JP2000070254A - X-ray detector - Google Patents

X-ray detector

Info

Publication number
JP2000070254A
JP2000070254A JP10256098A JP25609898A JP2000070254A JP 2000070254 A JP2000070254 A JP 2000070254A JP 10256098 A JP10256098 A JP 10256098A JP 25609898 A JP25609898 A JP 25609898A JP 2000070254 A JP2000070254 A JP 2000070254A
Authority
JP
Japan
Prior art keywords
ray
scattered
rays
slice
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10256098A
Other languages
Japanese (ja)
Inventor
Tomotsune Yoshioka
智恒 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP10256098A priority Critical patent/JP2000070254A/en
Publication of JP2000070254A publication Critical patent/JP2000070254A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5282Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to scatter

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove the influence of scattered X-rays without deteriorating detecting efficiency of a main X-ray compared with a conventional one- dimensional array detector by allowing an X-ray detecting element string at both end parts of plurally arrayed slice direction X-ray detecting element string to detect scattered X-rays. SOLUTION: Since a collimator board 5 is not placed in the direction of separating a slice though it is placed in the direction of separating a channel, the scattered X-rays incident in parallel with the board 5 is not attenuated by the board 5 but is made to enter a scintillator to be a part of an output current. At this time, in the X-ray detecting element string in a slicing direction, the elements at both of the ends are used as elements for measuring the scattered X-rays but not used as elements for measuring the X-ray transmission of an examinee 10. Thus, an opening restricting collimator 14 restricting X-rays radiated from an X-ray tube in the slicing direction prohibits incidence to an outermost slice scintillator 1a. Consequently, the scintillator 1a makes only the scattered X-rays from the examinee 10 incident.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はX線CT装置のX線
検出技術に係り、特に同時に複数スライスの画像計測を
行えるX線CT装置のX線検出技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray detection technique for an X-ray CT apparatus, and more particularly to an X-ray detection technique for an X-ray CT apparatus capable of simultaneously measuring a plurality of slices of an image.

【0002】[0002]

【従来の技術】近年、X線CT装置に用いられるX線検
出器として、シンチレータを用いた固体検出器が広く用
いられるようになった。このCT用固体検出器は、入射
X線を光に変換するシンチレータと、このシンチレータ
で変換された光を検出して電気信号として出力するシリ
コンフォトダイオードなどの光電変換素子を、X線源を
中心として円弧状に多数のチャンネルを配列して構成さ
れる。
2. Description of the Related Art In recent years, solid-state detectors using scintillators have been widely used as X-ray detectors used in X-ray CT apparatuses. This CT solid-state detector includes a scintillator that converts incident X-rays into light, and a photoelectric conversion element such as a silicon photodiode that detects light converted by the scintillator and outputs it as an electric signal. And a large number of channels arranged in an arc shape.

【0003】X線CT装置では、装置のスループット向
上のために1スキャンあたりに要する時間の短縮化が望
まれている。時間の短縮の方法として以下の2つがあげ
られている。 (1)一回転あたりに要する時間の短縮化 (2)一回転あたりに撮影できる断層像の増加
[0003] In the X-ray CT apparatus, it is desired to reduce the time required for one scan in order to improve the throughput of the apparatus. There are the following two methods for shortening the time. (1) Reduction of time required per rotation (2) Increase in tomographic images that can be captured per rotation

【0004】(1)に関してはX線発生装置であるX線
管の軽量化等により回転速度の向上が図られている。
Regarding (1), the rotation speed has been improved by reducing the weight of an X-ray tube as an X-ray generator.

【0005】他方、(2)に関しては、図9に示すよう
に、これまで一次元的に配列されていた検出器を、スラ
イス方向に複数列配置することにより達成される(マル
チスライスX線検出器)。(1)の方法では回転速度の
増加に伴いスキャナ構成部品にかかる加速度が増加する
ため使用するそれぞれの部品の強度を強化する必要があ
る。また、回転速度を上げても計測の精度を従来と同じ
ように維持するためにはそれに見合った分だけデータサ
ンプリング間隔内での照射X線量を増加させる必要があ
る。CT画像の画質を左右するX線光子量はX線管の管
電圧が同じ場合、(管電流)×(照射時間)によって増
減するからである。また、回転速度を増加させてもX線
管から放射されるX線のうち被検体の計測に寄与する割
合(X線利用効率)は変わらない。これに対して(2)
のスライス方向に複数の検出素子列を配置したマルチス
ライス検出器では回転速度を上げなくても従来の装置に
比較して短時間で広範囲の計測が行え、さらにX線から
放射されるX線の利用効率が向上する。X線利用効率が
向上するということは高価な消耗品であるX線管球を効
率よく使用できるということであり、一回の検査当たり
の管球劣化量が少なくなることを意味する。このような
観点から、単に患者スループットを向上するだけでな
く、X線管の利用効率も向上するといった点で(2)の
マルチスライス検出器は優れている。
[0005] On the other hand, the case (2) is achieved by arranging a plurality of detectors which have been arranged one-dimensionally in a row in the slice direction as shown in FIG. 9 (multi-slice X-ray detection). vessel). In the method (1), the acceleration applied to the scanner components increases with an increase in the rotation speed, so that it is necessary to increase the strength of each component used. Further, in order to maintain the same measurement accuracy as before even when the rotation speed is increased, it is necessary to increase the irradiation X-ray dose within the data sampling interval by an amount corresponding thereto. This is because, when the tube voltage of the X-ray tube is the same, the amount of X-ray photons that affects the image quality of the CT image is increased or decreased by (tube current) × (irradiation time). Even if the rotation speed is increased, the ratio of the X-rays emitted from the X-ray tube that contributes to the measurement of the subject (X-ray use efficiency) does not change. (2)
A multi-slice detector in which a plurality of detector elements are arranged in the slice direction can perform a wide range of measurement in a shorter time than a conventional device without increasing the rotation speed, and furthermore, the X-rays radiated from the X-rays can be measured. Usage efficiency is improved. The improvement in X-ray utilization efficiency means that an X-ray tube, which is an expensive consumable, can be used efficiently, which means that the amount of tube deterioration per inspection is reduced. From such a viewpoint, the multi-slice detector (2) is excellent not only in improving the patient throughput but also in improving the use efficiency of the X-ray tube.

