIG. 6, the film forming speed is reduced at 35 hours, but in this case, the upstream cylindrical raw material container is empty, and the downstream cylindrical raw material container is empty. Remained. Therefore, it is considered that the raw material in the upstream cylindrical raw material container was completely evaporated during 30 to 35 hours. For this reason, the empty container is removed, the downstream cylindrical raw material container is moved to the upstream side as shown in FIG. 5D, and a new raw material container is connected to the downstream side again under the same conditions. When the film was formed, it returned to the same film formation rate as described above.
[0035]
[Comparative Example]
A cylindrical container with a lid having a height of 11 cm and a diameter of 4 cm was charged with 20 g of [Sr (DPM) 2 ] powder in an inert atmosphere. An air supply pipe for introducing Ar gas into the container and a pipe for introducing steam from the container to the reactor were attached to the lid, and the lower end opening of the former air supply pipe was positioned near the bottom of the powder layer. Thus, when it formed into a film for 30 minutes on the same conditions as Example 1 except vaporizing from a powder state, the thin film of strontium oxide of thickness 240nm was obtained.
[0036]
Further, when the film formation rate in the method of this comparative example was measured in the same manner as in Example 1, the result shown in FIG. 7 was obtained. As is clear from the comparison with Example 1 in FIG. 6, the film formation rate is slow even after evaporation from the powder having a large surface area, and the film formation rate gradually decreases with time. Recognize.
[0037]
【The invention's effect】
As described above, according to the present invention, when the organic alkaline earth metal complex is deposited on the substrate by the CVD method, the organic alkaline earth metal complex can be vaporized efficiently and stably over time. it can. For this reason, a high-quality alkaline earth metal-containing thin film can be stably produced at a high film formation rate.
[Brief description of the drawings]
FIG. 1 is an equipment layout diagram showing an example of equipment for forming a film by a CVD method.
FIG. 2 is a side view showing an example of a raw material container used in a CVD method.
3 is an enlarged cross-sectional view of the raw material container of FIG. 2 taken along line XX.
FIG. 4 is a schematic cross-sectional view of a facility for melting and charging an organic alkaline earth metal complex into a cylindrical raw material container.
FIG. 5 is a schematic cross-sectional view of a raw material container showing an example in which a cylindrical raw material container is connected in series to evaporate an organic alkaline earth metal complex.
FIG. 6 is a diagram showing the measurement results of the film formation rate when the method of the present invention is carried out.
FIG. 7 is a diagram showing a measurement result of a film formation rate when a comparative method is performed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Organic alkaline-earth metal complex 2 Raw material container of organic alkaline-earth metal complex 3 Constant temperature bath 4 Pipe line which leads organic alkaline-earth metal complex vapor | steam to a reactor 5 Reactor 6 Substrate 7 Pipe line which leads gaseous oxygen to a reactor 8 Exhaust device 11 Thermal insulation layer

Claims (4)

CVD法により有機アルカリ土類金属錯体を気化用原料としてアルカリ土類金属を含有する薄膜を作製するさいに、該有機アルカリ土類金属錯体をいったん融点以上に加熱して溶融し、その融体を原料容器内に鋳込み、この鋳込まれてなる有機アルカリ土類金属錯体をその融点以下の温度で気化させることを特徴とするCVD法における有機アルカリ土類金属錯体の気化方法。When a thin film containing an alkaline earth metal is prepared by vapor deposition using an organic alkaline earth metal complex as a raw material for vaporization, the organic alkaline earth metal complex is once heated to a melting point or higher and melted. casting into the source container, the cast is vaporized method of the organic alkaline earth metal complex in the CVD method using organic alkaline earth metal complexes, wherein the vaporizing in that a temperature below the melting point formed by. CVD法により有機アルカリ土類金属錯体を気化用原料としてアルカリ土類金属を含有する薄膜を作製するさいに、該有機アルカリ土類金属錯体を融点以上に加熱して溶融し、その融体を、筒状の容器内に、該容器の長手軸方向に延びる厚みが略一定の凝固層が形成されるように鋳込み、該容器内にその長手軸方向にキャリヤガスを通流させて該凝固層から有機アルカリ土類金属錯体をその融点以下の温度で気化させることを特徴とするCVD法における有機アルカリ土類金属錯体の気化方法。  When producing a thin film containing an alkaline earth metal using the organic alkaline earth metal complex as a raw material for vaporization by the CVD method, the organic alkaline earth metal complex is heated to a melting point or higher and melted. Cast into a cylindrical container so that a solidified layer having a substantially constant thickness extending in the longitudinal axis direction of the container is formed, and a carrier gas is passed through the container in the longitudinal axis direction from the solidified layer. A method for vaporizing an organic alkaline earth metal complex in a CVD method, wherein the organic alkaline earth metal complex is vaporized at a temperature below its melting point. 有機アルカリ土類金属錯体は、アルカリ土類金属β−ジケトネートである請求項1または2に記載の気化方法。  The vaporization method according to claim 1, wherein the organic alkaline earth metal complex is an alkaline earth metal β-diketonate. アルカリ土類金属β−ジケトネートは、アルカリ土類金属とβ−ジケトンを無水溶媒または無溶媒中で合成したものである請求項3に記載の気化方法。 The vaporization method according to claim 3, wherein the alkaline earth metal β-diketonate is obtained by synthesizing an alkaline earth metal and a β-diketone in an anhydrous solvent or without a solvent.
JP36685497A 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method Expired - Fee Related JP3998309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36685497A JP3998309B2 (en) 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36685497A JP3998309B2 (en) 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method

