JPH11191318A - Ion conductive solid electrolyte and battery using it - Google Patents

Ion conductive solid electrolyte and battery using it

Info

Publication number
JPH11191318A
JPH11191318A JP9361061A JP36106197A JPH11191318A JP H11191318 A JPH11191318 A JP H11191318A JP 9361061 A JP9361061 A JP 9361061A JP 36106197 A JP36106197 A JP 36106197A JP H11191318 A JPH11191318 A JP H11191318A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
battery
electrolyte
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9361061A
Other languages
Japanese (ja)
Other versions
JP3785779B2 (en
Inventor
Ken Orui
研 大類
Hiroyuki Akashi
寛之 明石
Kouji Sekai
孝二 世界
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP36106197A priority Critical patent/JP3785779B2/en
Publication of JPH11191318A publication Critical patent/JPH11191318A/en
Application granted granted Critical
Publication of JP3785779B2 publication Critical patent/JP3785779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high ion conductivity even under low temperature environment by impregnating a polymer with a nonaqueous electrolyte consisting of a nonaqueous solvent containing a low viscosity nonaqueous solvent having a specified viscosity and a Li metal salt dissolved thereto. SOLUTION: As the polymer to be impregnated with a nonaqueous electronlyte, vinylidene polyfluoride is preferably used. The content of the polymer is preferably set so that the ratio of a monomer constituting the polymer to the total mole number of the monomer, a nonaqueous solvent and an electrolytic salt is 5-25 mol.%. As the nonaqueous solvent, a low viscosity nonaqueous solvent having a viscosity of 1.5 cP or less at 25 deg.C is used. Examples of such a solvent include dimethyl carbonate and the like. In case of dimethyl carbonate, the content in the solid electrolyte is desirably set to 20-30 mol.% to the total mole number of the monomer constituting the polymer, the nonaqueous solvent and the electrolytic salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン伝導性固体
電解質及びそれを用いた電池に関する。
The present invention relates to an ion-conductive solid electrolyte and a battery using the same.

【0002】[0002]

【従来の技術】正極にリチウム含有化合物、負極に炭素
系材料をそれぞれ用い、電解質として非水溶媒に電解質
塩を溶解した非水電解液を使用するリチウムイオン二次
電池は、ニッケル・カドミウム二次電池等の水溶媒系の
二次電池に比べて高エネルギー密度が得られることが知
られている。
2. Description of the Related Art A lithium ion secondary battery using a lithium-containing compound for a positive electrode, a carbon-based material for a negative electrode, and a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent as an electrolyte is a nickel-cadmium secondary battery. It is known that a higher energy density can be obtained as compared with an aqueous secondary battery such as a battery.

【0003】このリチウムイオン二次電池としては、筒
型あるいは角型といった形状のものが一般的であるが、
昨今の携帯電子機器、特に携帯電話やノート型パソコン
の普及により、カード型や平板型のような薄い形状のも
のが求められるようになっている。
[0003] The lithium ion secondary battery generally has a cylindrical or square shape.
2. Description of the Related Art Recently, with the spread of portable electronic devices, particularly mobile phones and notebook computers, thin-shaped devices such as a card type and a flat type have been required.

【0004】しかし、従来のリチウムイオン二次電池の
発電要素を薄型の電池容器内に収容した場合、液漏れが
生じやすく、周辺の電子部品にダメージを与える場合が
ある。
However, when a power generating element of a conventional lithium ion secondary battery is housed in a thin battery case, liquid leakage is likely to occur, which may damage peripheral electronic components.

【0005】そこで、このような液漏れを防ぐために、
例えば特開平3−59058号公報等において高分子に
よって固体化した固体電解質の使用が提案され、その材
料等について開発が進められている。
Therefore, in order to prevent such liquid leakage,
For example, Japanese Patent Application Laid-Open No. 3-59058 and the like have proposed the use of a solid electrolyte solidified by a polymer, and the development of materials and the like has been advanced.

【0006】[0006]

【発明が解決しようとする課題】しかし、固体電解質の
場合、液状の電解質に比べてイオン伝導率を得るのが難
しく、例えば特開平3−59058号公報の固体電解質
のイオン伝導率は3mScm-1程度であり、これは非水
電解液のイオン伝導率に比べて約1桁低い値である。さ
らに、固体電解質の場合では、0℃以下の低温環境下に
なるとイオン伝導率がサブミクロン程度にまで低くな
り、電池を動作させることができなくなってしまう。
However, in the case of a solid electrolyte, it is more difficult to obtain ionic conductivity than in the case of a liquid electrolyte. For example, the ionic conductivity of a solid electrolyte disclosed in JP-A-3-59058 is 3 mScm -1. , Which is about one order of magnitude lower than the ionic conductivity of the non-aqueous electrolyte. Furthermore, in the case of a solid electrolyte, in a low-temperature environment of 0 ° C. or less, the ionic conductivity is reduced to about submicron, and the battery cannot be operated.

【0007】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、室温下、さらには低温環
境下においても高いイオン伝導率が得られるイオン伝導
性固体電解質及びそれを用いた電池を提供することを目
的とする。
Accordingly, the present invention has been proposed in view of such a conventional situation, and provides an ion-conductive solid electrolyte capable of obtaining a high ionic conductivity even at room temperature and also in a low-temperature environment, and uses the same. The purpose is to provide a battery that has been used.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明のイオン伝導性固体電解質は、非水溶媒に
リチウム金属塩を溶解させてなる非水電解液が高分子に
含浸されてなり、上記非水溶媒は、25℃での粘度が
1.5cP以下の低粘度非水系溶媒を含有することを特
徴とするものである。
In order to achieve the above-mentioned object, an ion-conductive solid electrolyte of the present invention is prepared by impregnating a polymer with a non-aqueous electrolyte obtained by dissolving a lithium metal salt in a non-aqueous solvent. Wherein the non-aqueous solvent contains a low-viscosity non-aqueous solvent having a viscosity at 25 ° C. of 1.5 cP or less.

【0009】また、本発明の電池は、リチウム含有化合
物を含有する正極と、リチウム金属、リチウム合金また
はリチウムを吸蔵することが可能な炭素質材料のいずれ
かを含有する負極と、非水溶媒にリチウム金属塩を溶解
させてなる非水電解液が高分子に含浸されてなるイオン
伝導性固体電解質を有し、上記非水溶媒は、25℃での
粘度が1.5cP以下の低粘度非水系溶媒を含有するこ
とを特徴とするものである。
Further, the battery of the present invention comprises a positive electrode containing a lithium-containing compound, a negative electrode containing any of lithium metal, a lithium alloy or a carbonaceous material capable of occluding lithium, and a non-aqueous solvent. A non-aqueous electrolyte obtained by dissolving a lithium metal salt has an ion-conductive solid electrolyte impregnated with a polymer, and the non-aqueous solvent has a low-viscosity non-aqueous solution having a viscosity at 25 ° C. of 1.5 cP or less. It is characterized by containing a solvent.

【0010】粘度が1.5cP以下の低粘度非水系溶媒
を含有する固体電解質は、温度25℃環境下で6〜8m
Scm-1の高いイオン伝導性を示し、−20℃の低温環
境においても1mScm-1程度のイオン伝導率が得られ
る。したがって、電池の電解質材料として使用したとき
に、室温下では勿論のこと、低温環境下においても十分
な性能が得られる。
A solid electrolyte containing a low-viscosity non-aqueous solvent having a viscosity of 1.5 cP or less has a viscosity of 6 to 8 m at a temperature of 25 ° C.
Shows high ionic conductivity Scm -1, 1mScm -1 order of ion conductivity can be obtained even at -20 ° C. for a low-temperature environment. Therefore, when used as an electrolyte material for a battery, sufficient performance can be obtained not only at room temperature but also in a low-temperature environment.

【0011】またこのイオン伝導性固体電解質をカード
型等の液漏れが生じ易い形状の電池に適用した場合、当
該イオン伝導性固体電解質は非水電解液が高分子に保持
されているので、電解液が漏れ出ることがなく、安全な
電池が得られる。
When this ion-conductive solid electrolyte is applied to a battery such as a card type having a shape in which liquid leakage easily occurs, since the non-aqueous electrolyte is held in a polymer, the ion-conductive solid electrolyte is not used. A safe battery can be obtained without liquid leakage.

【0012】[0012]

【発明の実施の形態】以下、本発明の具体的な実施の形
態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0013】本発明のイオン伝導性固体電解質は、非水
溶媒にリチウム金属塩を溶解させてなる非水電解液が高
分子に含浸されてなる。
The ion conductive solid electrolyte of the present invention is obtained by impregnating a polymer with a non-aqueous electrolyte obtained by dissolving a lithium metal salt in a non-aqueous solvent.

【0014】このようなイオン伝導性固体電解質におい
て、非水電解液を含浸させる高分子としては、イオン伝
導性および耐酸化還元性に優れることからポリフッ化ビ
ニリデンを用いるのが望ましい。
In such an ion-conductive solid electrolyte, it is desirable to use polyvinylidene fluoride as the polymer impregnated with the non-aqueous electrolyte because of its excellent ion conductivity and oxidation-reduction resistance.

【0015】この高分子の含有量は、高分子を構成する
モノマーと非水溶媒及び電解質塩の全モル数に対する前
記モノマーの比率が、5〜25mol%となるような範
囲とするのが望ましい。高分子の含有量が多すぎると相
対的に電解液の含有量が過小となるためイオン伝導性が
低下する。一方、高分子の含有量が少なすぎると、固体
状の電解質が得られない。
The content of the polymer is desirably in a range such that the ratio of the monomer constituting the polymer to the total number of moles of the nonaqueous solvent and the electrolyte salt is 5 to 25 mol%. If the content of the polymer is too large, the content of the electrolytic solution becomes relatively small, so that the ionic conductivity decreases. On the other hand, if the content of the polymer is too small, a solid electrolyte cannot be obtained.

【0016】非水溶媒としては、この固体電解質では特
に粘度が1.5cP以下、さらに好ましくは1.0cP
以下の低粘度非水系溶媒が用いられる。このような粘度
の低い非水溶媒を用いることによって室温下、さらには
0℃以下の低温環境下においても高いイオン伝導率が得
られるようになる。
As the non-aqueous solvent, the solid electrolyte has a viscosity of 1.5 cP or less, more preferably 1.0 cP or less.
The following low-viscosity non-aqueous solvents are used. By using such a non-aqueous solvent having a low viscosity, a high ionic conductivity can be obtained at room temperature and also in a low-temperature environment of 0 ° C. or lower.

【0017】低粘度非水系溶媒としては、粘度が1.5
cP以下であって電解質塩を溶解可能なものが選択さ
れ、ジメチルカーボネート(DMC)、ジエチルカーボ
ネート(DEC)、メチルエチルカーボネート(ME
C)、1,3−ジオキソラン等が挙げられる。このうち
特にジメチルカーボネートは、固体電解質に高いイオン
伝導性を付与でき、さらに固体電解質の安定性も改善で
きることから好ましい。なお、ここで挙げた低粘度非水
系溶媒の粘度を表1にまとめて示す。
The low-viscosity non-aqueous solvent has a viscosity of 1.5
Those having a cP or less and capable of dissolving the electrolyte salt are selected, and dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (ME
C), 1,3-dioxolane and the like. Among them, dimethyl carbonate is particularly preferred because it can impart high ionic conductivity to the solid electrolyte and can also improve the stability of the solid electrolyte. Table 1 summarizes the viscosities of the low-viscosity non-aqueous solvents mentioned here.

【0018】[0018]

【表1】 [Table 1]

【0019】このうちジメチルカーボネートの場合で
は、固体電解質中での含有量が、高分子を構成するモノ
マーと非水溶媒及び電解質塩の全モル数に対して40m
ol%未満、好ましくは20〜30mol%とするのが
良い。低粘度非水系溶媒の含有量が少なすぎると、高分
子電解質のイオン伝導性を十分に高めることができな
い。逆に、低粘度非水系溶媒の含有量が多すぎると電解
質塩の溶解度が低下し、固体電解質の物理的な安定性が
損なわれる。
Among them, in the case of dimethyl carbonate, the content in the solid electrolyte is 40 m with respect to the total number of moles of the monomer constituting the polymer, the non-aqueous solvent and the electrolyte salt.
ol%, preferably 20 to 30 mol%. If the content of the low-viscosity nonaqueous solvent is too small, the ionic conductivity of the polymer electrolyte cannot be sufficiently increased. Conversely, if the content of the low-viscosity non-aqueous solvent is too large, the solubility of the electrolyte salt decreases, and the physical stability of the solid electrolyte is impaired.

【0020】但し、これら低粘度非水系溶媒は比較的誘
電率が低いことから、誘電率の高い非水溶媒と組み合わ
せるのが望ましい。
However, since these low-viscosity non-aqueous solvents have a relatively low dielectric constant, it is desirable to combine them with a non-aqueous solvent having a high dielectric constant.

【0021】そのような高誘電率溶媒としては、電位窓
がリチウム電位に対して−0.3V〜4.9Vの範囲に
あるものを用いるのが望ましく、例えばエチレンカーボ
ネート(EC)、プロピレンカーボネート(PC)、γ
−ブチロラクトン等が挙げられる。これらの溶媒は、粘
度が1.5cPより大きいものではあるものの比較的固
体電解質のイオン伝導性を損ない難い。なお、参考とし
て、これら高誘電率溶媒の粘度を表2にまとめて示す。
As such a high dielectric constant solvent, it is desirable to use one having a potential window in the range of -0.3 V to 4.9 V with respect to the lithium potential. For example, ethylene carbonate (EC), propylene carbonate ( PC), γ
-Butyrolactone and the like. These solvents have a viscosity of more than 1.5 cP, but relatively hardly impair the ionic conductivity of the solid electrolyte. For reference, Table 2 summarizes the viscosities of these high dielectric constant solvents.

【0022】[0022]

【表2】 [Table 2]

【0023】さらに、高分子の溶解を促進させるため
に、例えばジメチルアセトアミド等の溶剤を併用しても
良い。
Further, in order to accelerate the dissolution of the polymer, a solvent such as dimethylacetamide may be used in combination.

【0024】次に、固体電解質に含有させる電解質塩と
しては当該固体電解質をリチウムイオン二次電池の非水
電解液の代わりに使用するような場合には、リチウムイ
オン二次電池で通常用いられるリチウム塩を使用するこ
とができる。
Next, as the electrolyte salt to be contained in the solid electrolyte, when the solid electrolyte is used in place of the non-aqueous electrolyte of a lithium ion secondary battery, a lithium salt generally used in a lithium ion secondary battery is used. Salt can be used.

【0025】例えば、LiClO4、LiBF4、LiP
6、LiCF3SO3、LiAsF6、Li(CF3
22N、LiC49SO3等のリチウム金属塩が挙げ
られる。
For example, LiClO 4 , LiBF 4 , LiP
F 6 , LiCF 3 SO 3 , LiAsF 6 , Li (CF 3 S
O 2 ) 2 N and lithium metal salts such as LiC 4 F 9 SO 3 .

【0026】また、この固体電解質を他の用途で用いる
ような場合には、その用途に合わせて適宜選択すればよ
く、リチウム塩の他、ナトリウム,カリウム等のアルカ
リ金属塩であってもよい。
When the solid electrolyte is used for other purposes, it may be appropriately selected according to the intended use, and may be an alkali metal salt such as sodium or potassium in addition to a lithium salt.

【0027】以上のようなイオン伝導性固体電解質を作
製するには、電解質塩を非水溶媒に溶解することで非水
電解液を調製し、これを加熱する。そして、加熱された
非水電解液に高分子を添加して完全に溶解させ、得られ
た溶液をすばやく基体上に展開し、徐冷する。
In order to produce the above-mentioned ion-conductive solid electrolyte, a non-aqueous electrolyte is prepared by dissolving an electrolyte salt in a non-aqueous solvent, and this is heated. Then, the polymer is added to the heated non-aqueous electrolyte to completely dissolve it, and the obtained solution is quickly spread on the substrate and slowly cooled.

【0028】なお、高分子の溶解に際してはホモジナイ
ザー等の撹拌機を使用しても良い。この場合、ホモジナ
イザーの回転速度は50rpm以上とするのが望まし
い。また、高分子の溶解を促進するために、高分子を予
めジメチルアセトアミド等に溶解しておき、この高分子
溶液を非水電解液に添加するようにしても構わない。ま
た、固体電解質の調製は、非水溶媒に高分子を添加、溶
解させた後、電解質塩を添加、溶解させるといった順番
で行ってもよい。
In dissolving the polymer, a stirrer such as a homogenizer may be used. In this case, the rotation speed of the homogenizer is desirably 50 rpm or more. Further, in order to promote the dissolution of the polymer, the polymer may be dissolved in dimethylacetamide or the like in advance, and the polymer solution may be added to the non-aqueous electrolyte. In addition, the preparation of the solid electrolyte may be performed in the order of adding and dissolving the polymer in the non-aqueous solvent, and then adding and dissolving the electrolyte salt.

【0029】以上のようなイオン伝導性固体電解質は、
例えば電池の電解質材料として用いられる。適用される
電池は一次電池仕様でも、二次電池仕様でも構わない。
二次電池仕様の場合には、正極材料、負極材料として例
えば次のようなものが用いられる。
The ion conductive solid electrolyte as described above is
For example, it is used as an electrolyte material of a battery. The applied battery may be a primary battery specification or a secondary battery specification.
In the case of the secondary battery specification, for example, the following materials are used as the positive electrode material and the negative electrode material.

【0030】まず、正極材料としては、リチウム含有化
合物が用いられ、具体的には一般式LixMO2(但し、
Mは1種類以上の遷移金属、好ましくはMn,Co,N
iの少なくとも1種を表し、xは0.05≦x≦1.1
0である)で表されるリチウム遷移金属複合酸化物が使
用される。
First, a lithium-containing compound is used as a positive electrode material, and specifically, a general formula Li x MO 2 (however,
M is one or more transition metals, preferably Mn, Co, N
i represents at least one kind, and x is 0.05 ≦ x ≦ 1.1
0) is used.

【0031】また、負極材料としては、リチウム金属、
リチウム合金さらにはリチウムを吸蔵することが可能な
炭素質材料が用いられる。炭素質材料としては、熱分解
炭素系、コークス系(ピッチコークス、ニードルコーク
ス、石油コークス等)、黒鉛類、難黒鉛化炭素類、ガラ
ス状炭素類、有機高分子化合物焼成体、炭素繊維、活性
炭等が挙げられる。
As the negative electrode material, lithium metal,
A lithium alloy and a carbonaceous material capable of storing lithium are used. Examples of carbonaceous materials include pyrolytic carbon, coke (pitch coke, needle coke, petroleum coke, etc.), graphites, non-graphitizable carbons, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon And the like.

【0032】[0032]

【実施例】以下、本発明の実施例について実験結果に基
づいて説明する。ただし、本発明はこれらに限定される
ものではない。
Embodiments of the present invention will be described below based on experimental results. However, the present invention is not limited to these.

【0033】実施例1〜実施例5 これらの実施例は、低粘度非水系溶媒としてジメチルカ
ーボネートを用い、その含有量を40mol%以下の範
囲で変えた各種固体電解質の例である。
Examples 1 to 5 These examples are examples of various solid electrolytes in which dimethyl carbonate is used as a low-viscosity non-aqueous solvent and the content thereof is changed within a range of 40 mol% or less.

【0034】これら固体電解質は次のようにして作製し
た。
These solid electrolytes were prepared as follows.

【0035】まず、ポリフッ化ビニリデン、ジメチルア
セトアミド、ジメチルカーボネート、エチレンカーボネ
ート、プロピレンカーボネート及びLiPF6を表3に
示す混合比でそれぞれ計量した。なお、表中のポリフッ
化ビニリデンの混合比は、繰り返し単位であるモノマー
のモル比である。
First, polyvinylidene fluoride, dimethylacetamide, dimethyl carbonate, ethylene carbonate, propylene carbonate, and LiPF 6 were weighed at mixing ratios shown in Table 3. The mixing ratio of polyvinylidene fluoride in the table is the molar ratio of the monomer which is a repeating unit.

【0036】[0036]

【表3】 [Table 3]

【0037】そして、このうちポリフッ化ビニリデン
を、溶剤であるジメチルアセトアミドに加え、混合、攪
拌することで溶解させた。次に、得られた高分子溶液
と、エチレンカーボネート、プロピレンカーボネート及
びジメチルカーボネートとを混合、攪拌し、均一に混ざ
り合せた後、LiPF6を添加、攪拌した。なお、これ
らの攪拌は、ホモジナイザーを用い50rpm以上の回
転速度で行った。ここで、混合物は、撹拌中では摩擦熱
により温度が100℃程度にまで上昇するため液状を呈
するが、攪拌を終了すると温度が下がり、液体成分を含
浸した高分子固体が得られる。但し、ジメチルカーボネ
ートの混合比を40mol%とした実施例5では電解液
が高分子に完全に含浸されず、一部が固体化しただけで
あった。
Then, polyvinylidene fluoride was added to dimethylacetamide as a solvent, and dissolved by mixing and stirring. Next, the obtained polymer solution, ethylene carbonate, propylene carbonate, and dimethyl carbonate were mixed, stirred and uniformly mixed, and then LiPF 6 was added and stirred. These stirrings were performed at a rotation speed of 50 rpm or more using a homogenizer. Here, the mixture is in a liquid state because the temperature rises to about 100 ° C. due to frictional heat during stirring, but when the stirring is completed, the temperature drops, and a polymer solid impregnated with a liquid component is obtained. However, in Example 5 in which the mixture ratio of dimethyl carbonate was 40 mol%, the electrolyte was not completely impregnated with the polymer, and only a part thereof was solidified.

【0038】比較例1 比較として低粘度非水系溶媒を含有させなかった固体電
解質の例である。
Comparative Example 1 For comparison, this is an example of a solid electrolyte containing no low-viscosity non-aqueous solvent.

【0039】ジメチルカーボネートを用いず、ポリフッ
化ビニリデン、ジメチルアセトアミド、エチレンカーボ
ネート、プロピレンカーボネート及びLiPF6を表3
に示す混合比としたこと以外は実施例1と同様にして固
体電解質を作成した。
Without using dimethyl carbonate, polyvinylidene fluoride, dimethylacetamide, ethylene carbonate, propylene carbonate and LiPF 6 were used in Table 3.
A solid electrolyte was prepared in the same manner as in Example 1 except that the mixing ratio was set as shown in Table 1.

【0040】固体電解質のイオン伝導率の評価 以上のようにして作製された固体電解質について、室温
(25℃)下および−20℃の低温環境下で、交流イン
ピーダンス法によりイオン伝導率を測定した。その結果
を表4に示す。
Evaluation of Ionic Conductivity of Solid Electrolyte The ionic conductivity of the solid electrolyte prepared as described above was measured at room temperature (25 ° C.) and in a low temperature environment of −20 ° C. by an AC impedance method. Table 4 shows the results.

【0041】[0041]

【表4】 [Table 4]

【0042】表4に示すようにジメチルカーボネートを
含有させた固体電解質、特のその含有量を40mol%
未満とした固体電解質は室温下で5mScm-1以上のイ
オン伝導率が得られ、また低温環境下においても1mS
cm-1以上のイオン伝導率が得られる。さらにジメチル
カーボネートの含有量を20mol%〜30mol%と
した実施例3,実施例4の固体電解質では室温下におい
て8mScm-1程度の高いイオン伝導率が得られる。但
し、ジメチルカーボネートの含有量を40mol%とし
た実施例5の固体電解質は、比較例1の固体電解質に比
べれば高いイオン伝導率であるものの、上述の如くゲル
化が不十分である。
As shown in Table 4, the solid electrolyte containing dimethyl carbonate, particularly, the content was 40 mol%.
The solid electrolyte of less than 5 mScm -1 has an ionic conductivity of 5 mScm -1 or more at room temperature, and 1 mS even under a low temperature environment.
An ionic conductivity of at least cm -1 is obtained. Furthermore, in the solid electrolytes of Examples 3 and 4 in which the content of dimethyl carbonate was 20 mol% to 30 mol%, a high ionic conductivity of about 8 mScm -1 was obtained at room temperature. However, the solid electrolyte of Example 5 in which the content of dimethyl carbonate was 40 mol% had a higher ionic conductivity than the solid electrolyte of Comparative Example 1, but was insufficiently gelled as described above.