【0006】また、X線検出素子を二次元的に配列した
このマルチスライス検出器にすることにより発生する問
題もいくつかある。その中の一つに散乱線の影響があ
る。X線管から照射されたX線は被検体を透過した後X
線検出素子に入射し、その強度に応じて電気信号に変換
される。しかし被検体に入射したX線の一部はそのとき
に散乱する。従って、X線検出素子に入射するX線は、
X線管焦点から被検体を透過してきた主X線と、被検体
のX線が照射された全範囲から散乱された散乱X線とが
混在していることになる。
[0006] There are also some problems caused by using this multi-slice detector in which X-ray detecting elements are two-dimensionally arranged. One of them is the influence of scattered radiation. X-rays emitted from the X-ray tube pass through the subject
The light enters the line detecting element and is converted into an electric signal according to the intensity. However, part of the X-rays incident on the subject is then scattered. Therefore, X-rays incident on the X-ray detection element are:
This means that main X-rays transmitted through the subject from the X-ray tube focal point and scattered X-rays scattered from the entire range of the subject irradiated with the X-rays are mixed.

【0007】ここで、X線管焦点から被検体を透過して
きた主X線はそのX線検出素子の位置での被検体のX線
減弱量に対応した情報を持っているが、散乱X線は被検
体のX線減弱量に対応した情報を持っていない。
Here, the main X-ray transmitted through the subject from the focal point of the X-ray tube has information corresponding to the amount of X-ray attenuation of the subject at the position of the X-ray detecting element. Does not have information corresponding to the amount of X-ray attenuation of the subject.

【0008】[0008]

【発明が解決しようとする課題】このように上記従来技
術では、散乱X線の影響を除去するにはX線検出素子の
X線入射側にコリメータを設置する必要がある。コリメ
ータは検出素子ピッチに合わせてX線透過率が小さい材
質の板をX線管焦点を中心とした放射線に沿って配列し
たものである。このような板を並べることにより、X線
管焦点方向からX線検出器へ入射する主X線はコリメー
タ板の厚み分だけ若干減弱してX線検出素子に達する。
しかし、斜め方向から入射する散乱X線はX線透過率の
小さいコリメータ板を通過することになりX線検出素子
に達する前に大きく減弱することになる。しかし、多数
のコリメータ板を並べる構造ではコリメータ板に交差す
る方向からの散乱X線は除去できるがコリメータ板に平
行な方向から入射してくる散乱X線はほとんど除去でき
ない。X線検出素子が二次元的に配列されるマルチスラ
イス検出器では散乱X線の影響を除去するためにはコリ
メータ板の配向が直交するように二種類のコリメータを
重ねるような構造とするかコリメータ板が格子状に組み
合わされた構造にする必要がある。しかし、いずれにし
ても構造が複雑になり精度を確保するのが困難となるこ
とや、主X線に対する透過率が低下しX線検出素子の出
力低下が発生することなどが避けられないという問題が
あった。
As described above, in the above-mentioned prior art, it is necessary to install a collimator on the X-ray incident side of the X-ray detecting element in order to eliminate the influence of scattered X-rays. The collimator is made by arranging plates made of a material having a small X-ray transmittance along the detection element pitch along the radiation centered on the focal point of the X-ray tube. By arranging such plates, the main X-rays incident on the X-ray detector from the focal point of the X-ray tube slightly attenuate by the thickness of the collimator plate and reach the X-ray detection element.
However, scattered X-rays incident from an oblique direction pass through a collimator plate having a small X-ray transmittance, and are greatly attenuated before reaching the X-ray detection element. However, in a structure in which many collimator plates are arranged, scattered X-rays from a direction intersecting the collimator plates can be removed, but scattered X-rays incident from a direction parallel to the collimator plates can hardly be removed. In a multi-slice detector in which X-ray detection elements are arranged two-dimensionally, in order to eliminate the influence of scattered X-rays, a structure is adopted in which two types of collimators are stacked so that the orientation of the collimator plate is orthogonal. It is necessary to have a structure in which the plates are combined in a grid. However, in any case, it is inevitable that the structure becomes complicated and it is difficult to ensure the accuracy, and that the transmittance of the main X-rays is reduced and the output of the X-ray detection element is reduced. was there.

【0009】本発明は上記問題を解決するためになされ
たものであり、その目的は、主X線に対する検出効率を
従来の一次元配列検出器と比較して低下させずに、散乱
X線の影響を除去可能なX線CT装置を実現しようとす
るものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to reduce the scattered X-rays without lowering the detection efficiency for main X-rays as compared with a conventional one-dimensional array detector. An object of the present invention is to realize an X-ray CT apparatus capable of removing the influence.

【0010】[0010]

【課題を解決するための手段】上記目的は、X線源から
のX線を解析に供するように絞り機構で絞ったX線ビー
ムを検知し光に変換するシンチレータとこのシンチレー
タで変換された光を電気信号に変換する光電変換素子と
を有したX線検出素子を前記X線源の焦点を中心として
円弧状あるいはポリゴン状に複数個チャンネル方向に配
列したX線検出素子列をスライス方向に複数列配列した
X線検出器において、前記複数列配列したスライス方向
X線検出素子列の両端部の前記X線検出素子列を散乱X
線のみを検出するX線検出素子列としたことを特徴とす
るX線検出器によって達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a scintillator for detecting an X-ray beam narrowed by a diaphragm mechanism to convert the X-ray from an X-ray source into an analysis and converting the X-ray into light, and a light converted by the scintillator. A plurality of X-ray detecting elements arranged in a channel direction in the form of a plurality of X-ray detecting elements having a photoelectric conversion element for converting the X-ray into an electric signal in an arc shape or a polygon centering on the focal point of the X-ray source. In the X-ray detector arranged in a row, the X-ray detection element rows at both ends of the slice-direction X-ray detection element row arranged in a plurality of rows are scattered X-rays.
This is achieved by an X-ray detector characterized in that the X-ray detection element array detects only lines.

【0011】また、入射するX線を検知することにより
発光するシンチレータと、シンチレータでの発光を受光
することによりシンチレータが検知したX線の線量に対
応する出力信号を発生する光検出素子を組み合わせたX
線検出素子をX線管焦点を中心とした円弧状あるいはポ
リゴン状に複数個配列したX線検出素子列を複数組有す
るマルチスライスCT装置用X線検出器において、X線
管放射口部に設けられたX線絞り装置によって制限され
た検出器入射X線ビームのスライス方向の両外側にもX
線検出素子列を有しそれら複数のX線検出素子列の入射
部すべてをカバーする寸法のX線吸収係数の大きな材質
の薄板をチャンネル方向に放射状に配列したチャンネル
方向コリメータとを組合せたことを特徴とするマルチス
ライスCT装置用X線検出器によって達成される。
A scintillator which emits light by detecting an incident X-ray and a photodetector which generates an output signal corresponding to the dose of the X-ray detected by the scintillator by receiving the light emitted from the scintillator are combined. X
An X-ray detector for a multi-slice CT apparatus having a plurality of sets of X-ray detection elements in which a plurality of X-ray detection elements are arranged in an arc shape or a polygon centering on the X-ray tube focal point is provided at an X-ray tube emission port. X outside the slice direction of the detector incident X-ray beam limited by the X-ray diaphragm device
A combination of a channel direction collimator in which thin plates made of a material having a large X-ray absorption coefficient and having a dimension covering the entire incident portion of the plurality of X-ray detection element rows are arranged radially in the channel direction. Achieved by the featured X-ray detector for multi-slice CT apparatus.

【0012】また、上記検出器を用いて事前に標準減弱
体によるX線ビームが入射する主X線計測用X線検出素
子列の出力とX線ビームの外側に置かれた散乱線計測用
X線検出素子列の出力との関係を求め散乱線補正用デー
タを作成し、被検体計測時に前記入射X線ビームの外側
に置いた散乱線計測用X線検出素子列の出力を計測し前
記散乱線補正用データを参照することにより主X線計測
用X線検出素子列の出力の中に含まれる散乱線の割合を
算出し各素子の出力からその分を差し引くことにより被
検体からの散乱X線の影響を除去し精度の高い計測を行
う散乱線補正方法によって達成される。
Further, the output of the main X-ray measuring X-ray detecting element array to which the X-ray beam from the standard attenuator is incident beforehand by using the detector and the X-ray detecting X-ray placed outside the X-ray beam. Obtain the relationship with the output of the array of X-ray detection elements, create scattered radiation correction data, measure the output of the X-ray detection element array for scattered X-rays placed outside the incident X-ray beam at the time of measurement of the subject, and measure the scattering. The ratio of the scattered radiation included in the output of the main X-ray measurement X-ray detection element array is calculated by referring to the data for X-ray measurement, and the ratio of the scattered X-rays from the subject is calculated by subtracting the ratio from the output of each element. This is achieved by a scattered radiation correction method that removes the influence of radiation and performs highly accurate measurement.

【0013】具体的には、チャンネル方向の散乱線につ
いて、従来と同様多数の板を放射線状に配置したコリメ
ータを設け、スライス方向の散乱線については主X線ビ
ームの照射野の外側に到達した散乱線の強度を計測しそ
の値から主X線ビームの照射野に混入した散乱線量を推
定し補正を行う。この方法により、複雑な構造をとらず
に、またX線検出素子と散乱線除去用コリメータとの位
置合わせをチャンネル方向だけに限定することが可能と
なり、二次元的に分布する散乱X線の影響を効果的に除
去することが可能になる。
More specifically, for the scattered radiation in the channel direction, a collimator in which a large number of plates are arranged radially as in the prior art is provided, and the scattered radiation in the slice direction reaches outside the irradiation field of the main X-ray beam. The intensity of the scattered radiation is measured, and the scattered dose mixed into the irradiation field of the main X-ray beam is estimated from the measured value to make a correction. According to this method, it is possible to limit the alignment between the X-ray detecting element and the scattered radiation removing collimator only in the channel direction without taking a complicated structure, and the effect of the two-dimensionally distributed scattered X-rays becomes possible. Can be effectively removed.

【0014】[0014]

【発明の実施の形態】X線検出素子アレイの外観を図1
に示す。シンチレータ1はチャンネル方向およびスライ
ス方向に分離層21,22によって分割されている。シ
ンチレータ1の下面にはフォトダイオード等の光電変換
素子が配置されている(図示省略)。これらにより構成
されたX線検出素子アレイは基板3の上に搭載され、基
板3の端部に設けたコネクタ4により各X線検出素子の
出力電流が外部に取り出せるようになっている。図の上
方から入射してきたX線がシンチレータ1に入射すると
シンチレータ1が発光し、その光をフォトダイオードが
受け出力電流が発生する。このとき入射してくるX線の
強度によりシンチレータ1での発光強度は変化し取り出
される信号電流も入射X線強度に応じたものとなる。X
線検出素子アレイはチャンネル方向,スライス方向に分
離されていることにより、入射X線の二次元的な強度分
布を計測することができる。
FIG. 1 shows the appearance of an X-ray detecting element array.
Shown in The scintillator 1 is divided by separation layers 21 and 22 in the channel direction and the slice direction. On the lower surface of the scintillator 1, a photoelectric conversion element such as a photodiode is arranged (not shown). The X-ray detecting element array constituted by these components is mounted on the substrate 3, and the output current of each X-ray detecting element can be extracted to the outside by the connector 4 provided at the end of the substrate 3. When an X-ray incident from above in the figure enters the scintillator 1, the scintillator 1 emits light, and the light is received by the photodiode to generate an output current. At this time, the emission intensity of the scintillator 1 changes depending on the intensity of the incident X-ray, and the signal current taken out also corresponds to the intensity of the incident X-ray. X
Since the line detection element array is separated in the channel direction and the slice direction, it is possible to measure the two-dimensional intensity distribution of the incident X-ray.

【0015】次に斜め方向から入射する散乱X線を減衰
させ、焦点方向から入射する主X線のみを効率よくX線
検出素子に導くコリメータアレイの構造を図2に示す。
コリメータアレイはX線減弱率の大きな材料(モリブデ
ン,タングステン,鉛等)の薄板のコリメータ板5を一
端をX線管焦点へ、他端をシンチレータの分離層21へ
向けて配置し、コリメータ板5の両端を支持部材6によ
り固定した構造となっている。図2では明示されていな
いが、各コリメータ板5はお互いに平行に配置されてい
るのではなく、所定の開き角をもった放射状に配置され
ている。
FIG. 2 shows the structure of a collimator array that attenuates scattered X-rays incident from an oblique direction and efficiently guides only main X-rays incident from a focal point direction to an X-ray detecting element.
The collimator array has a thin collimator plate 5 made of a material (molybdenum, tungsten, lead, or the like) having a large X-ray attenuation rate, with one end facing the X-ray tube focal point and the other end facing the separation layer 21 of the scintillator. Are fixed by supporting members 6 at both ends. Although not explicitly shown in FIG. 2, the respective collimator plates 5 are not arranged in parallel with each other, but are arranged radially with a predetermined opening angle.

【0016】また、図3には、前述したX線検出素子ア
レイとコリメータアレイとを組合せた位置関係を示す。
この図からわかるように、チャンネル方向に斜めに入射
する散乱X線に対してはコリメータ板5は効果的に除去
できるのに対して、スライス方向に斜めに入射する散乱
X線については、コリメータ板5による除去効果はほと
んど期待できずその影響が残ってしまう。このスライス
方向に入射する散乱X線の影響の除去方法については後
述する。
FIG. 3 shows a positional relationship in which the X-ray detecting element array and the collimator array described above are combined.
As can be seen from the figure, the collimator plate 5 can effectively remove scattered X-rays obliquely incident in the channel direction, whereas the collimator plate 5 can obstruct scattered X-rays obliquely incident in the slice direction. The removal effect by 5 cannot be expected, and the effect remains. A method of removing the influence of the scattered X-rays incident in the slice direction will be described later.

【0017】これらのX線検出素子アレイとコリメータ
アレイとを組み合わせたX線検出器8をCTスキャナの
回転板12に組み込んだ全体図を図4に示す。回転板1
2の中央には穴があけられ中央に被検体10(患者)が
置かれ、ここを中心として全体が回転できるようになっ
ている。回転板上の一端にはX線管9が置かれ、被検体
10を挟んで対向するようにX線検出器8が置かれてい
る。X線検出器8の内部には前述したコリメータ板5の
後ろ側にX線検出素子アレイ7がポリゴン状に配置され
ている。X線管9から放射され被検体10を透過した後
X線検出器8に達したX線はコリメータ板5が並べられ
ている空間を通過した後X線検出素子アレイ7のシンチ
レータ面に達する。そこで入射X線の強度情報は電気信
号に変換され、後続の信号増幅器11に送られ増幅され
た後ディジタルデータに変換される。回転板12が回転
しながら被検体10の各方向からのX線透過量の計測を
行い、その情報が画像処理装置に伝達され被検体10の
断層画像が再構成される。
FIG. 4 shows an overall view in which the X-ray detector 8 in which the X-ray detection element array and the collimator array are combined is incorporated in the rotating plate 12 of the CT scanner. Rotating plate 1
A hole is made in the center of 2 and a subject 10 (patient) is placed in the center, and the whole can be rotated around this. An X-ray tube 9 is placed at one end on the rotating plate, and an X-ray detector 8 is placed so as to oppose the subject 10 with the X-ray tube 9 interposed therebetween. Inside the X-ray detector 8, an X-ray detection element array 7 is arranged in a polygon behind the collimator plate 5 described above. The X-rays emitted from the X-ray tube 9 and having passed through the subject 10 and having reached the X-ray detector 8 pass through the space where the collimator plates 5 are arranged, and then reach the scintillator surface of the X-ray detection element array 7. Therefore, the intensity information of the incident X-ray is converted into an electric signal, sent to the subsequent signal amplifier 11, amplified, and then converted into digital data. While the rotating plate 12 rotates, the amount of X-ray transmission from each direction of the subject 10 is measured, and the information is transmitted to the image processing device, and the tomographic image of the subject 10 is reconstructed.

【0018】コリメータとX線検出素子とX線管焦点か
ら放射され被検体を透過してきた主X線と被検体により
発生する散乱X線との関係を図5,図6を用いて説明す
る。図5はX線検出素子のチャンネル方向の断面を示し
たものである。コリメータ板5はチャンネル方向と直交
して放射状に配置されているため、コリメータ板を斜め
に通過する方向に発生した散乱X線は、コリメータ板5
がX線減弱率の大きな材質の場合、ほとんどが減弱され
散乱X線の影響は現れないことになる。
The relationship between the collimator, the X-ray detecting element, the main X-ray radiated from the focal point of the X-ray tube and transmitted through the subject, and the scattered X-ray generated by the subject will be described with reference to FIGS. FIG. 5 shows a cross section in the channel direction of the X-ray detecting element. Since the collimator plate 5 is arranged radially perpendicular to the channel direction, scattered X-rays generated in a direction obliquely passing through the collimator plate are
Is a material having a large X-ray attenuation rate, most of the material is attenuated, and the effect of scattered X-rays does not appear.

【0019】次にチャンネル方向と直交するスライス方
向の断面を図6に示す。コリメータ板5はチャンネルを
分離する方向に置かれているが、スライスを分離する方
向には置かれていないため、コリメータ板5に平行に入
射する散乱X線はコリメータ板5で減弱されることが無
くシンチレータ1に入射され出力電流の一部となる。こ
こで、スライス方向のX線検出素子列の中で、両端の素
子は散乱X線計測用素子として使用し、被検体10のX
線透過率を計測するための素子としては使用しない。こ
のため、X線管9から放射されるX線をスライス方向に
制限する開口制限コリメータ14により最外スライスシ
ンチレータ1aには入射させないようにしておく。これ
により、最外スライスシンチレータ1aには被検体10
からの散乱X線のみが入射されることになる。
Next, FIG. 6 shows a cross section in the slice direction orthogonal to the channel direction. Although the collimator plate 5 is placed in the direction of separating the channels, but not in the direction of separating the slices, the scattered X-rays incident parallel to the collimator plate 5 may be attenuated by the collimator plate 5. Without being incident on the scintillator 1 and becomes part of the output current. Here, in the row of X-ray detecting elements in the slice direction, the elements at both ends are used as scattered X-ray measuring elements,
It is not used as an element for measuring line transmittance. For this reason, the X-ray radiated from the X-ray tube 9 is prevented from being incident on the outermost slice scintillator 1a by the aperture limiting collimator 14 for limiting the X-ray in the slice direction. Thereby, the object 10 is placed on the outermost slice scintillator 1a.
Only scattered X-rays from

【0020】この最外スライスシンチレータ1aに対応
するX線検出素子の出力に着目することにより被検体1
0のX線透過率を計測する内部スライスシンチレータ1
bに入射してくる散乱X線の量を想定することが可能と
なる。図7にその散乱X線量の見積もり方法について説
明する。被検体の計測を行う前に被検体の代わりに標準
減弱体15を置き、開口制限コリメータ14の開口部の
一部に主X線計測用素子のあるスライス位置に対応する
ようにX線遮蔽ブロック16を置く。この状態でX線の
照射を行い、各検出素子の出力の計測を行う。X線遮蔽
ブロック16の位置に対応したスライスのシンチレータ
1bには主X線は入射せず標準減弱体14からの散乱X
線のみが入射することになる。各スライスの主X線計測
用素子のある位置にX線遮蔽ブロック16の置く位置を
順次ずらして計測を繰り返すことにより全スライス位置
での散乱X線強度の分布を知ることができる。また、大
きさの異なる標準減弱体15を使うことにより、散乱X
線が多い状態や少ない状態での散乱X線強度の分布をあ
らかじめ知ることができる。
By paying attention to the output of the X-ray detecting element corresponding to the outermost slice scintillator 1a,
Internal slice scintillator 1 for measuring X-ray transmittance of 0
It is possible to assume the amount of scattered X-rays incident on b. FIG. 7 illustrates a method of estimating the scattered X-ray dose. Before measuring the subject, the standard attenuator 15 is placed in place of the subject, and the X-ray shielding block is arranged so as to correspond to a slice position where the main X-ray measuring element is located at a part of the opening of the aperture limiting collimator 14. Place 16. X-ray irradiation is performed in this state, and the output of each detection element is measured. The main X-ray is not incident on the scintillator 1b of the slice corresponding to the position of the X-ray shielding block 16 and the scattered X from the standard attenuation body 14
Only the line will be incident. By repeating the measurement by sequentially shifting the position of the X-ray shielding block 16 to the position of the main X-ray measurement element of each slice, the distribution of the scattered X-ray intensity at all slice positions can be known. In addition, by using the standard attenuator 15 having a different size, the scattering X
It is possible to know in advance the distribution of the scattered X-ray intensity when there are many or few lines.

