JPH11193429A - Copper alloy for multipin lead frame - Google Patents

Copper alloy for multipin lead frame

Info

Publication number
JPH11193429A
JPH11193429A JP1198A JP1198A JPH11193429A JP H11193429 A JPH11193429 A JP H11193429A JP 1198 A JP1198 A JP 1198A JP 1198 A JP1198 A JP 1198A JP H11193429 A JPH11193429 A JP H11193429A
Authority
JP
Japan
Prior art keywords
copper alloy
lead frame
incorporated
lead
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1198A
Other languages
Japanese (ja)
Inventor
Mutsuo Sakamoto
睦夫 阪本
Shoji Shiga
章二 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1198A priority Critical patent/JPH11193429A/en
Publication of JPH11193429A publication Critical patent/JPH11193429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy having excellent strength, electrical conductivity, solderability, bendability, platability, moldability and resin adhesion property by specifying the contents of Ni, Zn and Sn of the essential components to be incorporated into the copper alloy. SOLUTION: Ni is incorporated at 16 to 30% by weight %, Zn at 5 to 30% and Sn at 1 to 4% as essential components into the copper alloy. Further, one kind or >=2 kinds of Mn, Mg and Si are incorporated at 0.05 to 2% in total therein. If one kind or >=2 kinds of Mn, Mg and Si are incorporated into the copper alloy consisting of Ni, Zn and Sn as essential alloy elements, the workability is improved. Namely, the rim cracks at the time of cold or hot rolling of an ingot are decreased and the yield in a rolling stage is improved. Further, elements which are effective in improving characteristics or impurity elements which do not impair the characteristics may be incorporated into the alloy if their contents are below about 2%. The adhesion to a resin package to a large-sized die pad may be well executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多ピンリードフレ
ーム用銅合金の改良に関する。
The present invention relates to an improvement of a copper alloy for a multi-pin lead frame.

【0002】[0002]

【従来の技術】従来、半導体素子を搭載するリードフレ
ーム材には、セラミックスパッケージとの気密性に優れ
るFe−30〜45%Ni合金が使用されてきた。しか
し、近年は、低廉な樹脂パッケージが多用されるように
なり、それとともにリードフレーム材には導電性(放熱
性)が良好で安価な銅合金が使用されるようになった
(例えば、特開平4−66629号、特開平6−184
675号などに開示されたCu−Ni−Zn−Sn系合
金)。さらに、最近、半導体素子の高速化と高集積化が
進み、図1に示すようなダイパッド4の四方にリードピ
ン2を密に配置したQFP型リードフレーム5、或いは
図2に示すようなリードピン2の数が100以上の多ピ
ンリードフレーム1が開発された。前記多ピンリードフ
レーム1は、インナーリードの先端部分3はリードピン
2の間隔が0.5〜0.05mm程度と狭く(ファイン
ピッチ)、しかも半導体素子が搭載されるダイパッド4
も大型である。
2. Description of the Related Art Heretofore, as a lead frame material for mounting a semiconductor element, an Fe-30 to 45% Ni alloy having excellent airtightness with a ceramic package has been used. However, in recent years, inexpensive resin packages have been frequently used, and at the same time, inexpensive copper alloys having good conductivity (heat dissipation properties) have been used for lead frame materials (for example, Japanese Patent Laid-Open No. 4-66629, JP-A-6-184
No. 675, etc.). Furthermore, recently, the speeding up and integration of semiconductor elements have been advanced, and the QFP type lead frame 5 in which the lead pins 2 are densely arranged on all sides of the die pad 4 as shown in FIG. 1 or the lead pins 2 as shown in FIG. More than 100 multi-pin lead frames 1 have been developed. In the multi-pin lead frame 1, the tip 3 of the inner lead has a narrow (fine pitch) interval of the lead pins 2 of about 0.5 to 0.05 mm, and the die pad 4 on which a semiconductor element is mounted.
Are also large.

【0003】[0003]

【発明が解決しようとする課題】このようにリードピン
間隔が狭い多ピンリードフレームを従来の銅合金を用い
て形成するとリードピンの形状不良が発生し易く、また
ダイパッドの面積が広いため、樹脂パッケージとの間で
十分な密着性が得難く、樹脂とリードフレームとの間の
熱膨張差によって使用中に樹脂が剥離したり破損したり
することがある。これらのトラブルは、リードフレーム
を金型打抜きで形成してもエッチングで形成しても同じ
ように発生する。このようなことから、本発明者等は、
リードピンの成形性に優れ、かつ樹脂パッケージとの密
着性(樹脂密着性)に優れる銅合金について研究し、従
来のCu−Ni−Zn−Sn系合金のNiとSnを多め
に含有させた銅合金は前記両特性を改善し得ることを知
見し、さらに研究を重ねて本発明を完成させるに至っ
た。本発明は、リードフレームに要求される強度、導電
性、はんだ付性、曲げ加工性、メッキ性などの他、リー
ドピン成形性と樹脂密着性にも優れる多ピンリードフレ
ーム用銅合金の提供を目的とする。
When such a multi-pin lead frame having a narrow lead pin interval is formed by using a conventional copper alloy, the lead pins are likely to be defective in shape, and the die pad area is large. Between the resin and the lead frame, the resin may peel or break during use due to the difference in thermal expansion between the resin and the lead frame. These troubles occur in the same manner when the lead frame is formed by punching a die or by etching. From such a fact, the present inventors,
Research on copper alloys with excellent moldability of lead pins and excellent adhesion with resin package (resin adhesion), and copper alloys containing a large amount of Ni and Sn of conventional Cu-Ni-Zn-Sn-based alloys Have found that both of the above properties can be improved, and have conducted further studies to complete the present invention. An object of the present invention is to provide a copper alloy for a multi-pin lead frame which is excellent in lead pin moldability and resin adhesion in addition to the strength, conductivity, solderability, bending workability, plating property, etc. required for a lead frame. And

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
主成分としてNiを16〜30重量%(以下%)、Zn
を5〜30%、Snを1〜4%含有することを特徴とす
る多ピンリードフレーム用銅合金である。
According to the first aspect of the present invention,
16 to 30% by weight (hereinafter referred to as "%") of Ni as a main component;
, And 5 to 30% of Sn and 1 to 4% of Sn.

【0005】請求項2記載の発明は、Mn、Mg、Si
の1種または2種以上を総量で0.05〜2%含有する
ことを特徴とする請求項1記載の多ピンリードフレーム
用銅合金である。
[0005] The invention according to claim 2 is characterized in that Mn, Mg, Si
2. The copper alloy for a multi-pin lead frame according to claim 1, wherein one or more of the above are contained in a total amount of 0.05 to 2%. 3.

【0006】[0006]

【発明の実施の形態】本発明において、Ni、Zn、S
nの各合金元素は強度、導電性、はんだ付性、曲げ加工
性、メッキ性などの特性を改善するとともに、ファイン
ピッチのリードピンの成形加工性および樹脂パッケージ
との密着性を改善する作用を果たす。前記Ni、Zn、
Snの合金元素の含有量をそれぞれ16〜30%、5〜
30%、1〜4%に規定する理由は、いずれの元素がそ
の下限を下回っても前記諸特性が十分に改善がされず、
またいずれかの元素がその上限を上回ると加工性が低下
するためである。前記リードピンの成形性や樹脂密着性
の改善効果は、適量含有されるNi、Zn、Snの相乗
効果によって発現されるものである。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, Ni, Zn, S
Each alloy element n improves the properties such as strength, conductivity, solderability, bending workability, and plating properties, and also functions to improve the formability of fine pitch lead pins and the adhesion to the resin package. . The Ni, Zn,
The contents of Sn alloy elements are 16 to 30%,
The reason for specifying 30% and 1 to 4% is that even if any element falls below the lower limit, the above-mentioned properties are not sufficiently improved,
Further, when any one of the elements exceeds the upper limit, the workability is reduced. The effect of improving the moldability and resin adhesion of the lead pin is exhibited by the synergistic effect of Ni, Zn, and Sn contained in appropriate amounts.

【0007】本発明において、Ni、Zn、Snを主た
る合金元素とする請求項1記載の銅合金は、これにM
n、Mg、Siの群から選択される1種または2種以上
を含有させることにより加工性が改善される。すなわち
鋳塊の冷間または熱間圧延時におけるコバ割れが少なく
なり、これら圧延工程における加工歩留りが向上する。
前記選択元素の含有量は、0.05%未満ではその効果
が十分に得られず、2%を超えると逆に鋳塊の加工性が
低下する。従って前記選択元素の含有量は総量で0.0
5〜2%に規定する。本発明の銅合金において、前記以
外の元素で特性改善に有効な元素、または特性を害さな
い不純物元素は、2%程度以下の量であれば含有されて
いても差し支えない。2%を超えると特に鋳塊の加工性
が低下する場合があり好ましくない。
In the present invention, the copper alloy according to claim 1 wherein Ni, Zn and Sn are the main alloying elements,
Workability is improved by including one or more selected from the group consisting of n, Mg, and Si. That is, edge cracking during cold or hot rolling of the ingot is reduced, and the processing yield in these rolling steps is improved.
If the content of the selective element is less than 0.05%, the effect cannot be sufficiently obtained, and if it exceeds 2%, the workability of the ingot decreases. Therefore, the content of the selected element is 0.0
It is defined as 5 to 2%. In the copper alloy of the present invention, an element other than the above, which is effective for improving the characteristics, or an impurity element which does not impair the characteristics, may be contained as long as the amount is about 2% or less. If it exceeds 2%, the workability of the ingot may be reduced, which is not preferable.

【0008】[0008]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す本発明組成の銅合金 (No.1〜1
0) を、常法により溶解し鋳造して厚さ10mmの鋳塊
とし、この鋳塊を面削して酸化スケールを除去し、次い
で途中に焼鈍を入れて冷間加工し、厚さ0.12mmの
銅合金板に加工した。
The present invention will be described below in detail with reference to examples. (Example 1) Copper alloys of the present invention composition shown in Table 1 (Nos. 1 to 1)
Was melted and cast by a conventional method to form a 10 mm thick ingot, and the ingot was subjected to face milling to remove oxide scale, and then annealed in the middle to perform cold working to a thickness of 0.1 mm. It was processed into a 12 mm copper alloy plate.

【0009】(比較例1)表1に示す本発明組成外の銅
合金(No.11〜15) を実施例1と同じ方法により、厚さ
0.12mmの銅合金板に加工した。
(Comparative Example 1) Copper alloys (Nos. 11 to 15) other than the composition of the present invention shown in Table 1 were processed into a copper alloy plate having a thickness of 0.12 mm in the same manner as in Example 1.

【0010】(従来例1)表2に示す従来組成の銅合金
(No.16,17) をそれぞれ実施例1と同じ方法により、厚
さ0.12mmの銅合金板に加工した。
(Conventional Example 1) Copper alloys (Nos. 16 and 17) having the conventional compositions shown in Table 2 were each processed into a copper alloy plate having a thickness of 0.12 mm in the same manner as in Example 1.

【0011】実施例1、比較例1、および従来例1で得
られた各々の銅合金板を、図2に示した多ピンリードフ
レームに成形加工しリードピンの形状を調査した。前記
成形加工は金型打抜法またはエッチング法により行っ
た。また良好に打抜かれた多ピンリードフレームのダイ
パッド部分全体にエポキシ樹脂をモールドし、熱サイク
ル試験後の樹脂と多ピンリードフレームとの密着性を調
査した。リードピン成形性と樹脂密着性はいずれも10
00個づつ試験した。それぞれの不良個数を表1、2に
示す。
Each of the copper alloy plates obtained in Example 1, Comparative Example 1, and Conventional Example 1 was formed into a multi-pin lead frame shown in FIG. 2 and the shape of the lead pin was investigated. The molding was performed by a die punching method or an etching method. Epoxy resin was molded over the entire die pad portion of the well-punched multi-pin lead frame, and the adhesion between the resin and the multi-pin lead frame after the thermal cycle test was investigated. Both lead pin moldability and resin adhesion are 10
The test was carried out every 00 pieces. Tables 1 and 2 show the number of each defect.

【0012】[0012]

【表1】 (註)*リードフレーム1000個あたりの不良個数。 ※実施例1[Table 1] (Note) * The number of defects per 1000 lead frames. * Example 1

【0013】[0013]

【表2】 (註)*リードフレーム1000個あたりの不良個数。[Table 2] (Note) * The number of defects per 1000 lead frames.

【0014】表1、2より明らかなように、本発明例の
No.1〜10はいずれもリードピン成形性と樹脂密着性に優
れていた。これは適量含有されたNi、Zn、Snの合
金元素の相乗効果によるものである。リードピンの形状
は、間隔の狭いインナーリード先端部分においても良好
であった。また、前記合金元素に、さらにMg、Mn、
Siの少なくとも1種を適量含有させたもの(No.6〜1
0)もリードピンの形状が極めて良好であった。これに
対し、比較例の No.11はNiとZnが少ない上、Snが
含まれていないため、 No.12はNiとSnが多いため、
No.13はZnが多くSnが少ないため、No.14はSnを
含まないため、 No.15はZnが少ないため、また従来の
No.16,17はそれぞれNiまたはSnが少ないため、いず
れもリードピン成形性と樹脂密着性が劣った。
As is clear from Tables 1 and 2,
Nos. 1 to 10 were all excellent in lead pin moldability and resin adhesion. This is due to a synergistic effect of alloying elements of Ni, Zn, and Sn contained in appropriate amounts. The shape of the lead pin was good even at the tip of the inner lead at a narrow interval. In addition, Mg, Mn,
A material containing an appropriate amount of at least one type of Si (No. 6-1
Also in 0), the shape of the lead pin was extremely good. On the other hand, No. 11 of the comparative example has less Ni and Zn and does not contain Sn, and No. 12 has more Ni and Sn,
No. 13 has a large amount of Zn and a small amount of Sn, and No. 14 has no Sn, and No. 15 has a small amount of Zn.
Nos. 16 and 17 each had a small amount of Ni or Sn, so both were inferior in lead pin moldability and resin adhesion.

【0015】以上、リードピン成形性と樹脂密着性につ
いて説明したが、本発明例の銅合金板については、別
途、リードフレーム材として必要な他の特性(強度、導
電性、はんだ付性、曲げ加工性、メッキ性など)も調査
した。その結果、いずれも実用上問題ない特性を示し
た。本発明の銅合金は、多ピンリードフレームに限ら
ず、通常のリードフレームに用いても同様の効果が得ら
れるものである。
The lead pin moldability and resin adhesion have been described above. However, the copper alloy sheet of the present invention has other properties (strength, conductivity, solderability, bending work) required as a lead frame material. Properties, plating properties, etc.) were also investigated. As a result, all of them exhibited characteristics that were not problematic in practical use. The copper alloy of the present invention is not limited to a multi-pin lead frame, but can provide the same effect when used for a normal lead frame.

【0016】[0016]

【発明の効果】以上に述べたように、本発明の銅合金
は、適量含有されたNi、Zn、Snの相乗効果により
ファインピッチのリードピンも良好に成形される。また
大型のダイパッドに対しても樹脂パッケージとの密着性
が良好なため、樹脂パッケージの剥離や破損が抑制され
る。またMn、Mg、Siの1種または2種以上を含有
させることにより鋳塊の圧延時における歩留りが向上す
る。依って、本発明の銅合金は多ピンリードフレーム用
として極めて有用であり工業上顕著な効果を奏する。
As described above, in the copper alloy of the present invention, fine pitch lead pins can be favorably formed by the synergistic effect of Ni, Zn, and Sn contained in appropriate amounts. Further, since the adhesiveness to the resin package is good even for a large die pad, peeling and breakage of the resin package are suppressed. Further, by containing one or more of Mn, Mg, and Si, the yield at the time of rolling the ingot is improved. Therefore, the copper alloy of the present invention is extremely useful for a multi-pin lead frame and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】QFP型リードフレームの説明図である。FIG. 1 is an explanatory diagram of a QFP type lead frame.

【図2】多ピンリードフレームの部分説明図である。FIG. 2 is a partial explanatory view of a multi-pin lead frame.

【符号の説明】[Explanation of symbols]

1 多ピンリードフレーム 2 リードピン 3 インナーリードの先端部分 4 ダイパッド 5 QFP型リードフレーム DESCRIPTION OF SYMBOLS 1 Multi-pin lead frame 2 Lead pin 3 Tip part of inner lead 4 Die pad 5 QFP type lead frame

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主成分としてNiを16〜30重量%
(以下%)、Znを5〜30%、Snを1〜4%含有す
ることを特徴とする多ピンリードフレーム用銅合金。
1. Ni is 16 to 30% by weight as a main component.
(Hereinafter referred to as%), 5 to 30% of Zn, and 1 to 4% of Sn.
【請求項2】 Mn、Mg、Siの1種または2種以上
を総量で0.05〜2%含有することを特徴とする請求
項1記載の多ピンリードフレーム用銅合金。
2. The copper alloy for a multi-pin lead frame according to claim 1, wherein one or more of Mn, Mg, and Si are contained in a total amount of 0.05 to 2%.
JP1198A 1998-01-05 1998-01-05 Copper alloy for multipin lead frame Pending JPH11193429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1198A JPH11193429A (en) 1998-01-05 1998-01-05 Copper alloy for multipin lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198A JPH11193429A (en) 1998-01-05 1998-01-05 Copper alloy for multipin lead frame

Publications (1)

Publication Number Publication Date
JPH11193429A true JPH11193429A (en) 1999-07-21

Family

ID=11462522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198A Pending JPH11193429A (en) 1998-01-05 1998-01-05 Copper alloy for multipin lead frame

Country Status (1)

Country Link
JP (1) JPH11193429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803251A (en) * 2016-04-29 2016-07-27 南京晨光艺术工程有限公司 White copper alloy and preparation technique thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803251A (en) * 2016-04-29 2016-07-27 南京晨光艺术工程有限公司 White copper alloy and preparation technique thereof

Similar Documents

Publication Publication Date Title
US20090224379A1 (en) Copper alloy sheet and qfn package
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP2001335864A (en) Copper alloy for electrical and electronic parts
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
KR100562790B1 (en) Copper alloy and copper alloy thin sheet
JP3797736B2 (en) High strength copper alloy with excellent shear processability
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH09157775A (en) Copper alloy for electronic equipment
JPH11193429A (en) Copper alloy for multipin lead frame
KR0175968B1 (en) Copper alloy suited for electrical components and high strength electric conductivity
JP2504956B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP4186199B2 (en) Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same
JP5236973B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP4186201B2 (en) Copper alloy and copper alloy thin plate with excellent die wear resistance and resin adhesion
JPH05345941A (en) Lead frame material made of cu alloy for resin sealed semiconductor device
JPH11243171A (en) Lead frame copper alloy
JPS58147140A (en) Lead wire of semiconductor device
JP2764787B2 (en) High strength and high conductivity copper alloy for electronic equipment
JP2568063B2 (en) Copper alloy for electrical and electronic parts
JPH11264038A (en) Copper alloy foil
JP2994230B2 (en) Copper alloy for semiconductor lead frame with excellent Ag plating properties
JPH08296012A (en) Production of copper alloy