Publications (2)

Publication Number Publication Date
JPH11193462A JPH11193462A (en) 1999-07-21
JP3998309B2 true JP3998309B2 (en) 2007-10-24

Family

ID=18487849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36685497A Expired - Fee Related JP3998309B2 (en) 1997-12-26 1997-12-26 Vaporization method of organic alkaline earth metal complex in CVD method

Country Status (1)

Country Link
JP (1) JP3998309B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170404B2 (en) * 2004-05-20 2012-05-01 Akzo Nobel N.V. Bubbler for constant vapor delivery of a solid chemical
US20080241805A1 (en) 2006-08-31 2008-10-02 Q-Track Corporation System and method for simulated dosimetry using a real time locating system
JP2013028854A (en) * 2011-07-29 2013-02-07 Air Liquide Japan Ltd Device and method for supplying solid material gas
US9598766B2 (en) 2012-05-27 2017-03-21 Air Products And Chemicals, Inc. Vessel with filter

Also Published As

Publication number Publication date
JPH11193462A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JP3582437B2 (en) Thin film manufacturing method and thin film manufacturing apparatus used therefor
US5945162A (en) Method and device for introducing precursors into chamber for chemical vapor deposition
US5835677A (en) Liquid vaporizer system and method
US5203925A (en) Apparatus for producing a thin film of tantalum oxide
US20010045187A1 (en) Chemical vapor deposition methods and apparatus
JP2002524654A (en) Preparation method of ruthenium oxide film
JP3547471B2 (en) Vapor phase growth method of dielectric film
JP5015408B2 (en) Manufacturing method of high current coated high temperature superconducting tape
US6660328B1 (en) Powder precursor delivery system for chemical vapor deposition
JP2022107647A (en) Solid material pre-treatment method and solid material product filled with solid material produced by the solid material pre-treatment method
JP3998309B2 (en) Vaporization method of organic alkaline earth metal complex in CVD method
WO2005087975A1 (en) Material carburetor for organic metal chemical vapor phase deposition equipment
US6037485A (en) CVD precursors and film preparation method using the same
WO2006009872A1 (en) Direct injection chemical vapor deposition method
JP3393135B2 (en) Apparatus and method for delivering non-volatile reactants
JP2004256510A (en) Bismuth source solution for chemical vapor deposition and method for forming bismuth-containing thin film using the same
JPH05311446A (en) Device for supplying organometallic compound powder and device for vaporizing and supplying the same
JPH0285370A (en) Manufacture of thin oxide film
JP3818691B2 (en) Raw material compound for CVD of rare earth elements and film forming method using the same
JPH10324970A (en) Raw material for cvd and film-forming method using the same
JP3964976B2 (en) Strontium source material for CVD and film forming method using the same
KR20010110909A (en) Apparatus for Supplying a Precursor
KR101947384B1 (en) Mg BASED MATERIAL, A METHOD FOR FORMING Mg BASED MATERIAL AND NOVEL COMPOUND
JP3503790B2 (en) Method for producing Bi layer structure ferroelectric thin film
JP4259000B2 (en) Dielectric thin film forming solution raw material and dielectric thin film forming method using the raw material.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees