JPH1119079A - X-ray ct device - Google Patents

X-ray ct device

Info

Publication number
JPH1119079A
JPH1119079A JP9190615A JP19061597A JPH1119079A JP H1119079 A JPH1119079 A JP H1119079A JP 9190615 A JP9190615 A JP 9190615A JP 19061597 A JP19061597 A JP 19061597A JP H1119079 A JPH1119079 A JP H1119079A
Authority
JP
Japan
Prior art keywords
ray
thickness direction
detection elements
slice thickness
slice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9190615A
Other languages
Japanese (ja)
Inventor
Yoshihiro Inoue
芳浩 井上
Yasuhiro Matsuoka
靖洋 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9190615A priority Critical patent/JPH1119079A/en
Publication of JPH1119079A publication Critical patent/JPH1119079A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the detection output from decreasing at the ends in a slice thickness direction without expanding the X-ray strength distribution by a method wherein a two-dimensional X-ray detecting means wherein the widths in the slice thickness direction of respective detection elements, a large number of which are arranged, are made wider as being away from the slice center, is arranged in a manner to be confronted with an X-ray radiation means. SOLUTION: A collimator 12 is attached to an X-ray tube 11, and an X-ray detecting apparatus 13 is formed into an arc-shape, and by arranging a large number of X-ray detection elements under a twodimensional state, and the outputs from respective detection elements are input in a data collecting device 14, and the data regarding an X-ray absorption is collected. The X-ray detecting apparatus 13 comprises the large number of the detection elements which are twodimensionally arranged in the arc direction and a slice thickness direction, and the widths of respective detection elements are formed in such a manner that they are equal in the channel direction, but are narrower at the center, and wider at the end parts in the slice thickness direction. By this method, X-ray amounts which enter respective detection elements become approx. uniform, and the detection element outputs at the end parts become larger, and signals having a high S/N ratio can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、X線CT装置に
関し、とくに2次元のX線検出器を備えるX線CT装置
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray CT apparatus, and more particularly to an improvement in an X-ray CT apparatus having a two-dimensional X-ray detector.

【0002】[0002]

【従来の技術】X線CT装置では、通常、被検体(人
体)に対してX線管からX線ビームを扇型に放射して被
検体を透過させ、その被検体を透過したX線ビームを、
多数の検出エレメントを円弧状に配列した多チャンネル
のX線検出器で検出し、その各チャンネルの出力をデー
タ収集装置に送ってデータを収集して、この収集データ
を用いて画像再構成演算を行い、扇型のX線が透過した
スライス面での画像を得る。
2. Description of the Related Art In an X-ray CT apparatus, an X-ray tube is normally radiated from an X-ray tube to a subject (human body) in a fan shape to transmit the subject, and the X-ray beam transmitted through the subject is transmitted. To
A large number of detection elements are detected by a multi-channel X-ray detector arranged in an arc shape, the output of each channel is sent to a data collection device to collect data, and an image reconstruction operation is performed using the collected data. Then, an image on the slice plane through which the fan-shaped X-rays are transmitted is obtained.

【0003】検出エレメントが1列に円弧状に配列され
ている場合は、1つのスライス面でのデータ収集しかで
きず、画像再構成できるのも1つのスライス面に限られ
るが、円弧状に配列した検出エレメントをスライス厚さ
方向に数列に配置した2次元のX線検出器を用いれば、
同時に数枚のスライス面でのデータ収集を行うことがで
きて、一度に数スライスの画像を得ることができる。ま
た、2次元X線検出器を用いる場合、スライス厚さ方向
のデータサンプリング密度が高いものとなるので、被検
体の内部構造が細かに変化している場合でも、パーシャ
ルボリュームエフェクトを受けにくい、という利点が得
られる。
When the detection elements are arranged in an arc in one line, data can be collected only in one slice plane and an image can be reconstructed in only one slice plane. If a two-dimensional X-ray detector in which the detected elements are arranged in several rows in the slice thickness direction is used,
Data can be collected on several slice planes at the same time, and images of several slices can be obtained at one time. Further, when a two-dimensional X-ray detector is used, the data sampling density in the slice thickness direction is high, so that it is difficult to receive the partial volume effect even when the internal structure of the subject is finely changed. Benefits are obtained.

【0004】従来の2次元X線検出器は、検出エレメン
トのスライス厚さ方向の幅が一定とされている(図
5)。
In a conventional two-dimensional X-ray detector, the width of a detection element in a slice thickness direction is constant (FIG. 5).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ように検出エレメントのスライス厚さ方向の幅を同じに
した2次元X線検出器では、つぎのような問題がある。
X線管から照射されるX線ビームは、スライス厚さ方向
に絞られてスライス厚さ方向に直角な平面で扇型に広が
るようにされるため、スライス厚さ方向のX線強度分布
は図5の実線イのようにスライス中心で最も強く、中心
から離れるほど弱くなる。そこで、検出エレメントの幅
Wが同じである場合、スライス中心から離れたエレメン
トへのX線入射量は非常に少なくなる。そのため、X線
管から放射するX線線量を下げると、スライス中心から
外れたエレメントの出力はノイズに埋もれてしまって実
質的に無効になり、このことから放射X線線量を下げる
ことができない。また、絞りを緩くして点線ロに示すよ
うにX線強度分布を広げればよいようにも思われるが、
そうするとスライス厚さ方向に広がった端部のX線はど
の検出エレメントによっても検出されないことになり、
放射X線の有効利用が図れなくなるとともに、被検体に
対する無駄なX線被曝が増えるという問題が生じる。
However, the conventional two-dimensional X-ray detector having the same width in the slice thickness direction of the detection element as in the prior art has the following problems.
Since the X-ray beam emitted from the X-ray tube is narrowed in the slice thickness direction and spreads in a fan shape on a plane perpendicular to the slice thickness direction, the X-ray intensity distribution in the slice thickness direction is shown in FIG. As shown by the solid line 5 in FIG. 5, the intensity is strongest at the slice center, and becomes weaker as the distance from the center increases. Therefore, when the width W of the detection element is the same, the amount of X-rays incident on the element distant from the slice center becomes very small. Therefore, when the X-ray dose radiated from the X-ray tube is reduced, the output of the element deviated from the center of the slice is buried in noise and becomes substantially invalid, so that the radiated X-ray dose cannot be reduced. Also, it seems that the X-ray intensity distribution should be widened as shown by the dotted line B by loosening the aperture.
Then, the X-rays at the end that spread in the slice thickness direction will not be detected by any of the detection elements,
There is a problem that effective use of the radiation X-rays cannot be achieved and unnecessary X-ray exposure to the subject increases.

【0006】この発明は、上記に鑑み、X線強度分布を
広げることなくスライス厚さ方向の端部での検出出力が
低下しないように改善した2次元X線検出器を持つX線
CT装置を提供することを目的とする。
In view of the above, the present invention provides an X-ray CT apparatus having a two-dimensional X-ray detector improved so that the detection output at the end in the slice thickness direction does not decrease without expanding the X-ray intensity distribution. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明によるX線CT装置においては、X線ビー
ムを放射するX線放射手段と、該X線ビームが入射させ
られるよう該X線放射手段に対向配置され、多数の検出
エレメントがスライス面内方向およびスライス厚さ方向
に配列されており、各検出エレメントのスライス厚さ方
向の幅がスライス中心から離れるほど広くされた、2次
元のX線検出手段とが備えられていることが特徴となっ
ている。
In order to achieve the above object, an X-ray CT apparatus according to the present invention comprises an X-ray radiating means for radiating an X-ray beam, and an X-ray radiating means for irradiating the X-ray beam. A two-dimensional arrangement in which a large number of detection elements are arranged in the slice plane direction and in the slice thickness direction, and the width of each detection element in the slice thickness direction is increased as the distance from the slice center increases; And X-ray detecting means.

【0008】多数配列された検出エレメントのスライス
厚さ方向の幅がスライス中心から離れるほど広くされて
いるため、X線強度分布が狭いものであっても、検出エ
レメントへの入射X線量がスライス中心と端部とであま
り異ならないものとなる。そのため、端部の検出エレメ
ントの出力があまり小さいものとはならないので、X線
放射手段からの放射X線線量を低くすることができる。
また、X線強度分布の端部についても検出するため、放
射したX線の有効利用が図れ、被検体に対する被曝線量
を増大させない。
Since the width of a large number of detection elements in the slice thickness direction is increased as the distance from the slice center increases, even if the X-ray intensity distribution is narrow, the amount of X-rays incident on the detection elements decreases. And the ends are not very different. For this reason, the output of the detection element at the end is not so small, and the radiation X-ray dose from the X-ray radiation means can be reduced.
Further, since the end portion of the X-ray intensity distribution is also detected, the emitted X-ray can be effectively used, and the exposure dose to the subject is not increased.

【0009】[0009]

【発明の実施の形態】つぎに、この発明の実施の形態に
ついて図面を参照しながら詳細に説明する。図1におい
て、X線管11とX線検出器13とが対向配置されてい
る。X線管11にはX線ビームを絞るコリメータ12が
取り付けられている。X線検出器13は円弧状に形成さ
れており、多数のX線検出エレメントが2次元的に配列
されている。この各検出エレメントからの出力がデータ
収集装置14に入力されてX線吸収に関するデータが収
集される。
Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, an X-ray tube 11 and an X-ray detector 13 are arranged to face each other. The X-ray tube 11 is provided with a collimator 12 for narrowing the X-ray beam. The X-ray detector 13 is formed in an arc shape, and a large number of X-ray detection elements are two-dimensionally arranged. The output from each detection element is input to the data collection device 14 to collect data on X-ray absorption.

【0010】X線管11(およびコリメータ12)と、
X線検出器13(およびデータ収集装置14)との間の
空間に被検体(図示しない)が挿入され、この被検体の
周りに矢印で示すようにこれらが一体となって回転させ
られる。この回転平面がスライス面ということになり、
この平面について各方向からデータ収集され、この各方
向からのデータが図示しない画像再構成装置に送られて
画像再構成処理され、スライス面でのX線吸収分布画像
が断層像として得られる。
An X-ray tube 11 (and a collimator 12);
A subject (not shown) is inserted into the space between the X-ray detector 13 (and the data acquisition device 14), and these are integrally rotated around the subject as indicated by arrows. This rotation plane is called a slice plane,
Data about this plane is collected from each direction, and data from each direction is sent to an image reconstruction device (not shown) to perform image reconstruction processing, and an X-ray absorption distribution image on the slice plane is obtained as a tomographic image.

【0011】X線検出器13は、円弧方向(チャンネル
方向、スライス面内方向)およびスライス厚さ方向(回
転平面に直角な方向)に2次元的に配列された多数の検
出エレメントよりなる。たとえばチャンネル方向には5
00〜1000個程度に、スライス厚さ方向には4〜8
個程度に配列される。そして、各検出エレメントの幅
は、図2で示すように、チャンネル方向には等幅である
が、スライス厚さ方向では中心で狭く(W1)、端部で
広く(W2)されている。
The X-ray detector 13 includes a large number of detection elements two-dimensionally arranged in an arc direction (channel direction, slice plane direction) and slice thickness direction (direction perpendicular to the rotation plane). For example, 5 in the channel direction
About 100 to 1000 pieces, 4 to 8 in the slice thickness direction
It is arranged in about pieces. As shown in FIG. 2, the width of each detection element is equal in the channel direction, but is narrower (W1) at the center and wider (W2) at the end in the slice thickness direction.

【0012】X線管11から放射されるX線ビームは、
図3で示すように、コリメータ12によってスライス厚
さ方向に絞られ、被検体の断層像を得ようとするスライ
ス面厚さに対応させられる。そこで、スライス厚さ方向
でのX線強度分布は図4の曲線イのようになり、スライ
ス中心で最も高く、中心を外れると中心からの距離に応
じて急激に低くなる。ところが、X線検出器13では上
記のように、検出エレメントのスライス厚さ方向での幅
が、中心部でW1と狭く、端部でW2と広くなっている
ため、それぞれに入射するX線量はあまり変わらないも
のとなる。そこで、端部の検出エレメント出力も大きな
ものとなり、S/N比の高い信号が得られる。
The X-ray beam emitted from the X-ray tube 11 is
As shown in FIG. 3, the collimator 12 narrows down the slice in the slice thickness direction so as to correspond to the slice plane thickness for obtaining a tomographic image of the subject. Therefore, the X-ray intensity distribution in the slice thickness direction is as shown by the curve A in FIG. 4, and is highest at the center of the slice, and rapidly falls off the center according to the distance from the center. However, in the X-ray detector 13, as described above, the width of the detection element in the slice thickness direction is narrow as W1 at the center portion and wide as W2 at the end portion. It will not change much. Therefore, the output of the detection element at the end becomes large, and a signal having a high S / N ratio can be obtained.

【0013】また、この図4からも分かるように、X線
強度分布の端部(裾部)に相当するX線ビームもすべて
端部の検出エレメントに入射するようになるので、X線
管11から放射されたX線ビームが無駄にされることも
なくなる(これに対して図5のように等幅Wとした場合
は、中心部と端部とで入射X線量が大きく異なり、端部
エレメントの出力が小さくなり、これを避けようとして
X線強度分布をロのように広げればX線検出器から外れ
るX線ビームが多くなって無駄なX線量が増えることは
上記の通りである)。スライス厚さ方向の中心付近では
非常に薄い厚さ(W1)のスライス面についてデータ収
集できるため、パーシャルボリュームエフェクトに影響
されない良好な画像を得ることができる。
Further, as can be seen from FIG. 4, all the X-ray beams corresponding to the ends (hemes) of the X-ray intensity distribution are also incident on the detection elements at the ends. The X-ray beam emitted from the light source is not wasted (in contrast, when the width is equal to W as shown in FIG. 5, the incident X-ray dose differs greatly between the center and the end, and the end element Is reduced, and if the X-ray intensity distribution is widened to avoid this, the amount of X-ray beams deviating from the X-ray detector increases and the useless X-ray dose increases, as described above.) In the vicinity of the center in the slice thickness direction, since data can be collected for a slice plane having a very small thickness (W1), a good image not affected by the partial volume effect can be obtained.

【0014】なお、上記は一つの実施形態に関する説明
であって、この発明がこの記述に限定される趣旨でない
ことはもちろんである。たとえば、上記では検出エレメ
ントはスライス厚さ方向に4個並べられているが、この
個数は他の数とすることもできるし、その他具体的構成
なども種々のものが採用可能である。
The above description is for one embodiment, and it goes without saying that the present invention is not intended to be limited to this description. For example, in the above description, four detection elements are arranged in the slice thickness direction, but this number can be other numbers, and various other specific configurations can be employed.

【0015】[0015]

【発明の効果】以上説明したように、この発明のX線C
T装置によれば、スライス厚さ方向の中心から離れた検
出エレメントへのX線入射量を確保してこれからS/N
比の良好な信号を得ることができ、良好な画質の画像を
再構成することができる。また、X線強度分布を広げて
無駄なX線被曝が増えることを避けることもできる。端
部の検出エレメントから十分な信号が得られるため、放
射X線線量を下げて、被検体に対する低被曝線量化を図
ることもできる。
As described above, the X-ray C of the present invention
According to the T device, the amount of X-rays incident on the detection element distant from the center in the slice thickness direction is secured, and the S / N
A signal with a good ratio can be obtained, and an image with good image quality can be reconstructed. Further, the X-ray intensity distribution can be broadened to avoid increasing unnecessary X-ray exposure. Since a sufficient signal can be obtained from the detection element at the end, the radiation X-ray dose can be reduced and the exposure dose to the subject can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態を示す模式的な斜視図。FIG. 1 is a schematic perspective view showing an embodiment of the present invention.

【図2】X線検出器の展開図。FIG. 2 is a development view of an X-ray detector.

