JP2020180236A - Thermoplastic resin carbon fiber composite material and shielding member shielding millimeter waves - Google Patents

Thermoplastic resin carbon fiber composite material and shielding member shielding millimeter waves Download PDF

Info

Publication number
JP2020180236A
JP2020180236A JP2019084996A JP2019084996A JP2020180236A JP 2020180236 A JP2020180236 A JP 2020180236A JP 2019084996 A JP2019084996 A JP 2019084996A JP 2019084996 A JP2019084996 A JP 2019084996A JP 2020180236 A JP2020180236 A JP 2020180236A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
carbon fiber
composite material
fiber composite
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019084996A
Other languages
Japanese (ja)
Other versions
JP7269788B2 (en
Inventor
是高 芹沢
Koretaka Serizawa
是高 芹沢
和彦 冨岡
Kazuhiko Tomioka
和彦 冨岡
弘晃 小路
Hiroaki Shoji
弘晃 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toray Plastics Precision Co Ltd
Original Assignee
Toray Industries Inc
Toray Plastics Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Toray Plastics Precision Co Ltd filed Critical Toray Industries Inc
Priority to JP2019084996A priority Critical patent/JP7269788B2/en
Publication of JP2020180236A publication Critical patent/JP2020180236A/en
Priority to JP2022205218A priority patent/JP7379649B2/en
Application granted granted Critical
Publication of JP7269788B2 publication Critical patent/JP7269788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

To provide a millimeter wave radar device which suppresses reception of millimeter waves reflected from other than a target obstacle, can control shielding performance of a shielding member mounted on a millimeter receiver, and improves detection accuracy.SOLUTION: A thermoplastic resin carbon composite material is composed of a thermoplastic resin carbon fiber composite material containing a thermoplastic resin and a carbon fiber, contains 5-50 wt.% of a carbon fiber, and shields millimeter waves having a ratio of carbon fibers with a fiber length of 0.01-0.5 mm of 60 wt.% or more in the total carbon fiber.SELECTED DRAWING: Figure 1

Description

本発明は、ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材およびそれを用いた遮蔽部材に関する。 The present invention relates to a thermoplastic resin carbon fiber composite material that shields millimeter waves and a shielding member using the same.

自動車やバイクなどの移動体の自動運転や衝突防止を目的としてミリ波レーダが利用されている。ミリ波レーダ装置は、自動車の外周周囲に取り付けられており、電波を送受信するアンテナが組み込まれた高周波モジュール、該電波を制御する制御回路、アンテナおよび制御回路を収納するハウジング、アンテナの電波の送受信を覆うレーダードームなどを備えている。 Millimeter-wave radar is used for the purpose of automatic driving of moving objects such as automobiles and motorcycles and collision prevention. The millimeter-wave radar device is mounted around the outer periphery of an automobile and has a high-frequency module incorporating an antenna for transmitting and receiving radio waves, a control circuit for controlling the radio waves, a housing for accommodating the antenna and the control circuit, and transmitting and receiving radio waves for the antenna. It is equipped with a radar dome that covers the area.

このように構成されたミリ波レーダ装置は、アンテナからミリ波を送受信することで、障害物との相対距離や相対速度等を検出することができ、自動車やバイクなどの移動体の自動運転や衝突防止に寄与する。 The millimeter-wave radar device configured in this way can detect the relative distance and relative speed to obstacles by transmitting and receiving millimeter waves from the antenna, and can automatically drive moving objects such as automobiles and motorcycles. Contributes to collision prevention.

ただし、ミリ波を受信するアンテナは、目的とする障害物以外の路面などに反射したものも受信するため、装置の検出精度が低下することがある。 However, since the antenna that receives the millimeter wave also receives the antenna that is reflected on the road surface other than the target obstacle, the detection accuracy of the device may decrease.

このような問題を解決するため、特許文献1のミリ波レーダ装置では、アンテナと制御
回路との間に電波を遮蔽する遮蔽部材を設けている。遮蔽部材として、レーダードームよりも誘電損失の大きい誘電損失層または磁気損失層のいずれかの層に導電体層を積層させている電波吸収材を使用することが開示されている。さらに前記誘電損失層として、カーボンナノチューブ、カーボンマイクロコイル、シュンガイトカーボン、カーボンブラック、膨張黒鉛、カーボンファイバーのうちの少なくとも一つから選択されたカーボン材料からなるものが開示されている。
In order to solve such a problem, the millimeter wave radar device of Patent Document 1 is provided with a shielding member that shields radio waves between the antenna and the control circuit. It is disclosed that as a shielding member, a radio wave absorber in which a conductor layer is laminated on either a dielectric loss layer or a magnetic loss layer having a larger dielectric loss than a radar dome is used. Further, as the dielectric loss layer, one made of a carbon material selected from at least one of carbon nanotubes, carbon microcoils, shungite carbon, carbon black, expanded graphite, and carbon fibers is disclosed.

また、特許文献2には、熱可塑性樹脂中の炭素繊維の繊維長の長短と濃度によって、電波遮蔽性を高める方法が開示されている。 Further, Patent Document 2 discloses a method of improving radio wave shielding property by adjusting the length and concentration of carbon fibers in a thermoplastic resin.

特開2007−74662号公報JP-A-2007-74662 特開2015−7216号公報JP 2015-7216

従来のミリ波の電波遮蔽性能は、樹脂素材中の遮蔽素材の濃度や繊維長で一定にするだけであり、いったん自動車に電波を遮蔽する遮蔽部材を設置すると遮蔽能力を高くすることや低くすることはできなかった。しかしながら、晴天、曇天、雨天、降雪、霧、早朝、日中、夕方、夜間、トンネル内等の外部環境の変化により、ミリ波の強度を調整することが求められている。 The conventional millimeter-wave radio wave shielding performance is only made constant by the concentration of the shielding material in the resin material and the fiber length, and once a shielding member that shields radio waves is installed in the automobile, the shielding ability is increased or decreased. I couldn't. However, it is required to adjust the intensity of millimeter waves due to changes in the external environment such as fine weather, cloudy weather, rainy weather, snowfall, fog, early morning, daytime, evening, nighttime, and inside a tunnel.

すなわち、本発明の課題は、ミリ波レーダ装置において目的とする障害物以外から反射されたミリ波の受信を抑え、ミリ波受信装置に取り付ける遮蔽部材の遮蔽性能を制御可能とし、検出精度を向上させることである。 That is, the subject of the present invention is to suppress the reception of millimeter waves reflected from obstacles other than the target obstacle in the millimeter wave radar device, make it possible to control the shielding performance of the shielding member attached to the millimeter wave receiving device, and improve the detection accuracy. Is to let.

上記目的を達成するため、本発明は次の構成を有する。 In order to achieve the above object, the present invention has the following configuration.

熱可塑性樹脂および炭素繊維を含む熱可塑性樹脂炭素繊維複合材料からなり、該熱可塑性樹脂炭素繊維複合材料が、炭素繊維を5〜50重量%含有し、繊維長が0.01〜0.5mmである炭素繊維の割合が、全炭素繊維中の60重量%以上である、ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材。 It is composed of a thermoplastic resin carbon fiber composite material containing a thermoplastic resin and carbon fibers, and the thermoplastic resin carbon fiber composite material contains 5 to 50% by weight of carbon fibers and has a fiber length of 0.01 to 0.5 mm. A thermoplastic resin carbon fiber composite material that shields millimeter waves and has a certain carbon fiber ratio of 60% by weight or more in the total carbon fibers.

2枚以上の前記熱可塑性樹脂炭素繊維複合材料を炭素繊維の配向方向が0〜90度で交差するように重ねた、ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材料からなる遮蔽部材。 A shielding member made of a thermoplastic resin carbon fiber composite material that shields millimeter waves by stacking two or more of the thermoplastic resin carbon fiber composite materials so that the orientation directions of the carbon fibers intersect at 0 to 90 degrees.

本発明によれば、ミリ波の遮蔽を制御する遮蔽部材が提供可能となる。電波遮蔽率を制御することで、自動車走行時に必要なミリ波を正しく受信し、自動車の安全走行に寄与することができる。この技術は自動車だけでなく、バイク、自転車、航空機、ヘリコプター、ドローン、船舶、潜水艇へも適用できる。 According to the present invention, it is possible to provide a shielding member that controls the shielding of millimeter waves. By controlling the radio wave shielding rate, it is possible to correctly receive millimeter waves required when driving a car and contribute to safe driving of the car. This technology can be applied not only to automobiles, but also to motorcycles, bicycles, aircraft, helicopters, drones, ships, and submersibles.

本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材の概略図である。It is the schematic of the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention. 本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材の海島構造の概略図である。It is the schematic of the sea-island structure of the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention. 本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材の炭素繊維の配向を示す模式図である。It is a schematic diagram which shows the orientation of the carbon fiber of the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention. 本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材を縦方向に裁断した断面を示す模式図である。It is a schematic diagram which shows the cross section which cut the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention in the vertical direction. 本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材を横方向に裁断した断面を示す模式図である。It is a schematic diagram which shows the cross section which cut | cut the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention in the lateral direction. 本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材を水平方向に裁断した断面を示す模式図である。It is a schematic diagram which shows the cross section which cut in the horizontal direction of the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention. 本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材に炭素繊維の配向と直線偏波方向が平行に一致したミリ波を照射した状態を示す模式図である。It is a schematic diagram which shows the state which irradiated the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention with millimeter wave which the orientation of carbon fiber and the linear polarization direction coincided in parallel. 本発明のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材に炭素繊維の配向と直線偏波方向が90°に直交したミリ波を照射した状態を示す模式図である。It is a schematic diagram which shows the state which irradiated the thermoplastic resin carbon fiber composite material which shields a millimeter wave of this invention, the millimeter wave which the orientation of carbon fiber and the linear polarization direction are orthogonal to 90 °. 本発明における熱可塑性樹脂炭素繊維複合材に複数の貫通孔を加工した多孔構造体の概略図である。It is the schematic of the porous structure which processed the plurality of through holes in the thermoplastic resin carbon fiber composite material in this invention.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の熱可塑性樹脂炭素繊維複合材は、熱可塑性樹脂および炭素繊維を含む、熱可塑性樹脂炭素繊維複合材料からなり、該熱可塑性樹脂炭素繊維複合材料が、炭素繊維を5〜50重量%含有し、繊維長が0.01〜0.5mmである炭素繊維の割合が、全炭素繊維中の60重量%以上であり、ミリ波を遮蔽する(図1参照)。 The thermoplastic resin carbon fiber composite material of the present invention comprises a thermoplastic resin carbon fiber composite material containing a thermoplastic resin and carbon fibers, and the thermoplastic resin carbon fiber composite material contains 5 to 50% by weight of carbon fibers. However, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 60% by weight or more in the total carbon fibers, and the millimeter wave is shielded (see FIG. 1).

本発明の熱可塑性樹脂炭素繊維複合材は、強度の観点から炭素繊維が全体の5〜50重量%含まれ、5〜30重量%がより好ましく、10〜30重量%がさらに好ましい。 From the viewpoint of strength, the thermoplastic resin carbon fiber composite material of the present invention contains 5 to 50% by weight of carbon fibers, more preferably 5 to 30% by weight, still more preferably 10 to 30% by weight.

成形加工性の点から、繊維長が0.01〜0.5mmである炭素繊維の割合は、全炭素繊維中60%重量%以上である。繊維長は、0.1〜0.5mmがより好ましく、0.2〜0.5mmが更に好ましい。 From the viewpoint of moldability, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 60% by weight or more based on the total carbon fibers. The fiber length is more preferably 0.1 to 0.5 mm, further preferably 0.2 to 0.5 mm.

繊維長が0.01〜0.5mmである炭素繊維は、2軸の押出機により、炭素繊維と熱可塑性樹脂とを混錬することにより作ることができる。繊維長は、スクリュー軸の回転速度、スクリュー軸の長さ、太さ、溝の深さ、溝の間隔、混錬速度、樹脂温度を変更することで、調節することができる。 The carbon fiber having a fiber length of 0.01 to 0.5 mm can be produced by kneading the carbon fiber and the thermoplastic resin with a twin-screw extruder. The fiber length can be adjusted by changing the rotation speed of the screw shaft, the length, thickness, groove depth, groove spacing, kneading speed, and resin temperature of the screw shaft.

前記炭素繊維は、PAN系でもピッチ系でもよく、繊維径は1〜20μmであり、繊維の断面は真円でも楕円でもよい。引張強度は2〜4GPa、引張弾性率は200〜600GPaが好ましい。 The carbon fibers may be PAN-based or pitch-based, have a fiber diameter of 1 to 20 μm, and have a perfect circular or elliptical cross section. The tensile strength is preferably 2 to 4 GPa, and the tensile elastic modulus is preferably 200 to 600 GPa.

本発明において、熱可塑性樹脂炭素繊維複合材はミリ波の遮蔽性能を有しており、ミリ波の遮蔽性能を有しているとは、実施例の測定方法で求められるミリ波における透過減衰量の測定で評価されるものである。 In the present invention, the thermoplastic resin carbon fiber composite material has a millimeter wave shielding performance, and the millimeter wave shielding performance is defined as the amount of transmission attenuation in the millimeter wave obtained by the measurement method of the embodiment. It is evaluated by the measurement of.

本発明におけるミリ波とは周波数が1〜300GHzの電磁波であり、ミリ波の遮蔽性能としては透過減衰量が−10dB以上であることが好ましく、−20dB以上であることがより好ましく、−30dB以上であることが更に好ましい。 The millimeter wave in the present invention is an electromagnetic wave having a frequency of 1 to 300 GHz, and the transmission attenuation is preferably -10 dB or more, more preferably -20 dB or more, and -30 dB or more as the shielding performance of the millimeter wave. Is more preferable.

本発明において、熱可塑性樹脂は少なくとも粘度の異なる第1の熱可塑性樹脂と第2の熱可塑性樹脂とを含み、熱可塑性樹脂の融点、またはガラス転移点、または軟化点から20〜50℃の高い温度において、第2の熱可塑性樹脂の粘度が前記第1の熱可塑性樹脂の粘度の3〜70倍である。 In the present invention, the thermoplastic resin contains at least a first thermoplastic resin and a second thermoplastic resin having different viscosities, and is as high as 20 to 50 ° C. from the melting point, glass transition point, or softening point of the thermoplastic resin. At temperature, the viscosity of the second thermoplastic is 3 to 70 times the viscosity of the first thermoplastic.

該熱可塑性樹脂炭素繊維複合材料は、図2に示すような海島構造を有する。海相は、熱可塑性樹脂を主成分とする。一方、島相は、炭素繊維と熱可塑性樹脂からなる。 The thermoplastic resin carbon fiber composite material has a sea-island structure as shown in FIG. The sea phase is mainly composed of a thermoplastic resin. On the other hand, the island phase is composed of carbon fibers and a thermoplastic resin.

本発明において、熱可塑性樹脂は、少なくとも粘度の異なる第1の樹脂と第2の樹脂からなることが好ましい。熱可塑性樹脂の粘度の差が第1の熱可塑性樹脂の粘度の3〜70倍、より好ましくは5〜20倍であることが望ましい。 In the present invention, the thermoplastic resin is preferably composed of at least a first resin and a second resin having different viscosities. It is desirable that the difference in viscosity of the thermoplastic resin is 3 to 70 times, more preferably 5 to 20 times, the viscosity of the first thermoplastic resin.

特に、熱可塑性樹脂の融点から20〜50℃の高い所定温度において、粘度差による炭素繊維と樹脂の混練性を高めるため、第2の熱可塑性樹脂の粘度が第1の熱可塑性樹脂の粘度の3〜70倍、より好ましくは、5〜20倍であることが望ましい。 In particular, in order to improve the kneadability of the carbon fiber and the resin due to the difference in viscosity at a predetermined temperature as high as 20 to 50 ° C. from the melting point of the thermoplastic resin, the viscosity of the second thermoplastic resin is that of the viscosity of the first thermoplastic resin. It is preferably 3 to 70 times, more preferably 5 to 20 times.

低粘度の第1の熱可塑性樹脂が炭素繊維との密着性を向上させ、高粘度の第2の熱可塑性樹脂が材料全体の強度を向上させることで、シートの成形性を向上させる。 The low-viscosity first thermoplastic resin improves the adhesion to the carbon fibers, and the high-viscosity second thermoplastic resin improves the strength of the entire material, thereby improving the moldability of the sheet.

本発明において、熱可塑性樹脂はポリアミド、ポリプロピレン、アクロニトリルブタジエンスチレン共重合体、ポリフェニレンサルファイドである。 In the present invention, the thermoplastic resin is polyamide, polypropylene, acrylonitrile-butadiene-styrene copolymer, or polyphenylene sulfide.