【0043】このことから、低粘度溶媒であるジメチル
カーボネートは固体電解質のイオン伝導率を上げる作用
を有し、その適正な含有量は40mol%未満、より好
ましくは20mol%〜30mol%であることがわか
った。
Thus, dimethyl carbonate, which is a low-viscosity solvent, has the effect of increasing the ionic conductivity of the solid electrolyte, and its proper content is less than 40 mol%, more preferably 20 mol% to 30 mol%. all right.

【0044】電池の充放電特性の評価 この評価に用いた電池は、実施例3のイオン伝導性固体
電解質と、ニッケル酸リチウムを含有する正極、黒鉛化
メソフェーズカーボンマイクロビーズを含有する負極を
発電要素とする平板型電池である。
Evaluation of Charge / Discharge Characteristics of Battery The battery used in this evaluation was prepared by using the ion-conductive solid electrolyte of Example 3, a positive electrode containing lithium nickelate, and a negative electrode containing graphitized mesophase carbon microbeads as a power generating element. It is a flat type battery.

【0045】この平板型電池は、図1に示すようにイオ
ン伝導性固体電解質1,2が形成された負極3と正極4
とがセパレータ5を介して積層され、この積層体の負極
3側と正極4側に、これらと電気的に接続された平板状
の電池外装材6,7が配される。そして、積層体の端面
を囲んで絶縁材7が配されており、電池外装材6,7の
辺縁部と絶縁材8とが接着されることで電池が密閉され
るようになっている。
As shown in FIG. 1, the flat battery has a negative electrode 3 and a positive electrode 4 on which ion-conductive solid electrolytes 1 and 2 are formed.
Are laminated with a separator 5 interposed therebetween, and flat battery casings 6 and 7 electrically connected to these are disposed on the negative electrode 3 side and the positive electrode 4 side of the laminate. An insulating material 7 is arranged around the end face of the laminate, and the battery is hermetically sealed by bonding the edges of the battery exterior materials 6 and 7 to the insulating material 8.

【0046】この電池は次のようにして作製した。This battery was manufactured as follows.

【0047】まず、ニッケル酸リチウム、導電剤となる
黒鉛、結着剤となるポリフッ化ビニリデン及び分散剤と
なるNメチルピロリドンを混合することで正極合剤を調
製した。そして、この正極合剤を正極集電体に塗布、乾
燥し、所定の寸法(32cm2)に切り出すことで正極
4を作製した。
First, a positive electrode mixture was prepared by mixing lithium nickelate, graphite as a conductive agent, polyvinylidene fluoride as a binder, and N-methylpyrrolidone as a dispersant. Then, the positive electrode mixture was applied to a positive electrode current collector, dried, and cut into a predetermined size (32 cm 2 ) to produce a positive electrode 4.

【0048】次に、黒鉛化メソフェーズカーボンマイク
ロビーズ、結着剤となるポリフッ化ビニリデン及び分散
剤となるNメチルピロリドンを混合することで負極合剤
を調製した。そして、この負極合剤を負極集電体に塗
布、乾燥し、所定の寸法(32cm2)に切り出すこと
で負極3を作製した。
Next, a negative electrode mixture was prepared by mixing the graphitized mesophase carbon microbeads, polyvinylidene fluoride as a binder, and N-methylpyrrolidone as a dispersant. Then, the negative electrode mixture was applied to a negative electrode current collector, dried, and cut into a predetermined size (32 cm 2 ) to prepare a negative electrode 3.

【0049】そして、これら正極4と負極3に、実施例
3と同じ組成で調製された固体電解質を溶液状態で塗布
し、冷却することで固化させた。次に、この固体電解質
1,2が形成された正極4と負極3を、ポリプロピレン
製のセパレータ5を介して重ね、この積層体の両側に電
池外装材5,6を配するとともに周囲に絶縁材8を配
し、電池外装材6,7と絶縁材8とを接着することによ
って平板型電池を作製した。
Then, a solid electrolyte prepared with the same composition as in Example 3 was applied to the positive electrode 4 and the negative electrode 3 in a solution state, and solidified by cooling. Next, the positive electrode 4 on which the solid electrolytes 1 and 2 are formed and the negative electrode 3 are overlapped via a separator 5 made of polypropylene, and battery exterior materials 5 and 6 are arranged on both sides of the laminate, and an insulating material 8 and the battery exterior materials 6 and 7 were adhered to the insulating material 8 to produce a flat battery.

【0050】このようにして作製された平板型電池につ
いて充放電を5サイクル行い、サイクル毎に放電容量と
充放電効率を調べた。
The flat battery thus manufactured was charged and discharged for 5 cycles, and the discharge capacity and charge and discharge efficiency were examined for each cycle.

【0051】充放電試験は、250μAcm-2の電流密
度で、閉回路電圧が4.2Vに達するまで定電流充電を
行い、その後定電圧充電に切り替え、さらに全充電時間
が10時間に達するまで充電を続けた後、250μAc
-2の電流密度で閉回路電圧が2.5Vに達するまで定
電流放電を行うといた充放電サイクルを繰り返すことに
より行った。
In the charge / discharge test, constant current charging was performed at a current density of 250 μAcm −2 until the closed circuit voltage reached 4.2 V, and then switched to constant voltage charging, and further charged until the total charging time reached 10 hours. And then 250 μAc
This was performed by repeating a charge / discharge cycle in which constant current discharge was performed until the closed circuit voltage reached 2.5 V at a current density of m −2 .

【0052】サイクル数と、放電容量及び充放電効率の
関係を図2に示す。
FIG. 2 shows the relationship between the number of cycles and the discharge capacity and charge / discharge efficiency.

【0053】図2からわかるように、この電池は2サイ
クル〜5サイクルまでの放電容量がほぼ一定であり、ま
た充放電効率も95%以上の高い値が得られている。
As can be seen from FIG. 2, this battery has a substantially constant discharge capacity from 2 to 5 cycles and a high charge / discharge efficiency of 95% or more.

【0054】このことから、低粘度溶媒を含有する固体
電解質は、電池の電解質材料として十分な性能が得られ
ることがわかった。
From these results, it was found that a solid electrolyte containing a low-viscosity solvent can provide sufficient performance as an electrolyte material for a battery.

【0055】[0055]

【発明の効果】以上の説明からも明らかなように、本発
明のイオン伝導性固体電解質は、25℃での粘度が1.
5cP以下の低粘度非水系溶媒を含有するので、温度2
5℃環境下で6〜8mScm-1の高いイオン伝導性を示
し、−20℃の低温環境においても1mScm-1程度の
イオン伝導率が得られる。したがって、電池の電解質材
料として使用したときに、室温下では勿論のこと、低温
環境下においても十分な性能が得られる。またこのイオ
ン伝導性固体電解質は、カード型等の液漏れが生じ易い
形状の電池に適用した場合でも電解液が漏れ出ることが
なく、安全な電池が得られる。
As is clear from the above description, the ion-conductive solid electrolyte of the present invention has a viscosity at 25 ° C. of 1.
Since it contains a low-viscosity non-aqueous solvent of 5 cP or less,
It exhibits a high ionic conductivity of 6 to 8 mScm -1 in a 5 ° C environment and an ionic conductivity of about 1 mScm -1 in a low temperature environment of -20 ° C. Therefore, when used as an electrolyte material for a battery, sufficient performance can be obtained not only at room temperature but also in a low-temperature environment. In addition, even when the ion-conductive solid electrolyte is applied to a battery such as a card type having a shape in which liquid leakage easily occurs, the electrolyte does not leak out, and a safe battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した電池の一例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a battery to which the present invention is applied.

【図2】電池の充放電サイクル特性を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing charge / discharge cycle characteristics of a battery.

【符号の説明】[Explanation of symbols]