【図3】スライス厚さ方向でのX線放射状態を説明する
ための模式的な側断面図。
FIG. 3 is a schematic side sectional view for explaining an X-ray emission state in a slice thickness direction.

【図4】実施形態におけるスライス厚さ方向でのX線強
度分布と検出幅との関係を示すグラフ。
FIG. 4 is a graph showing a relationship between an X-ray intensity distribution in a slice thickness direction and a detection width in the embodiment.

【図5】従来例におけるスライス厚さ方向でのX線強度
分布と検出幅との関係を示すグラフ。
FIG. 5 is a graph showing a relationship between an X-ray intensity distribution in a slice thickness direction and a detection width in a conventional example.

【符号の説明】[Explanation of symbols]

11 X線管 12 コリメータ 13 X線検出器 14 データ収集装置 Reference Signs List 11 X-ray tube 12 Collimator 13 X-ray detector 14 Data collection device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線ビームを放射するX線放射手段と、
該X線ビームが入射させられるよう該X線放射手段に対
向配置され、多数の検出エレメントがスライス面内方向
およびスライス厚さ方向に配列されており、各検出エレ
メントのスライス厚さ方向の幅がスライス中心から離れ
るほど広くされた、2次元のX線検出手段とを備えるこ
とを特徴とするX線CT装置。
1. An X-ray emitting means for emitting an X-ray beam;
A large number of detection elements are arranged in a slice plane direction and a slice thickness direction so that the X-ray beam is incident thereon, and the width of each detection element in the slice thickness direction is set. An X-ray CT apparatus comprising: a two-dimensional X-ray detection unit that is wider as being away from a slice center.
JP9190615A 1997-06-30 1997-06-30 X-ray ct device Withdrawn JPH1119079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9190615A JPH1119079A (en) 1997-06-30 1997-06-30 X-ray ct device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9190615A JPH1119079A (en) 1997-06-30 1997-06-30 X-ray ct device

Publications (1)

Publication Number Publication Date
JPH1119079A true JPH1119079A (en) 1999-01-26

Family

ID=16261028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9190615A Withdrawn JPH1119079A (en) 1997-06-30 1997-06-30 X-ray ct device

Country Status (1)

Country Link
JP (1) JPH1119079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512075A (en) * 2003-11-28 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Radiation detector module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512075A (en) * 2003-11-28 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Radiation detector module

Similar Documents

Publication Publication Date Title
US7039153B2 (en) Imaging tomography device with at least two beam detector systems, and method to operate such a tomography device
US7428292B2 (en) Method and system for CT imaging using multi-spot emission sources
US7388940B1 (en) Architectures for cardiac CT based on area x-ray sources
US7177387B2 (en) Self-aligning scintillator-collimator assembly
NL1029048C2 (en) CT detector with direct conversion and energy discrimination.
US7433443B1 (en) System and method of CT imaging with second tube/detector patching
EP1151322B1 (en) X-ray imaging apparatus and method with scatter correction
US4229651A (en) Radiation scanning method and apparatus
US10401308B2 (en) Dual-energy detection apparatus, system and method
JP2004279419A (en) Ct detector with segmented optical coupler, and manufacturing method of detector
JPH1043173A (en) X-ray computer tomographing device
JPH08299322A (en) Computed tomography device
US7920751B2 (en) Adaptive gradient weighting technique for detector bad cell correction
US6380540B1 (en) Radiation imaging using simultaneous emission and transmission
EP1071044A2 (en) Method and apparatus for noise compensation in imaging systems
JPH08240541A (en) X-ray ct device
WO2001067134A1 (en) Tomographic apparatus and method
JPH05256950A (en) Solid detector for x-ray computer tomography
JP2007510456A (en) Coherent scatter imaging
JP2004208884A (en) X-ray data collector and x-ray ct apparatus
CA2530390A1 (en) Scanning-based detection of ionizing radiation for tomosynthesis
JP2000070254A (en) X-ray detector
JPH1119079A (en) X-ray ct device
JP2004125722A (en) Radiation detector and x-ray ct system using it
JP2002296353A (en) X-ray detector and x-ray ct equipment using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050331

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060824