【0021】このようにして計測した各スライス位置と
検出素子出力の関係を図8に示す。図中ではスライス方
向に8個のX線検出素子を並べ、両方の最外スライスを
散乱X線計測用検出素子とし、内部の6列のX線検出素
子列を被検体透過X線強度測定用の素子としている。第
2スライスから第7スライスの主X線計測用検出素子の
出力には被検体を透過してきた主X線と、被検体の他の
部分から散乱された散乱X線とが含まれている。画像再
構成を行う際に重要なのは被検体を透過してきて被検体
の減弱量の情報を持った主X線であり、他の部分から散
乱されてきた散乱X線は計測の精度を悪化させる要因で
しかない。主X線のみによる出力を得るためには通常計
測される出力(主X線と散乱X線とによる出力)から散
乱X線による出力分を減算することにより求められる。
前述した標準減弱体15とX線遮蔽ブロック16を用い
た散乱X線強度分布の測定結果から、最外スライスの散
乱X線検出素子と内部スライスのX線検出素子とに入射
する散乱X線の割合をあらかじめ求めておくことによ
り、被検体計測時の最外スライスの散乱X線検出素子の
出力から内部スライスのX線検出素子に混入する散乱X
線の量を想定(シミュレート)することが可能となる。
このようにして想定した散乱X線量を実際に計測された
出力から減算することにより散乱X線の影響を除去した
被検体の正しいX線減弱量を求めることができる。散乱
X線のスライス方向の分布は中央がやや盛り上がったな
だらかな分布となるが、この形状はX線検出素子列のス
ライス方向の寸法によって異なり、あまりスライス方向
寸法が大きくない場合は全スライスに一定量の散乱X線
が入射するとして散乱X線補正を行ってもよい。X線検
出素子列のスライス方向の寸法が大きい場合は二次曲線
のような関数によって散乱X線強度の分布を近似する方
法もある。また、前述した実測した散乱X線強度の値そ
のものをテーブルに格納し、被検体計測中の最外スライ
スの散乱X線検出素子の出力から内部スライスのX線検
出素子列に入射する散乱X線量を見積もり、計測された
出力の値の補正を行う方法もある。
FIG. 8 shows the relationship between each slice position thus measured and the output of the detection element. In the figure, eight X-ray detectors are arranged in the slice direction, both outermost slices are used as scattered X-ray detectors, and six internal X-ray detectors are used for measuring the transmitted X-ray intensity of the subject. Element. The outputs of the main X-ray measurement detecting elements in the second slice to the seventh slice include the main X-ray transmitted through the subject and the scattered X-ray scattered from other portions of the subject. What is important when performing image reconstruction is the main X-rays that have passed through the subject and have information on the amount of attenuation of the subject. Scattered X-rays scattered from other parts are factors that deteriorate the measurement accuracy. It is only. In order to obtain an output using only the main X-rays, the output is obtained by subtracting the output of the scattered X-rays from the output that is normally measured (the output of the main X-rays and the scattered X-rays).
From the measurement result of the scattered X-ray intensity distribution using the standard attenuator 15 and the X-ray shielding block 16 described above, the scattered X-rays incident on the scattered X-ray detection element of the outermost slice and the X-ray detection element of the inner slice are determined. By obtaining the ratio in advance, the scattered X mixed into the X-ray detection element of the inner slice from the output of the scattered X-ray detection element of the outermost slice at the time of measurement of the subject is measured.
It is possible to assume (simulate) the amount of lines.
By subtracting the scattered X-ray dose assumed in this way from the actually measured output, the correct X-ray attenuation amount of the subject from which the influence of the scattered X-rays has been removed can be obtained. The distribution of the scattered X-rays in the slice direction is a gentle distribution with a slightly raised center, but this shape varies depending on the dimensions in the slice direction of the X-ray detection element row, and is constant for all slices when the dimensions in the slice direction are not very large. The scattered X-ray correction may be performed on the assumption that an amount of scattered X-rays is incident. When the dimension of the X-ray detecting element row in the slice direction is large, there is a method of approximating the distribution of the scattered X-ray intensity by a function such as a quadratic curve. In addition, the value of the actually measured scattered X-ray intensity itself is stored in a table, and the scattered X-ray dose incident on the X-ray detection element array of the inner slice from the output of the scattered X-ray detection element of the outermost slice during the measurement of the subject is measured. And a method of correcting the measured output value.

【0022】また、事前に標準減弱体計測を行わず、被
検体計測時の散乱線検出素子の出力の値を直接内部スラ
イスのX線検出素子の出力から差し引く方法で補正を行
うこと可能である。また、X線管側の絞り装置でX線ビ
ームをスライス方向に絞った場合には最外列の検出素子
列でなく、入射X線ビームのすぐ外側の検出素子列(主
X線ビームが入射しない)を上記散乱線検出素子列の代
わりに使用することでX線ビーム幅可変の場合でも同様
に精度のよい散乱線補正を行うことが可能となる。
Further, it is possible to perform correction by a method of directly subtracting the output value of the scattered radiation detecting element at the time of measuring the subject from the output of the X-ray detecting element of the internal slice without performing the standard attenuation measurement in advance. . When the X-ray beam is narrowed down in the slice direction by the X-ray tube-side aperture device, the outermost detection element row is not the outermost detection element row (the main X-ray beam is Is not used in place of the scattered radiation detection element array, it is possible to perform highly accurate scattered radiation correction even when the X-ray beam width is variable.

【0023】本実施形態により、検出器構造を複雑にす
ること無しにチャンネル方向・スライス方向それぞれの
方向から入射してくる散乱X線の影響を除去し、被検体
の正しいX線透過量の計測が行えるマルチスライスCT
装置用X線検出器を実現することができる。
According to the present embodiment, the influence of the scattered X-rays incident from the channel direction and the slice direction can be removed without complicating the detector structure, and the correct X-ray transmission amount of the subject can be measured. Multi-slice CT
An X-ray detector for an apparatus can be realized.

【0024】[0024]

【発明の効果】本発明は、主X線に対する検出効率を従
来の一次元配列検出器と比較して低下させずに、散乱X
線の影響を除去可能なX線CT装置が実現できるという
効果を奏する。
As described above, according to the present invention, the scattered X-rays are detected without lowering the detection efficiency for the main X-rays as compared with the conventional one-dimensional array detector.
This has the effect of realizing an X-ray CT apparatus capable of removing the influence of radiation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例実施例のX線検出素子アレイの外
観を示した図。
FIG. 1 is a view showing the appearance of an X-ray detection element array according to an embodiment of the present invention.

【図2】本発明実施例のコリメータアレイの外観を示し
た図。
FIG. 2 is a diagram showing an appearance of a collimator array according to the embodiment of the present invention.

【図3】本発明実施例のX線検出素子アレイとコリメー
タアレイの位置関係を示した外観図。
FIG. 3 is an external view showing a positional relationship between an X-ray detection element array and a collimator array according to the embodiment of the present invention.

【図4】本発明実施例のマルチスライス検出器をCTス
キャナの回転板に搭載した状態を示した図。
FIG. 4 is a diagram showing a state in which the multi-slice detector according to the embodiment of the present invention is mounted on a rotating plate of a CT scanner.

【図5】本発明実施例の検出器のチャンネル方向の断面
を示した図。
FIG. 5 is a diagram showing a cross section in the channel direction of the detector according to the embodiment of the present invention.

【図6】本発明実施例の検出器のスライス方向の断面を
示した図。
FIG. 6 is a diagram showing a cross section in the slice direction of the detector according to the embodiment of the present invention.

【図7】図6を用いたスライス方向の散乱X線の測定手
法の説明図。
FIG. 7 is an explanatory diagram of a technique for measuring scattered X-rays in the slice direction using FIG.

【図8】本発明実施例のマルチスライス検出器の各スラ
イス位置の検出素子の主X線と散乱X線との出力の関係
を示したグラフ。
FIG. 8 is a graph showing the relationship between the output of main X-rays and the output of scattered X-rays of the detection element at each slice position of the multi-slice detector according to the embodiment of the present invention.

【図9】マルチスライスCT装置の原理を説明した概念
図。
FIG. 9 is a conceptual diagram illustrating the principle of a multi-slice CT apparatus.

【符号の説明】[Explanation of symbols]

1a 散乱X線計測スライス用シンチレータ 1a Scintillator for scattered X-ray measurement slice

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線源からのX線を解析に供するように
絞り機構で絞ったX線ビームを検知し光に変換するシン
チレータとこのシンチレータで変換された光を電気信号
に変換する光電変換素子とを有したX線検出素子を前記
X線源の焦点を中心として円弧状あるいはポリゴン状に
複数個チャンネル方向に配列したX線検出素子列をスラ
イス方向に複数列配列したX線検出器において、前記複
数列配列したスライス方向X線検出素子列の両端部の前
記X線検出素子列を散乱X線のみを検出するX線検出素
子列としたことを特徴とするX線検出器。
1. A scintillator for detecting an X-ray beam narrowed by a diaphragm mechanism to convert X-rays from an X-ray source into an analysis and converting the light into light, and a photoelectric conversion for converting the light converted by the scintillator into an electric signal. An X-ray detector in which a plurality of X-ray detection elements having a plurality of X-ray detection elements each having a plurality of X-ray detection elements arranged in a channel direction in an arc shape or a polygon centering on the focal point of the X-ray source is arranged in a slice direction. An X-ray detector, wherein the X-ray detection element rows at both ends of the plurality of rows of slice-direction X-ray detection element rows are X-ray detection element rows for detecting only scattered X-rays.
JP10256098A 1998-08-27 1998-08-27 X-ray detector Pending JP2000070254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10256098A JP2000070254A (en) 1998-08-27 1998-08-27 X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10256098A JP2000070254A (en) 1998-08-27 1998-08-27 X-ray detector

Publications (1)

Publication Number Publication Date
JP2000070254A true JP2000070254A (en) 2000-03-07

Family

ID=17287873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10256098A Pending JP2000070254A (en) 1998-08-27 1998-08-27 X-ray detector

Country Status (1)

Country Link
JP (1) JP2000070254A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071819A (en) * 2000-08-31 2002-03-12 Toshiba Corp Detector unit, radio-computed tomograph and method of manufacturing for radio-computed tomograph
JP2002177256A (en) * 2000-12-14 2002-06-25 Ge Yokogawa Medical Systems Ltd Computerized tomography(ct) apparatus
JP2004329561A (en) * 2003-05-07 2004-11-25 Canon Inc X-ray imaging apparatus and its control method
WO2006018779A2 (en) * 2004-08-12 2006-02-23 Philips Intellectual Property & Standards Gmbh Anti-scatter-grid for a radiation detector
JP2007044496A (en) * 2005-07-15 2007-02-22 Toshiba Corp X-ray ct apparatus
US7190758B2 (en) 2003-07-29 2007-03-13 Ge Medical Systems Global Technology Company, Llc X-ray CT system
US7409034B2 (en) 2003-09-09 2008-08-05 Ge Medical Systems Global Technology Company, Llc Radiation tomography apparatus
US7434998B2 (en) 2000-10-25 2008-10-14 Kabushiki Kaisha Toshiba X-ray CT scanner with graphical setting of beam thickness
DE102007027921A1 (en) 2007-06-18 2009-01-02 Siemens Ag Sensor arrangement for radiological imaging system, comprises multiple image sensor elements, where multiple stray radiation sensor elements are protected from radiological direct radiation
DE102007033883A1 (en) 2007-07-20 2009-01-29 Siemens Ag Method for controlling of computer tomography system for producing images from inside of investigation object, involves acquiring raw data in pre-measurement and arranging mask structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071819A (en) * 2000-08-31 2002-03-12 Toshiba Corp Detector unit, radio-computed tomograph and method of manufacturing for radio-computed tomograph
US7434998B2 (en) 2000-10-25 2008-10-14 Kabushiki Kaisha Toshiba X-ray CT scanner with graphical setting of beam thickness
JP2002177256A (en) * 2000-12-14 2002-06-25 Ge Yokogawa Medical Systems Ltd Computerized tomography(ct) apparatus
JP2004329561A (en) * 2003-05-07 2004-11-25 Canon Inc X-ray imaging apparatus and its control method
JP4596748B2 (en) * 2003-05-07 2010-12-15 キヤノン株式会社 Radiographic imaging apparatus and reconstruction method in radiographic imaging apparatus
US7190758B2 (en) 2003-07-29 2007-03-13 Ge Medical Systems Global Technology Company, Llc X-ray CT system
US7409034B2 (en) 2003-09-09 2008-08-05 Ge Medical Systems Global Technology Company, Llc Radiation tomography apparatus
WO2006018779A2 (en) * 2004-08-12 2006-02-23 Philips Intellectual Property & Standards Gmbh Anti-scatter-grid for a radiation detector
US7734017B2 (en) 2004-08-12 2010-06-08 Koninklijke Philips Electronics N.V. Anti-scatter-grid for a radiation detector
WO2006018779A3 (en) * 2004-08-12 2006-06-15 Philips Intellectual Property Anti-scatter-grid for a radiation detector
JP2007044496A (en) * 2005-07-15 2007-02-22 Toshiba Corp X-ray ct apparatus
DE102007027921A1 (en) 2007-06-18 2009-01-02 Siemens Ag Sensor arrangement for radiological imaging system, comprises multiple image sensor elements, where multiple stray radiation sensor elements are protected from radiological direct radiation
DE102007027921B4 (en) * 2007-06-18 2009-04-16 Siemens Ag Sensor arrangement, radiological imaging system and imaging method
DE102007033883A1 (en) 2007-07-20 2009-01-29 Siemens Ag Method for controlling of computer tomography system for producing images from inside of investigation object, involves acquiring raw data in pre-measurement and arranging mask structure

Similar Documents

Publication Publication Date Title
US7486764B2 (en) Method and apparatus to reduce charge sharing in pixellated energy discriminating detectors
JP4314008B2 (en) X-ray CT scanner
US7734017B2 (en) Anti-scatter-grid for a radiation detector
US6979826B2 (en) Scintillator geometry for enhanced radiation detection and reduced error sensitivity
US7920751B2 (en) Adaptive gradient weighting technique for detector bad cell correction
GB2054319A (en) Method of and device for determining the contour of a body by means of radiation scattered by the body
EP1769744B1 (en) X-ray computer tomography system
JP5283382B2 (en) Nuclear medicine detector
JP4114717B2 (en) CT equipment
JP2000070254A (en) X-ray detector
US6937697B2 (en) X-ray data collecting apparatus and X-ray CT apparatus
US20050161609A1 (en) X-ray detector module for spectrally resolved measurements
US11782176B2 (en) Bad detector calibration methods and workflow for a small pixelated photon counting CT system
JPH08243098A (en) X-ray ct equipment
JP2000107162A (en) Tomograph
JP2598037B2 (en) Tomographic imaging device
JP2002296353A (en) X-ray detector and x-ray ct equipment using the same
JPH08252248A (en) X-ray ct system
US11944484B2 (en) Material decomposition calibration method and apparatus for a full size photon counting CT system
JP2001255380A (en) Radiation detector, its manufacturing method, data correcting method for x-ray ct device
JPH08606A (en) X-ray ct device
JP2813984B2 (en) X-ray CT X-ray detection system
JPH11258351A (en) Method of manufacturing radiation detector
JP4047845B2 (en) X-ray CT system
JP2023168246A (en) Collimator assembly for X-ray detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Effective date: 20070314

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070320

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710