1,2 イオン伝導性固体電解質、3 負極、4 正極 1,2 ion conductive solid electrolyte, 3 negative electrode, 4 positive electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒にリチウム金属塩を溶解させて
なる非水電解液が高分子に含浸されてなり、 上記非水溶媒は、25℃での粘度が1.5cP以下の低
粘度非水系溶媒を含有することを特徴とするイオン伝導
性固体電解質。
A polymer is impregnated with a non-aqueous electrolyte obtained by dissolving a lithium metal salt in a non-aqueous solvent, wherein the non-aqueous solvent has a low viscosity of 1.5 cP or less at 25 ° C. An ion-conductive solid electrolyte comprising an aqueous solvent.
【請求項2】 高分子が、ポリフッ化ビニリデンである
ことを特徴とする請求項1記載のイオン伝導性固体電解
質。
2. The ion conductive solid electrolyte according to claim 1, wherein the polymer is polyvinylidene fluoride.
【請求項3】 ポリフッ化ビニリデンを構成するモノマ
ーと非水溶媒及び電解質塩の全モル数に対する前記モノ
マーの比率Pが、5mol%≦P≦25mol%である
ことを特徴とする請求項2記載のイオン伝導性固体電解
質。
3. The method according to claim 2, wherein the ratio P of the monomer constituting the polyvinylidene fluoride to the total number of moles of the nonaqueous solvent and the electrolyte salt is 5 mol% ≦ P ≦ 25 mol%. Ion conductive solid electrolyte.
【請求項4】 低粘度非水系溶媒が、ジメチルカーボネ
ートであることを特徴とする請求項1記載のイオン伝導
性固体電解質。
4. The ion-conductive solid electrolyte according to claim 1, wherein the low-viscosity non-aqueous solvent is dimethyl carbonate.
【請求項5】 ポリフッ化ビニリデンを構成するモノマ
ーと非水溶媒及び電解質塩の全モル数に対するジメチル
カーボネートの比率Sが、0mol%<S<40mol
%であることを特徴とする請求項4記載のイオン伝導性
固体電解質。
5. The ratio S of dimethyl carbonate to the total number of moles of the monomer constituting the polyvinylidene fluoride, the nonaqueous solvent and the electrolyte salt is 0 mol% <S <40 mol.
%. The ion-conductive solid electrolyte according to claim 4, wherein
【請求項6】 リチウム含有化合物を含有する正極と、
リチウム金属、リチウム合金またはリチウムを吸蔵する
ことが可能な炭素質材料のいずれかを含有する負極と、
非水溶媒にリチウム金属塩を溶解させてなる非水電解液
が高分子に含浸されてなるイオン伝導性固体電解質を有
し、 上記非水溶媒は、25℃での粘度が1.5cP以下の低
粘度非水系溶媒を含有することを特徴とする電池。
6. A positive electrode containing a lithium-containing compound,
A negative electrode containing any of lithium metal, a lithium alloy or a carbonaceous material capable of occluding lithium,
A non-aqueous electrolyte having a lithium metal salt dissolved in a non-aqueous solvent has an ion-conductive solid electrolyte impregnated in a polymer, and the non-aqueous solvent has a viscosity at 25 ° C. of 1.5 cP or less. A battery comprising a low-viscosity non-aqueous solvent.
【請求項7】 正極を構成するリチウム含有化合物は、
リチウムと遷移金属の複合酸化物であることを特徴とす
る請求項6記載の電池。
7. The lithium-containing compound constituting the positive electrode,
The battery according to claim 6, wherein the battery is a composite oxide of lithium and a transition metal.
JP36106197A 1997-12-26 1997-12-26 Ion conductive solid electrolyte and battery using the same Expired - Lifetime JP3785779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36106197A JP3785779B2 (en) 1997-12-26 1997-12-26 Ion conductive solid electrolyte and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36106197A JP3785779B2 (en) 1997-12-26 1997-12-26 Ion conductive solid electrolyte and battery using the same

Publications (2)

Publication Number Publication Date
JPH11191318A true JPH11191318A (en) 1999-07-13
JP3785779B2 JP3785779B2 (en) 2006-06-14

Family

ID=18472035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36106197A Expired - Lifetime JP3785779B2 (en) 1997-12-26 1997-12-26 Ion conductive solid electrolyte and battery using the same

Country Status (1)

Country Link
JP (1) JP3785779B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052745A (en) * 1999-08-04 2001-02-23 Sony Corp Nonaqueous gel secondary battery and its manufacture
JP2008277080A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Lighting fixture, emergency lighting fixture, and regular-use/emergency combination lighting fixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052745A (en) * 1999-08-04 2001-02-23 Sony Corp Nonaqueous gel secondary battery and its manufacture
JP4507300B2 (en) * 1999-08-04 2010-07-21 ソニー株式会社 Non-aqueous gel secondary battery and manufacturing method thereof
JP2008277080A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Lighting fixture, emergency lighting fixture, and regular-use/emergency combination lighting fixture

Also Published As

Publication number Publication date
JP3785779B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
JP5032773B2 (en) Lithium secondary battery using ionic liquid
JP3675460B2 (en) Organic electrolyte and lithium battery using the same
CN101320822B (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
US20060078792A1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
US20210320331A1 (en) Solid polymer matrix electrolyte (pme) for rechargeable lithium batteries and batteries made therewith
US6479192B1 (en) Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
US6613480B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery using same
KR20010098895A (en) Gel electrolyte and gel electrolyte battery
JP5160159B2 (en) Lithium secondary battery
JP2000021412A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2001283913A (en) Lithium battery
WO2003021707A1 (en) Nonaqueous electrolyte
JP2005285492A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP4172061B2 (en) Non-aqueous electrolyte secondary battery
JP4103168B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP4186463B2 (en) Nonaqueous electrolyte secondary battery
JP2003288939A (en) Nonaqueous electrolyte battery
JP4104294B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
US20130130126A1 (en) Electrochemical cell for high-voltage operation and electrode coatings for use in the same
JPH1021960A (en) Secondary battery
JP3785779B2 (en) Ion conductive solid electrolyte and battery using the same
JP2000077096A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371