JPH11188797A - Fiber reinforced resin molded product and its manufacture - Google Patents

Fiber reinforced resin molded product and its manufacture

Info

Publication number
JPH11188797A
JPH11188797A JP9358948A JP35894897A JPH11188797A JP H11188797 A JPH11188797 A JP H11188797A JP 9358948 A JP9358948 A JP 9358948A JP 35894897 A JP35894897 A JP 35894897A JP H11188797 A JPH11188797 A JP H11188797A
Authority
JP
Japan
Prior art keywords
fiber
resin molded
reinforced resin
molded product
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9358948A
Other languages
Japanese (ja)
Inventor
Eisuke Wadahara
英輔 和田原
Soichi Ishibashi
壮一 石橋
Tetsuyuki Kyono
哲幸 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9358948A priority Critical patent/JPH11188797A/en
Publication of JPH11188797A publication Critical patent/JPH11188797A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make moldability easy while strength, rigidity, and impact resistance are provided by a method wherein an weight-average length of a fiber contained in a fiber reinforced resin molded product and a value based on a fiber content are allowed to have specific values. SOLUTION: A fiber contained in a fiber reinforced resin molded product is allowed to have a value of 7 or over up to and including 600 in the formula: Σ(1wa×Wf). Herein, 1wa indicates an weight-average fiber length (mm) of the fiber contained in the fiber reinforced resin molded product, Wf indicates a fiber content (wt.%), and Σ means, when the fiber contained in the fiber reinforced resin molded product has a plurality of kinds, that values in the parenthesis are totalized for each fiber. When Wf is 8 wt.% or over up to and including 70 wt.%, or 1wa is 0.1 mm or over up to and including 10 mm, mechanical properties such as strength, rigidity, impact resistance, etc., come to have an optimum balance, and moldability becomes especially good. Further, as the resin, a thermoplastic resin which is more excellent in impact resistance and can be injection molded, is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は強度、剛性、耐衝撃
性を兼ねそなえ、しかも成形の容易な繊維強化樹脂成形
品に関するものである。更に詳しくは、強度、剛性、耐
衝撃性、導電性を兼ねそなえ、しかも成形の容易な繊維
強化樹脂成形品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin molded article which has strength, rigidity and impact resistance and is easily molded. More specifically, the present invention relates to a fiber-reinforced resin molded article having both strength, rigidity, impact resistance, and conductivity, and which is easy to mold.

【0002】[0002]

【従来の技術】樹脂を繊維で補強することによって、所
望の強度や弾性率を有する繊維強化樹脂成形品を得るこ
とは公知である。しかしながら、高強度、高弾性率の繊
維で成形品の強度や剛性を向上させるにつれて、耐衝撃
性の低下を招くことが多い。そこで、強度、剛性、耐衝
撃性を同時に達成するために、例えば、繊維強化樹脂成
形品中に、ある長さ以上の繊維を含有させる等の手法が
試みられてきた(例えば、特開平5−208418号公
報)。しかし、この手法では、強度、剛性、耐衝撃性に
ついての効果は大きいものの、成形時の繊維強化樹脂組
成物の流動性が著しく劣り、成形性が低いといった問題
を有する。
2. Description of the Related Art It is known to obtain a fiber-reinforced resin molded product having a desired strength and elastic modulus by reinforcing a resin with fibers. However, as the strength and rigidity of a molded article are improved by using high-strength and high-modulus fibers, impact resistance often decreases. Therefore, in order to simultaneously achieve the strength, rigidity and impact resistance, for example, a method of including a fiber having a certain length or more in a fiber-reinforced resin molded article has been tried (for example, see Japanese Patent Application Laid-Open No. Hei 5- 208418). However, this method has a great effect on strength, rigidity and impact resistance, but has a problem that the fluidity of the fiber-reinforced resin composition at the time of molding is extremely poor and the moldability is low.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明では、強
度、剛性、耐衝撃性を兼ねそなえ、しかも成形性の容易
な繊維強化樹脂成形品を提供することを目的とした。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fiber-reinforced resin molded article which has both strength, rigidity and impact resistance, and is easy to mold.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記の課
題を達成するため鋭意検討した結果、繊維強化樹脂成形
品に含有される繊維の重量平均長さlwa(または成形
材料中に含まれる繊維の重量平均長さlwb)、および
繊維含有率Wfの2つの因子が特定の関係を満す場合特
異的に、かかる目的を達成できることを見出し、本発明
に到達した。つまり、本発明は、上記課題を解決するた
めに、基本的に下記の構成により達成される。 即ち、
「繊維強化樹脂成形品中に含有される繊維が、下記(数
式1)において7以上600以下の値を有することを特
徴とする繊維強化樹脂成形品。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, have found that the weight average length lwa (or contained in the molding material) of the fibers contained in the fiber-reinforced resin molded product It has been found that such an object can be achieved specifically when the two factors of the weight average length lwb) of the fiber to be obtained and the fiber content Wf satisfy a specific relationship, and arrived at the present invention. That is, the present invention is basically achieved by the following configurations in order to solve the above-mentioned problems. That is,
"A fiber-reinforced resin molded article characterized in that the fiber contained in the fiber-reinforced resin molded article has a value of 7 or more and 600 or less in the following (Formula 1).

【0005】(数式1) Σ(lwa×Wf) (ここで、lwaは繊維強化樹脂成形品中に含まれる繊
維の重量平均繊維長(mm)、Wfは繊維含有率(重量
%)を示し、Σは繊維強化樹脂成形品中に含有される繊
維の種類が複数である場合、それぞれの繊維について括
弧内の値を合計することを意味する。)」である。
(Equation 1) Σ (lwa × Wf) (where lwa represents the weight average fiber length (mm) of the fiber contained in the fiber-reinforced resin molded product, and Wf represents the fiber content (% by weight); Σ means that when there are a plurality of types of fibers contained in the fiber-reinforced resin molded product, the values in parentheses are totaled for each fiber.)

【0006】[0006]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0007】前記課題を達成するためには、繊維が成形
品中で、(数式1)の値が7以上600以下であること
が必要である。
In order to achieve the above object, it is necessary that the fiber in the molded article has a value of (Equation 1) of 7 or more and 600 or less.

【0008】(数式1) Σ(lwa×Wf) ここで、lwaは繊維強化樹脂成形品中に含まれる繊維
の重量平均繊維長(mm)、Wfは繊維含有率(重量
%)を示し、Σは繊維強化樹脂成形品中に含有される繊
維の種類が複数である場合、それぞれの繊維について括
弧内の値を合計することを意味する。
(Equation 1) Σ (lwa × Wf) Here, lwa indicates the weight average fiber length (mm) of the fiber contained in the fiber-reinforced resin molded product, and Wf indicates the fiber content (% by weight). Means that when there are a plurality of types of fibers contained in the fiber-reinforced resin molded product, the values in parentheses are totaled for each fiber.

【0009】lwaは、繊維強化樹脂成形品から樹脂を
除去して、繊維のみを任意に少なくとも400以上抽出
し、その長さを1μm単位まで光学もしくは走査型電子
顕微鏡を用いて測定し、下記の(数式3)、もしくは
(数式4)により算出する。但し、Wiは長さliの繊
維の重量、Niは長さliの繊維の数とする。
The lwa is obtained by removing the resin from the fiber-reinforced resin molded product, extracting at least 400 fibers arbitrarily, measuring the length of the fiber up to 1 μm using an optical or scanning electron microscope. It is calculated by (Equation 3) or (Equation 4). Here, Wi is the weight of the fiber of length li, and Ni is the number of fibers of length li.

【0010】 (数式3) lwa=Σ(Wi×li)/ΣWi (数式3)は一定直径の繊維に対しては、(数式4)の
様に表すことができる。
(Equation 3) lwa = Σ (Wi × li) / ΣWi (Equation 3) can be expressed as (Equation 4) for a fiber having a constant diameter.

【0011】 (数式4) lwa=Σ(Ni×li2)/Σ(Ni×li) lwaを測定する際の樹脂を除去する方法として、樹脂
のみを溶解させ、含有される繊維を溶解させない溶媒等
に繊維強化樹脂成形品を一定時間浸漬し、樹脂を十分溶
解させた後、濾過等により繊維と分離する手法を採用し
た。特に含有される繊維が耐熱性に優れる場合は、繊維
強化樹脂成形品を窒素雰囲気中で550℃にて約1時間
程度保持することによっても樹脂を除去することが可能
である。
(Formula 4) lwa = Σ (Ni × li 2 ) / Σ (Ni × li) As a method of removing the resin when measuring lwa, a solvent in which only the resin is dissolved and the contained fiber is not dissolved For example, a method was used in which a fiber-reinforced resin molded product was immersed for a certain period of time to sufficiently dissolve the resin, and then separated from fibers by filtration or the like. In particular, when the contained fiber is excellent in heat resistance, the resin can be removed by holding the fiber-reinforced resin molded product at 550 ° C. for about 1 hour in a nitrogen atmosphere.

【0012】(数式1)の値が7未満の繊維を含有する
繊維強化樹脂成形品は、Wfが20重量%以上であれ
ば、ある程度高い強度、剛性を有することも可能で、容
易に成形できるが、耐衝撃性については、著しく低く前
記の課題を達成できない。
A fiber-reinforced resin molded product containing a fiber having a value of (Equation 1) of less than 7 can have a somewhat high strength and rigidity if Wf is 20% by weight or more, and can be easily molded. However, the impact resistance is extremely low, and the above-mentioned problem cannot be achieved.

【0013】ところが、(数式1)の値が7以上の繊維
を含有する繊維強化樹脂成形品は、強度、剛性について
は大幅な改善は見られないものの、耐衝撃性については
7を境に大幅に改善される。また、発明者らは(数式
1)の値が600以下であれば、成形性には実質的に問
題がないことを見出した。しかし、(数式1)の値が6
00を越える場合には、強度、剛性、耐衝撃性を兼ねそ
なえることができるが、成形に支障をきたし、それと共
に生産性も大きく低下する。つまり本発明では、(数式
1)の値が7以上600以下のときに、強度、剛性、耐
衝撃特性を兼ねそなえ、しかも高い生産性で繊維強化樹
脂成形品が得られることを見出した。(数式1)の値は
8以上500以下であることがより好ましい。更に好ま
しくは10以上400以下である。
However, a fiber-reinforced resin molded article containing a fiber having a value of (Expression 1) of 7 or more does not show significant improvement in strength and rigidity, but has a large impact resistance after 7 To be improved. In addition, the inventors have found that if the value of (Equation 1) is 600 or less, there is substantially no problem in moldability. However, the value of (Equation 1) is 6
When it exceeds 00, it can have both strength, rigidity and impact resistance, but it hinders molding and also greatly reduces productivity. That is, in the present invention, it has been found that when the value of (Formula 1) is 7 or more and 600 or less, a fiber-reinforced resin molded product having both strength, rigidity, and impact resistance can be obtained with high productivity. The value of (Equation 1) is more preferably 8 or more and 500 or less. More preferably, it is 10 or more and 400 or less.

【0014】本発明の繊維強化樹脂成形品は、射出成
形、プレス成形、トランスファー成形等によって成形さ
れるが、最も望ましい成形法は、生産性の高い射出成形
である。前記成形材料の形態としては、ペレット、BM
C、SMC、スタンパブルシート等が挙げられるが、最
も望ましい成形材料はペレットである。ここでペレット
とは、一般的には押出機により樹脂とチョップド糸、も
しくは連続糸を供給し、押出機中で混練し、押出、ペレ
タイズすることによって得られたものを指し、ペレット
の長手方向の長さよりペレット中の繊維長さが短いもの
を指すが、しかしながらここでいうペレットには長繊維
ペレットも含まれる。長繊維ペレットとは、特公昭63
−37694号公報に示されるような、繊維がペレット
の長手方向にほぼ平行に配列し、ペレット中の繊維長さ
がペレット長さと同一もしくはそれ以上であるものを指
す。この場合、樹脂は繊維束中に含浸されていても、繊
維束表面に被覆されていても良い。以上のように、成形
材料としては特に樹脂が被覆された長繊維ペレットの場
合、繊維束には被覆されたものと同じ、あるいは被覆さ
れたものより低分子量の樹脂があらかじめ含浸されてい
ても良い。例えば、被覆されたものがポリアミド樹脂の
場合、繊維束に低分子量ポリアミド、エポキシ、テルペ
ン・フェノールなどが含浸されていても良い。前述のペ
レットの中でも、請求項1に記載の(数式1)を満たす
には、長繊維ペレットが成形材料として特に望ましい。
The fiber-reinforced resin molded product of the present invention is molded by injection molding, press molding, transfer molding, or the like. The most desirable molding method is injection molding with high productivity. The form of the molding material may be pellet, BM
C, SMC, stampable sheet and the like can be mentioned, and the most desirable molding material is pellet. Here, the pellet generally refers to one obtained by supplying a resin and chopped yarn or a continuous yarn by an extruder, kneading in an extruder, extruding, and pelletizing, and in a longitudinal direction of the pellet. It refers to one in which the fiber length in the pellet is shorter than the length, but the pellet referred to here also includes a long fiber pellet. What is long fiber pellets?
As shown in JP-A-37694, the fibers are arranged substantially parallel to the longitudinal direction of the pellet, and the fiber length in the pellet is equal to or longer than the pellet length. In this case, the resin may be impregnated in the fiber bundle or may be coated on the surface of the fiber bundle. As described above, as a molding material, especially in the case of a long fiber pellet coated with a resin, the fiber bundle may be previously impregnated with a resin having the same or lower molecular weight than the coated one. . For example, when the coated material is a polyamide resin, the fiber bundle may be impregnated with a low molecular weight polyamide, epoxy, terpene / phenol, or the like. Among the above-mentioned pellets, long fiber pellets are particularly desirable as a molding material in order to satisfy (Equation 1).

【0015】ペレットを使った射出成形による繊維強化
樹脂成形品において、前述の(数式1)の値の範囲を達
成するためには、特に成形条件、および射出成形機、金
型の影響を考慮しなければならない。成形条件に関して
いえば、背圧が低いほど、射出速度が遅いほど、スクリ
ュー回転数が遅いほどがlwaが長くなる傾向があり、
特に背圧は計量性が不安定にならない程度にできるだけ
低く設定するのが望ましい。望ましい背圧は1〜10k
gf/cm2である。射出成形機については、ノズル径
が太いほど、スクリュー溝深さが深いほど、圧縮比が低
いほどlwaが長くなる傾向がある。金型については、
スプルー径を大きくするほど、ゲート径を大きくするほ
どlwaが長くなる傾向がある。これらの因子、および
Wfを組み合わせることにより、請求項1に記載の(数
式1)の値の範囲に制御することが可能となる。
In order to attain the above-mentioned range of the value of (Equation 1) in a fiber-reinforced resin molded product obtained by injection molding using pellets, in particular, the effects of molding conditions, an injection molding machine, and a mold are taken into consideration. There must be. As for the molding conditions, the lower the back pressure, the lower the injection speed, and the lower the screw rotation speed, the longer the lwa tends to be,
In particular, it is desirable to set the back pressure as low as possible so as not to make the measuring property unstable. Desirable back pressure is 1-10k
gf / cm 2 . As for the injection molding machine, lwa tends to increase as the nozzle diameter increases, as the screw groove depth increases, and as the compression ratio decreases. For the mold,
As the sprue diameter increases and the gate diameter increases, lwa tends to increase. By combining these factors and Wf, it is possible to control the value within the range of (Equation 1).

【0016】(数式1)において、Wfが8重量%以上
70重量%以下、もしくはlwaが0.1mm以上10
mm以下である場合、強度、剛性、耐衝撃性等の力学的
特性が最も適正なバランスで両立できるだけでなく、繊
維強化樹脂成形品を成形する際の成形性に特別に優れる
ので望ましい。更に望ましくは、Wfが10重量%以上
45重量%以下、且つlwaが0.2mm以上7mm以
下である。
In the formula (1), Wf is not less than 8 wt% and not more than 70 wt%, or lwa is not less than 0.1 mm and not more than 10 wt%.
When it is less than mm, it is desirable because not only mechanical properties such as strength, rigidity and impact resistance can be achieved in the most appropriate balance, but also the moldability when molding a fiber-reinforced resin molded article is particularly excellent. More preferably, Wf is 10% by weight or more and 45% by weight or less, and lwa is 0.2 mm or more and 7 mm or less.

【0017】本発明の繊維強化樹脂成形品を成形するに
は、(数式2)の値が20以上1000以下である成形
材料を用いるのがよい。ここで、lwbは成形材料中に
含まれる繊維の重量平均繊維長(mm)、Wfは繊維含
有率(重量%)を示し、Σは成形材料中に含有される繊
維の種類が複数である場合、それぞれの繊維について括
弧内の値を合計することを意味する。(数式2)の値が
1000を越えると、成形工程における材料の流動性が
著しく低下し、成形性が大きく損なわれる。例えば、射
出成形の場合は、外観が悪くなるだけではなく、ゲート
詰まり等により射出成形自体すら困難な状態に陥る。ま
た、プレス成形やトランスファー成形の場合は、成形の
賦形性が大きく損なわれ、繊維強化樹脂成形品中にボイ
ド等の欠陥が導入されるだけでなく、繊維分散が不均一
になり、成形品の異方性が大となる。一方、(数式2)
の値が20未満だと、成形品において、(数式1)の値
が7以上を維持することが困難となり、所望の繊維強化
樹脂成形品を得にくくなる。成形材料における(数式
2)の値の好ましい範囲は、25以上800以下であ
る。(数式2)の値の更に好ましい範囲は30以上60
0以下である。
In order to mold the fiber-reinforced resin molded article of the present invention, it is preferable to use a molding material having a value of (Equation 2) of from 20 to 1,000. Here, lwb represents the weight average fiber length (mm) of the fibers contained in the molding material, Wf represents the fiber content (% by weight), and Δ represents the case where there are a plurality of types of fibers contained in the molding material. , Means summing the values in parentheses for each fiber. If the value of (Formula 2) exceeds 1000, the fluidity of the material in the molding step is significantly reduced, and the moldability is greatly impaired. For example, in the case of injection molding, not only the appearance deteriorates, but also the injection molding itself becomes difficult due to clogging of the gate and the like. In the case of press molding or transfer molding, the shapeability of the molding is greatly impaired, and not only defects such as voids are introduced into the fiber-reinforced resin molded product, but also the fiber dispersion becomes non-uniform. Becomes large. On the other hand, (Equation 2)
Is less than 20, it is difficult to maintain the value of (Formula 1) at 7 or more in the molded product, and it is difficult to obtain a desired fiber-reinforced resin molded product. The preferable range of the value of (Formula 2) in the molding material is 25 or more and 800 or less. The more preferable range of the value of (Equation 2) is 30 or more and 60 or more.
0 or less.

【0018】特に繊維強化樹脂成形品を射出成形にて成
形する場合、成形時の成形材料の流動性が著しく劣る
と、フローマークや繊維の浮き等の発生により表面平滑
性が損われると共に、ウェルドラインも目立ち、外観性
が悪い。更に、ゲート詰まり等により射出成形が困難な
状態に陥るため、(数式2)の値の範囲が30以上60
0以下の繊維を含有する成形材料を用いるのがより好ま
しい。
In particular, when a fiber-reinforced resin molded article is molded by injection molding, if the fluidity of the molding material during molding is extremely poor, the surface smoothness is impaired due to the occurrence of flow marks, floating of fibers, etc. The lines are conspicuous and the appearance is poor. Further, since the injection molding becomes difficult due to clogging of the gate or the like, the range of the value of (Equation 2) is 30 to 60.
It is more preferable to use a molding material containing 0 or less fibers.

【0019】本発明で使用される樹脂は、熱可塑性、熱
硬化性のどちらでも良いが、望ましくは、耐衝撃性によ
り優れ、且つ射出成形が可能な熱可塑性樹脂がよい。例
えば、ポリエチレンテレフタレートやポリブチレンテレ
フタレート等のポリエステル、液晶ポリエステル、ポリ
エチレンやポリプロピレンやポリブチレン等のポリオレ
フィン、ポリオキシメチレン、ポリアミド、ポリカーボ
ネイト、ポリスチレン、スチレン・アクリロニトリル共
重合体、アクリロニトリル・ブタジエン・スチレン共重
合体、アクリレート・スチレン・アクリロニトリル共重
合体、ポリメチレンメタクリレート、ポリ塩化ビニル、
ポリフェニレンスルフィド、ポリフェニレンエーテル、
ポリイミド、ポリアミドイミド、ポリエーテルイミド、
ポリスルホン、ポリエーテルスルホン、ポリエーテルケ
トン、ポリエーテルエーテルケトン等であり、これらの
共重合体、変性体、および2種類以上ブレンドした樹脂
も含まれる。また、更に耐衝撃性向上のために、上記樹
脂にエラストマー、もしくはゴム成分を添加した樹脂も
含まれる。
The resin used in the present invention may be either thermoplastic or thermosetting. Desirably, a thermoplastic resin having excellent impact resistance and capable of injection molding is preferred. For example, polyesters such as polyethylene terephthalate and polybutylene terephthalate, liquid crystal polyesters, polyolefins such as polyethylene and polypropylene and polybutylene, polyoxymethylene, polyamide, polycarbonate, polystyrene, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer, Acrylate / styrene / acrylonitrile copolymer, polymethylene methacrylate, polyvinyl chloride,
Polyphenylene sulfide, polyphenylene ether,
Polyimide, polyamide imide, polyether imide,
Examples thereof include polysulfone, polyether sulfone, polyether ketone, and polyether ether ketone, and also include copolymers, modified products thereof, and resins in which two or more kinds are blended. Further, in order to further improve impact resistance, a resin obtained by adding an elastomer or a rubber component to the above resin is also included.

【0020】本発明における繊維強化樹脂成形品は、強
度、剛性、耐衝撃性を兼ねそなえているので、従来の成
形品より肉厚を小さくすることが可能であり、肉厚が4
mm以下の薄肉成形品として用いるのが最適である。好
ましくは、肉厚3mm以下の薄肉成形品として用いるの
が本発明の効果をより発揮できる。更に好ましくは、肉
厚2mm以下の薄肉成形品として用いるのがよい。ここ
でいう成形品の肉厚とは、成形品のうち、リブ部分やボ
ス部分などの突起物などを除いた平板部分の肉厚を指
す。
Since the fiber-reinforced resin molded article of the present invention has both strength, rigidity and impact resistance, it can be made thinner than a conventional molded article, and has a thickness of 4 times.
Optimally, it is used as a thin molded product having a thickness of not more than mm. Preferably, the effect of the present invention can be further exhibited when used as a thin molded product having a thickness of 3 mm or less. More preferably, it is used as a thin molded product having a thickness of 2 mm or less. Here, the thickness of the molded product refers to the thickness of a flat portion of the molded product excluding protrusions such as a rib portion and a boss portion.

【0021】本発明で使用する繊維は、PAN系、ピッ
チ系、レーヨン系等の炭素繊維、S−ガラス、E−ガラ
ス等のガラス繊維、アラミド繊維の他にボロン繊維やシ
リコンカーバイド繊維やシリコンナイトライド繊維など
の無機繊維、ステンレス鋼繊維や銅繊維等の金属繊維、
ポリステル繊維やナイロン繊維やポリフェニレンサルフ
ァイド繊維等の有機繊維であり、これらにニッケルや銅
等の金属被覆等の後加工を加えた繊維やこれらを2種類
以上ブレンドした繊維も含まれる。上記強化繊維は、シ
ランカップリング剤、アルミネートカップリング剤、チ
タネートカップリング剤等で表面処理、ウレタン系樹
脂、エポキシ系樹脂、ポリエステル系樹脂、スチレン系
樹脂、オレフィン系樹脂、アミド系樹脂で集束処理され
ていてもよい。
The fibers used in the present invention include carbon fibers such as PAN, pitch and rayon, glass fibers such as S-glass and E-glass, and aramid fibers, as well as boron fibers, silicon carbide fibers and silicon nitride. Inorganic fibers such as ride fibers, metal fibers such as stainless steel fibers and copper fibers,
Organic fibers such as polyester fibers, nylon fibers, and polyphenylene sulfide fibers, and include fibers obtained by applying post-processing such as metal coating such as nickel and copper, and fibers obtained by blending two or more of these. The above reinforcing fibers are surface-treated with silane coupling agent, aluminate coupling agent, titanate coupling agent, etc., and bundled with urethane resin, epoxy resin, polyester resin, styrene resin, olefin resin, amide resin. It may have been processed.

【0022】強化繊維として望ましくは、強度、剛性、
耐衝撃性を兼ねそなえ、且つ軽量で、導電性付与による
電磁波シールド効果も期待できる炭素繊維を用いるのが
がよい。この場合、炭素繊維には金属が被覆されていて
もよいし、被覆のあるものと無いものを併用してもよ
い。強化繊維として炭素繊維を用いた場合、請求項1の
条件を満たす樹脂成形品は、体積固有抵抗が5Ωcm以
下の高い導電性を有し、電磁波シールド材として好適で
ある。なお、炭素繊維に被覆する金属は、ニッケル、
銅、銀、金等が挙げられ、これらのうち1層または複数
層を被覆するのがよい。
Desirably, the reinforcing fibers have strength, rigidity,
It is preferable to use carbon fiber which has both impact resistance, is lightweight, and can be expected to have an electromagnetic wave shielding effect by imparting conductivity. In this case, the carbon fiber may be coated with a metal, or a carbon fiber with and without a coating may be used in combination. When carbon fiber is used as the reinforcing fiber, a resin molded product satisfying the condition of claim 1 has high conductivity with a volume resistivity of 5 Ωcm or less, and is suitable as an electromagnetic wave shielding material. The metal coated on the carbon fiber is nickel,
Copper, silver, gold and the like can be mentioned, and it is preferable to coat one or more layers among them.

【0023】炭素繊維を使用して、請求項1に記載の
(数式1)の値の範囲に制御するためには、引張破断伸
度が1.5%以上、より望ましくは、引張破断伸度が
1.7%以上、更に望ましくは引張破断伸度が1.9%
以上の炭素繊維を用いるのがよい。その理由は、破断伸
度が高いほど、成形工程で炭素繊維が切れにくく、(数
式1)におけるlwaが大きくなるので、より小さいW
fで所望の値を達成できるためである。破断伸度に特に
上限はないが、一般的には3%未満である。前記炭素繊
維としては、引張強度と弾性率とのバランスに優れるP
AN系炭素繊維が望ましい。また、本発明の繊維強化樹
脂成形品には、その目的に応じて、チタン酸カリウム、
酸化チタン等の無機ウィスカー、カーボンブラック、金
属粉、金属フレーク、ガラスビーズ、ガラスバルーン、
ガラスフレーク、タルク、マイカ、クレー、シリカ、炭
酸カルシウム、ウオラステナイト、高分子粒子等の任意
の充填剤を使用してもよい。これらに導電体被覆、表面
改質、ドーピング等の任意の処理がなされていてもよ
い。
In order to control the value within the range of the expression (1) according to claim 1, the tensile elongation at break is 1.5% or more, more preferably, the elongation at break. Is 1.7% or more, and more desirably, the tensile elongation at break is 1.9%.
It is preferable to use the above carbon fibers. The reason is that the higher the elongation at break, the more difficult the carbon fiber is to be cut in the forming step, and the larger the lwa in (Formula 1), the smaller the W
This is because a desired value can be achieved with f. The elongation at break has no particular upper limit, but is generally less than 3%. As the carbon fiber, P having an excellent balance between tensile strength and elastic modulus is used.
AN-based carbon fibers are desirable. Further, the fiber-reinforced resin molded article of the present invention, depending on the purpose, potassium titanate,
Inorganic whiskers such as titanium oxide, carbon black, metal powder, metal flakes, glass beads, glass balloons,
Any filler such as glass flakes, talc, mica, clay, silica, calcium carbonate, wollastenite, polymer particles and the like may be used. These may be subjected to any treatment such as conductor coating, surface modification, and doping.

【0024】導電性付与のためには、導電体で被覆され
たチタン酸カリウムウイスカー、カーボンブラック、金
属粉、金属フレーク等の導電性付与剤を用いるのが好適
である。外観向上のためには、チタン酸カリウム、酸化
チタン、ガラスビーズ、ガラスバルーン、ガラスフレー
ク等の充填による表面粗さの均一化が好適である。ま
た、収縮異方性に起因する成形品のソリ等の防止には、
チタン酸カリウム、酸化チタン、タルク、マイカ、クレ
ー、高分子粒子等の充填による収縮異方性の緩和が好適
である。
For imparting conductivity, it is preferable to use a conductivity-imparting agent such as potassium titanate whisker, carbon black, metal powder, metal flakes and the like coated with a conductor. In order to improve the appearance, it is preferable to make the surface roughness uniform by filling with potassium titanate, titanium oxide, glass beads, glass balloons, glass flakes, and the like. In addition, in order to prevent warpage of molded products due to shrinkage anisotropy,
Relaxation of shrinkage anisotropy by filling with potassium titanate, titanium oxide, talc, mica, clay, polymer particles and the like is preferable.

【0025】本発明における薄肉成形品の用途として
は、強度、剛性、耐衝撃性が求められる電子・電気機器
用部品、特に軽量化の要求が高い携帯用の電子・電気機
器のハウジング、ケーシングが挙げられる。より具体的
には、ノート型パソコン、携帯用電話機、PHS、PD
A(電子手帳等の携帯情報端末)、ビデオカメラ、携帯
用ラジオカセット再生機等のハウジング、ケーシングで
ある。また、特に米国で繊維強化樹脂成形品を用いる場
合には、板厚1/32インチにおいてUL規格における
V−0以上の難燃性を有するのが望ましい。
The thin-walled molded product of the present invention is used for parts for electronic and electric equipment which are required to have strength, rigidity and impact resistance, especially for housings and casings of portable electronic and electric equipment which are required to be light in weight. No. More specifically, notebook computers, mobile phones, PHS, PD
A (a portable information terminal such as an electronic organizer), a video camera, a housing and a casing of a portable radio cassette player, and the like. In particular, when a fiber-reinforced resin molded product is used in the United States, it is desirable that a 1/32 inch plate thickness has a flame retardancy of V-0 or more in UL standard.

【0026】本発明における繊維強化樹脂成形品を射出
成形にて成形する場合、前述の通り射出する樹脂組成物
が流動性に劣ると表面平滑性、外観性が損なわれるた
め、本発明で用いる樹脂は低粘度なものが好適である。
具体的には、成形温度での溶融粘度が10000ポイズ
(Poise)以下、好ましくは5000ポイズ以下、
更に好ましくは3000ポイズ以下のものがよい。ここ
では溶融粘度は、ビカット軟化温度(JIS K720
6)、あるいはDSCにより求められる融点より30℃
高い温度において、圧力20kgf/cm2にて、ノズ
ル半径0.5mm、ノズル長さ1.0mmの高化式フロ
ーテスターにより測定されるものを指す。
When the fiber-reinforced resin molded article of the present invention is molded by injection molding, as described above, if the resin composition to be injected is poor in fluidity, the surface smoothness and appearance are impaired. Is preferably low in viscosity.
Specifically, the melt viscosity at the molding temperature is 10,000 poises or less, preferably 5000 poises or less,
More preferably, those having 3000 poises or less are good. Here, the melt viscosity is determined by the Vicat softening temperature (JIS K720).
6) or 30 ° C from the melting point determined by DSC
It refers to a value measured by a Koka type flow tester having a nozzle radius of 0.5 mm and a nozzle length of 1.0 mm at a high temperature and a pressure of 20 kgf / cm 2 .

【0027】本発明で用いるマトリックス樹脂として
は、樹脂と繊維の界面接着性の面からポリアミド樹脂が
望ましい。ポリアミド樹脂とは、例えばナイロン4、ナ
イロン6、ナイロン66、ナイロン10、ナイロン1
1、ナイロン12、ナイロン46等の脂肪族ナイロン、
ポリヘキサジアミンテレフタルアミド、ポリヘキサメチ
レンジアミンイソフタル酸アミド、キシレン基含有ポリ
アミド等の芳香族ナイロン、およびそれらの共重合体、
変性体、および2種類以上ブレンドした樹脂等を意味す
る。
The matrix resin used in the present invention is preferably a polyamide resin from the viewpoint of the interfacial adhesion between the resin and the fiber. The polyamide resin is, for example, nylon 4, nylon 6, nylon 66, nylon 10, nylon 1
Aliphatic nylons such as 1, nylon 12, nylon 46,
Aromatic nylons such as polyhexadiamine terephthalamide, polyhexamethylene diamine isophthalamide, xylene group-containing polyamide, and copolymers thereof,
It means a modified product, a resin blended with two or more kinds, and the like.

【0028】また、本発明の繊維強化樹脂成形品に、そ
の目的に応じて、難燃剤、難燃助剤、顔料、染料、滑
剤、離型剤、可塑剤、熱安定剤、酸化防止剤、紫外線吸
収剤、流動性改質剤、発泡剤、帯電防止剤等の任意の添
加剤を使用してもよい。
The fiber-reinforced resin molded article of the present invention may further contain, depending on its purpose, a flame retardant, a flame retardant auxiliary, a pigment, a dye, a lubricant, a release agent, a plasticizer, a heat stabilizer, an antioxidant, Optional additives such as an ultraviolet absorber, a fluidity modifier, a foaming agent, and an antistatic agent may be used.

【0029】[0029]

【実施例】以下実施例によって本発明を更に詳細に説明
するが、下記実施例は本発明を制限するものではなく、
前・後記の主旨を逸脱しない範囲で変更実施すること
は、全て本発明の技術範囲に包含される。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which do not limit the present invention.
Modifications and alterations that do not depart from the gist of the preceding and following descriptions are all included in the technical scope of the present invention.

【0030】本実施例で用いたlwa(又はlwb)
は、前記の通りの分析・測定法を採用した。但し、溶解
はそれぞれに適した溶剤中に繊維強化樹脂成形品(又は
成形材料)を25℃にて少なくとも6時間以上浸漬させ
ることにより行い、濾過は、濾紙(JIS P3801
3種)を用いて無加圧にて行った。
The lwa (or lwb) used in this embodiment
Used the analysis and measurement method as described above. However, the dissolution is performed by immersing the fiber-reinforced resin molded product (or molding material) in a suitable solvent at 25 ° C. for at least 6 hours or more, and the filtration is performed using a filter paper (JIS P3801).
(3 types) under no pressure.

【0031】εについては、用いた商品のカタログ値を
引用した。
For ε, the catalog value of the product used was quoted.

【0032】耐衝撃性については、実際の成形品の耐衝
撃性を最も忠実に再現すると推定されるダインスタット
衝撃値(表1中ではDYと表記)で代表させる。試験
は、10kg・cmダインスタット衝撃試験機を用いて
行った。本実施例では、幅300mm×長さ210mm
×厚さ1.3mmの成形品から幅10mm×長さ15m
m×厚さ1.3mmの試験片を同一箇所から切り出して
試験に供した。試験機の設計上、打撃中心点からクラン
プ部までの距離Lは5.0mmとした。
The impact resistance is represented by a Dynestat impact value (denoted as DY in Table 1) which is estimated to most accurately reproduce the impact resistance of an actual molded product. The test was performed using a 10 kg · cm dynestat impact tester. In this embodiment, width 300 mm × length 210 mm
X 10mm width x 15m length from molded product of 1.3mm thickness
A test piece of mx 1.3 mm in thickness was cut out from the same place and used for the test. Due to the design of the testing machine, the distance L from the center point of the impact to the clamp was 5.0 mm.

【0033】強度、および弾性率(表1中ではσ、Eと
表記)については、3点曲げ試験(ASTM D79
0)による値で代表させた。試験は、万能試験機を用い
て、スパン間距離L/厚さD=16にて行った。試験片
寸法は、幅12.7mm×長さ101.6mm×厚さ
6.4mmとした。
Regarding the strength and the elastic modulus (denoted by σ and E in Table 1), a three-point bending test (ASTM D79)
0). The test was performed using a universal testing machine at a distance between spans L / thickness D = 16. The test piece dimensions were 12.7 mm in width × 101.6 mm in length × 6.4 mm in thickness.

【0034】体積固有抵抗(表1中ではVRと表記)に
ついては、試験片寸法は、幅12.7mm×長さ60m
m×厚さ2mmの試験片を用いて測定した。まず幅×厚
さ面に導電性ペーストを塗布し、その面を電極に圧着し
て電極間の抵抗値を測定する。その測定値に導電性ペー
スト塗布面の面積を乗じ、次いで試験片長さで除したも
のを体積固有抵抗値とした。
With respect to the volume resistivity (represented by VR in Table 1), the dimensions of the test piece were 12.7 mm in width × 60 m in length.
It measured using the test piece of mx 2 mm in thickness. First, a conductive paste is applied to the width × thickness surface, and the surface is pressed against the electrodes, and the resistance value between the electrodes is measured. The measured value was multiplied by the area of the conductive paste application surface, and then divided by the length of the test piece to obtain a volume resistivity value.

【0035】(実施例1〜8)溶融した樹脂を押出機を
用いて押し出し、その先端に取り付けたクロスヘッドダ
イ中に繊維束を連続して供給することによって溶融樹脂
を繊維束に含浸させ、繊維強化樹脂ストランドを引き抜
き成形する。前記ストランドを切断して長繊維ペレット
を得る。用いた樹脂および繊維の種類、繊維長、繊維含
有率は表1に示した通り。
(Examples 1 to 8) The molten resin was extruded using an extruder, and the fiber bundle was impregnated into the fiber bundle by continuously feeding the fiber bundle into a crosshead die attached to the tip of the extruder. The fiber reinforced resin strand is drawn and formed. The strand is cut to obtain a long fiber pellet. The type of resin and fiber used, fiber length, and fiber content are as shown in Table 1.

【0036】得られたペレットを100℃にて5時間以
上真空中で乾燥させた後、射出成形機により、シリンダ
温度290℃、金型温度80℃にて、ダインスタット衝
撃値評価試験片切り出し用繊維強化樹脂成形品、3点曲
げ評価用繊維強化樹脂成形品、および体積固有抵抗評価
用繊維強化樹脂成形品を射出成形した。評価結果を表1
に示す。いずれの材料も強度、剛性が高く、且つダイン
スタット衝撃値も高い。強化繊維として炭素繊維を用い
た場合は体積固有抵抗値は全て5Ω・cm以下で、高い
電磁波遮蔽効果が期待される。また、成形性はどれも良
好で、繊維強化樹脂成形品の外観についても良好であっ
た。
After the obtained pellets were dried in vacuum at 100 ° C. for 5 hours or more, they were cut by an injection molding machine at a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C. for the purpose of cutting out a test piece for evaluating a Dynestat impact value. A fiber reinforced resin molded product, a three-point bending evaluation fiber reinforced resin molded product, and a volume specific resistance evaluation fiber reinforced resin molded product were injection molded. Table 1 shows the evaluation results.
Shown in All of the materials have high strength and rigidity, and also have high Dynestat impact values. When carbon fibers are used as the reinforcing fibers, the volume specific resistance values are all 5 Ω · cm or less, and a high electromagnetic wave shielding effect is expected. In addition, the moldability was all good, and the appearance of the fiber-reinforced resin molded product was also good.

【0037】(実施例9)溶融した樹脂上に10mmに
カットした繊維をランダムに配向させた後、プレスする
ことにより樹脂を繊維に含浸させてスタンパブルシート
を得た。樹脂および繊維の種類、その成形品中の繊維含
有率は表1に示した通り。
Example 9 After a fiber cut into a length of 10 mm was randomly oriented on a melted resin, the fiber was impregnated with the resin by pressing to obtain a stampable sheet. The types of resin and fiber, and the fiber content in the molded product are as shown in Table 1.

【0038】得られたスタンパブルシートを100℃に
て5時間以上真空中で乾燥させた後、金型温度275℃
にて、ダインスタット衝撃値評価試験片切り出し用繊維
強化樹脂成形品、3点曲げ評価用繊維強化樹脂成形品、
および体積固有抵抗評価用繊維強化樹脂成形品をプレス
成形した。評価結果を表1に示す。強度・剛性が高く、
且つダインスタット衝撃値も非常に高い。体積固有抵抗
値も0.1Ω・cmで、非常に高い電磁波遮蔽効果が期
待されれる。また、繊維強化樹脂成形品の外観も良好で
あった。
After the obtained stampable sheet was dried in vacuum at 100 ° C. for 5 hours or more, the mold temperature was 275 ° C.
, Dine Stat impact value evaluation test fiber cutout fiber reinforced resin molded product, 3-point bending evaluation fiber reinforced resin molded product,
In addition, a fiber-reinforced resin molded product for volume specific resistance evaluation was press-molded. Table 1 shows the evaluation results. High strength and rigidity,
In addition, the Dynestat impact value is very high. Since the volume resistivity is also 0.1 Ω · cm, a very high electromagnetic wave shielding effect is expected. The appearance of the fiber-reinforced resin molded product was also good.

【0039】(比較例1〜5)押出機中の溶融している
樹脂中に、サイドフィーダーを用いて繊維束を連続して
供給することによりコンパウンドペレットを得た。樹脂
および繊維の種類、その成形品中の繊維長、繊維含有率
は表1に示した通り。実施例1〜8と同様に、得られた
ペレットを100℃にて5時間以上真空中で乾燥させた
後、射出成形機により、シリンダ温度290℃、金型温
度80℃にて、ダインスタット衝撃値評価試験片切り出
し用繊維強化樹脂成形品、3点曲げ評価用繊維強化樹脂
成形品、および体積固有抵抗評価用繊維強化樹脂成形品
を射出成形した。評価結果を表1に示す。実施例1〜8
に比較して強度・剛性はほぼ同等の値を示すものの、ダ
インスタット衝撃値は著しく劣る。また、体積固有抵抗
も高く、高い電磁波遮蔽効果は期待できない。
(Comparative Examples 1 to 5) Compound pellets were obtained by continuously feeding a fiber bundle into a molten resin in an extruder using a side feeder. The types of resin and fiber, the fiber length in the molded product, and the fiber content are as shown in Table 1. The obtained pellets were dried in vacuum at 100 ° C. for 5 hours or more in the same manner as in Examples 1 to 8, and then subjected to a Dine stat impact using an injection molding machine at a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C. A fiber reinforced resin molded product for cutting out a value evaluation test piece, a fiber reinforced resin molded product for three-point bending evaluation, and a fiber reinforced resin molded product for volume specific resistance evaluation were injection molded. Table 1 shows the evaluation results. Examples 1 to 8
Although the strength and rigidity show almost the same values as those of the above, the Dynstat impact value is remarkably inferior. In addition, the volume resistivity is high, and a high electromagnetic wave shielding effect cannot be expected.

【0040】(比較例6)溶融した樹脂を押出機を用い
て押し出し、その先端に取り付けたクロスヘッドダイ中
に繊維束を連続して供給することによって溶融樹脂を繊
維束に含浸させ、繊維強化樹脂ストランドを引き抜き成
形する。前記ストランドを切断して長繊維ペレットを得
る。用いた樹脂および繊維の種類、繊維長、繊維含有率
は表1に示した通り。
Comparative Example 6 The molten resin was extruded using an extruder, and the fiber bundle was continuously impregnated with the fiber bundle by continuously feeding the fiber bundle into a crosshead die attached to the tip of the extruder, thereby reinforcing the fiber. The resin strand is drawn and formed. The strand is cut to obtain a long fiber pellet. The type of resin and fiber used, fiber length, and fiber content are as shown in Table 1.

【0041】得られたペレットを100℃にて5時間以
上真空中で乾燥させた後、射出成形機により、シリンダ
温度290℃、金型温度80℃にて射出成形した。実施
例1〜8に比較して成形性に著しく劣り、金型のゲート
に成形材料が詰まる等の問題が頻繁に生じ、生産性に非
常に劣った。また、外観に優れた成形品を得ることはで
きなかった。
After the obtained pellets were dried in vacuum at 100 ° C. for 5 hours or more, they were injection-molded by an injection molding machine at a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C. As compared with Examples 1 to 8, the moldability was remarkably inferior, problems such as the molding material clogging the mold gate frequently occurred, and the productivity was extremely inferior. In addition, a molded article excellent in appearance could not be obtained.

【0042】[0042]

【表1】 表1における樹脂、繊維の表記は下記に準じる。[Table 1] The notation of resin and fiber in Table 1 conforms to the following.

【0043】N6:ナイロン6樹脂[東レ(株)製アミ
ランCM1010] N66:ナイロン66樹脂[東レ(株)製アミランCM
3007] N6/66:ナイロン6樹脂(95%)とナイロン66
樹脂(5%)の共重合樹脂[東レ(株)製アミランCM
6011] N66/6:ナイロン66樹脂(90%)とナイロン6
樹脂(10%)の共重合樹脂[東レ(株)製アミランC
M3301L] PC/ABS:ポリカーボネイト樹脂+ABS樹脂[帝
人化成(株)製マルチロンT−1000] PC/ABS+E:ポリカーボネイト樹脂+ABS樹脂
[帝人化成(株)製マルチロンT−1000]90wt
%とエラストマー[東レ・デュポン(株)製ハイトレ
ル]10wt%を溶融押出にてブレンドした樹脂 CF1:炭素繊維[東レ(株)製トレカT700S、ε
=2.1%] CF2:炭素繊維[東レ(株)製トレカT300、ε=
1.5%] GF:ガラス繊維[日本電気硝子(株)製ER115
0]
N6: Nylon 6 resin [Amilan CM1010 manufactured by Toray Industries, Inc.] N66: Nylon 66 resin [Amilan CM manufactured by Toray Industries, Inc.]
3007] N6 / 66: Nylon 6 resin (95%) and Nylon 66
Resin (5%) [Amilan CM manufactured by Toray Industries, Inc.
6011] N66 / 6: Nylon 66 resin (90%) and Nylon 6
Resin (10%) [Amilan C manufactured by Toray Industries, Inc.
M3301L] PC / ABS: Polycarbonate resin + ABS resin [Multilon T-1000 manufactured by Teijin Chemicals Ltd.] PC / ABS + E: Polycarbonate resin + ABS resin [Multilon T-1000 manufactured by Teijin Chemicals Ltd.] 90 wt
% And an elastomer [Hytrel manufactured by Toray Dupont Co., Ltd.] 10 wt% blended by melt extrusion CF1: Carbon fiber [Trayca T700S, ε manufactured by Toray Co., Ltd.
= 2.1%] CF2: carbon fiber [Toray Corp. trading card T300, ε =
1.5%] GF: Glass fiber [ER115 manufactured by NEC Corporation
0]

【0044】[0044]

【発明の効果】本発明の繊維強化樹脂成形品は強度、剛
性、耐衝撃性を兼ねそなえており、成形品を得るのも効
率的に行える。このような成形品は、ハウジング、ケー
シングを始め、強度、剛性、耐衝撃性を必要とする幅広
い産業分野に好適である。更に炭素繊維により強化した
場合、強度、剛性、耐衝撃性に加え、導電性付与による
電磁波シールド効果にも優れるため、特に電子機器類の
ハウジング、ケーシング等に好適であり、その工業的な
効果は大きい。
The fiber-reinforced resin molded article of the present invention has both strength, rigidity and impact resistance, and can be obtained efficiently. Such a molded product is suitable for a wide range of industrial fields requiring strength, rigidity, and impact resistance, including housings and casings. Further, when reinforced with carbon fiber, in addition to strength, rigidity and impact resistance, it is also excellent in electromagnetic wave shielding effect by imparting conductivity, so it is particularly suitable for housings and casings of electronic devices, and the industrial effect is large.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化樹脂成形品中に含有される繊維
が、下記(数式1)において7以上600以下の値を有
することを特徴とする繊維強化樹脂成形品。 (数式1) Σ(lwa×Wf) (ここで、lwaは繊維強化樹脂成形品中に含まれる繊
維の重量平均繊維長(mm)、Wfは繊維含有率(重量
%)を示し、Σは繊維強化樹脂成形品中に含有される繊
維の種類が複数である場合、それぞれの繊維について括
弧内の値を合計することを意味する。)
1. A fiber-reinforced resin molded product characterized in that the fiber contained in the fiber-reinforced resin molded product has a value of 7 or more and 600 or less in the following (Formula 1). (Formula 1) Σ (lwa × Wf) (where lwa is the weight average fiber length (mm) of the fiber contained in the fiber-reinforced resin molded product, Wf is the fiber content (% by weight), and Σ is the fiber When there are a plurality of types of fibers contained in the reinforced resin molded product, it means that the values in parentheses are totaled for each fiber.)
【請求項2】 下記(数式2)の値が20以上1000
以下である成形材料を用いて成形されたことを特徴とす
る請求項1に記載の繊維強化樹脂成形品。 (数式2) Σ(lwb×Wf) (ここで、lwbは成形材料中に含まれる繊維の重量平
均繊維長(mm)、Wfは繊維含有率(重量%)を示
し、Σは成形材料中に含有される繊維の種類が複数であ
る場合、それぞれの繊維について括弧内の値を合計する
ことを意味する。)
2. The value of the following (Formula 2) is 20 or more and 1000
The fiber-reinforced resin molded article according to claim 1, wherein the molded article is molded using the following molding material. (Formula 2) Σ (lwb × Wf) (where lwb is the weight average fiber length (mm) of the fibers contained in the molding material, Wf is the fiber content (% by weight), and Σ is the When there are a plurality of types of fibers contained, it means that the values in parentheses are totaled for each fiber.)
【請求項3】 熱可塑性樹脂成形材料を射出成形してな
る請求項1〜2のいずれかに記載の繊維強化熱可塑性樹
脂成形品。
3. The fiber-reinforced thermoplastic resin molded article according to claim 1, which is obtained by injection molding a thermoplastic resin molding material.
【請求項4】 成形品の肉厚が4mm以下であることを
特徴とする請求項1〜3のいずれかに記載の繊維強化樹
脂成形品。
4. The fiber-reinforced resin molded product according to claim 1, wherein the molded product has a thickness of 4 mm or less.
【請求項5】 繊維強化樹脂成形品中に炭素繊維が含ま
れることを特徴とする請求項1〜4のいずれかに記載の
繊維強化樹脂成形品。
5. The fiber-reinforced resin molded product according to claim 1, wherein carbon fiber is contained in the fiber-reinforced resin molded product.
【請求項6】 請求項5に記載の炭素繊維の引張破断伸
度が少なくとも1.5%以上であることを特徴とする請
求項1〜5のいずれかに記載の繊維強化樹脂成形品。
6. The fiber-reinforced resin molded article according to claim 1, wherein the carbon fiber according to claim 5 has a tensile elongation at break of at least 1.5% or more.
【請求項7】 用途が電子・電気機器用部品であること
を特徴とする請求項1〜6のいずれかに記載の繊維強化
樹脂成形品。
7. The fiber-reinforced resin molded article according to claim 1, wherein the molded article is used for parts for electronic and electric equipment.
【請求項8】 板厚1/32インチにおいて、UL規格
におけるV−0以上の難燃性を有することを特徴とする
請求項1〜7のいずれかに記載の繊維強化樹脂成形品。
8. The fiber-reinforced resin molded article according to claim 1, wherein the molded article has a flame retardancy of V-0 or more in UL standard at a thickness of 1/32 inch.
【請求項9】 マトリックス樹脂がポリアミド樹脂であ
ることを特徴とする請求項1〜8のいずれかに記載の繊
維強化熱可塑性樹脂成形品。
9. The fiber-reinforced thermoplastic resin molded article according to claim 1, wherein the matrix resin is a polyamide resin.
JP9358948A 1997-12-26 1997-12-26 Fiber reinforced resin molded product and its manufacture Pending JPH11188797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358948A JPH11188797A (en) 1997-12-26 1997-12-26 Fiber reinforced resin molded product and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358948A JPH11188797A (en) 1997-12-26 1997-12-26 Fiber reinforced resin molded product and its manufacture

Publications (1)

Publication Number Publication Date
JPH11188797A true JPH11188797A (en) 1999-07-13

Family

ID=18461949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358948A Pending JPH11188797A (en) 1997-12-26 1997-12-26 Fiber reinforced resin molded product and its manufacture

Country Status (1)

Country Link
JP (1) JPH11188797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001964A (en) * 2004-06-15 2006-01-05 Mitsubishi Rayon Co Ltd Thermoplastic resin molded product and thermoplastic resin composition
JP2008291192A (en) * 2007-05-28 2008-12-04 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced polyamide resin composition
JP2020180236A (en) * 2019-04-26 2020-11-05 東レプラスチック精工株式会社 Thermoplastic resin carbon fiber composite material and shielding member shielding millimeter waves

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001964A (en) * 2004-06-15 2006-01-05 Mitsubishi Rayon Co Ltd Thermoplastic resin molded product and thermoplastic resin composition
JP2008291192A (en) * 2007-05-28 2008-12-04 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced polyamide resin composition
JP2020180236A (en) * 2019-04-26 2020-11-05 東レプラスチック精工株式会社 Thermoplastic resin carbon fiber composite material and shielding member shielding millimeter waves

Similar Documents

Publication Publication Date Title
CN109691249B (en) Electronic equipment shell
JP5499512B2 (en) Polyamide resin composition and molded product using the same
JP2003012939A (en) Carbon-containing resin composition, molding material and molded product
JP6172279B2 (en) Crystalline polyamide resin composition
WO2012117975A1 (en) Injection formed body and fabrication method for same
JP2002088259A (en) Molding material, its manufacturing method and its molded article
JP2013177560A (en) Method for producing carbon fiber reinforced molded product, and carbon fiber reinforced molded product
WO1998021281A1 (en) Long glass fiber-reinforced conductive thermoplastic resin molding and process for preparing the same
JP5310296B2 (en) Pellet made of polyamide resin composition and flame-retardant resin molded product
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
JP4648052B2 (en) Heat treated carbon long fiber reinforced resin pellets
JPH11188797A (en) Fiber reinforced resin molded product and its manufacture
JPH08325385A (en) Carbon-fiber reinforced thermoplastic resin molding and its production
JP2000309060A (en) Long fiber reinforced molding material, and molded article thereof
JP2013117014A (en) Method for production of carbon fiber-reinforced molded article, and carbon fiber-reinforced molded article
JP5224686B2 (en) Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture
JPH11329078A (en) Conductive resin composition and its molding
JP2001131418A (en) Thermoplastic resin composition, molding material, pellet for injection molding and molded product
JPH08294918A (en) Raw material for manufacturing frtp product and manufacture thereof
JP2006278574A (en) Electromagnetic wave shield molding
JPH06240049A (en) Carbon-fiber-reinforced thermoplastic resin composition
JP2001129826A (en) Conductive fiber-reinforced molding material and manufacturing method therefor
JPH09286036A (en) Resin molded product
JP2003128799A (en) Carbon fiber for thermoplastic resin composition and thermoplastic resin composition produced by using the carbon fiber
JP3937560B2 (en) Discontinuous fiber reinforced resin molding material and molded product using the same