前記熱可塑性樹脂は、ポリオレフィン(例えばポリエチレン、ポリプロピレン(PP)、ポリブチレン)、ポリスチレンでもよく、またはポリアミド(例えばナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、芳香族ナイロン)でもよく、またはポリイミド、ポリアミドイミド、またはポリカーボネート、またはポリエステル(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート)でもよく、またはポリフェニレンサルファイド(PPS)、ポリスルフォキシド、またはポリテトラフルオロエチレン、アクロニトリルブタジエンスチレン共重合体(ABS)、ポリアセタール、ポリエーテル、ポリエーテル・エーテル・ケトン、ポリオキシメチレンでもよい。また、上記熱可塑性樹脂の誘導体や、上記熱可塑性樹脂の共重合体、さらにそれらの混合物でもよい。 The thermoplastic resin may be a polyolefin (eg, polyethylene, polypropylene (PP), polybutylene), a polystyrene, or a polyamide (eg, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, aromatic nylon), or Polyimide, polyamideimide, or polycarbonate, or polyester (eg, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate), or polyphenylene sulfide (PPS), polysulfoxide, or polytetrafluoroethylene, acronitrile butadiene styrene copolymer (eg, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate). ABS), polyacetal, polyether, polyether ether ketone, polyoxymethylene may be used. Further, it may be a derivative of the above-mentioned thermoplastic resin, a copolymer of the above-mentioned thermoplastic resin, or a mixture thereof.

特に、熱可塑性樹脂としてはポリアミドが好ましく、ナイロン6、ナイロン66、それらの誘導体もしくは共重合体、または上記のいずれかを含む混合物がより好ましく、ナイロン6、ナイロン66がさらに好ましい。 In particular, as the thermoplastic resin, polyamide is preferable, nylon 6, nylon 66, a derivative or copolymer thereof, or a mixture containing any of the above is more preferable, and nylon 6 and nylon 66 are even more preferable.

また、ポリオレフィンも好ましく、ポリエチレン、ポリプロピレン、それらの誘導体もしくは共重合体、または上記のいずれかを含む混合物がより好ましく、ポリエチレン、ポリプロピレンがさらに好ましい。 Polyolefins are also preferable, polyethylene, polypropylene, derivatives or copolymers thereof, or mixtures containing any of the above are more preferable, and polyethylene and polypropylene are even more preferable.

さらに、アクロニトリルブタジエンスチレン共重合体、その誘導体もしくは共重合体、または上記のいずれかを含む混合物も好ましい。 Further, acronitrile butadiene styrene copolymer, a derivative or copolymer thereof, or a mixture containing any of the above is also preferable.

さらに、ポリフェニレンサルファイド、その誘導体もしくは共重合体、または上記のいずれかを含む混合物も好ましい。 Further, polyphenylene sulfide, a derivative or copolymer thereof, or a mixture containing any of the above is also preferable.

本発明において、熱可塑性樹脂炭素繊維複合材は全炭素繊維中、60重量%以上の炭素繊維が30°以内の一方向に配向しているのが好ましい。すなわち、図3に示すように全炭素繊維の60重量%以上の炭素繊維が30°以内の一方向に配向していることが好ましい。15°以内の一方向に配向していることがより好ましく、10°以内の一方向に配向していることがさらに好ましい。 In the present invention, in the thermoplastic resin carbon fiber composite material, it is preferable that 60% by weight or more of the carbon fibers are oriented in one direction within 30 ° of the total carbon fibers. That is, as shown in FIG. 3, it is preferable that 60% by weight or more of the total carbon fibers are oriented in one direction within 30 °. It is more preferably oriented in one direction within 15 °, and even more preferably oriented in one direction within 10 °.

炭素繊維の60重量%以上を30°以内の一方向に配向させた熱可塑性樹脂炭素繊維複合材は、上記の熱可塑性樹脂炭素繊維複合材料からなるペレットを用いて、一軸の押出機で溶融しながら、ダイスより一定方向に押し出し、ロールに接触定着させることで製造できる。 The thermoplastic resin carbon fiber composite material in which 60% by weight or more of the carbon fibers are oriented in one direction within 30 ° is melted by a uniaxial extruder using the pellets made of the above-mentioned thermoplastic resin carbon fiber composite material. However, it can be manufactured by extruding it from a die in a certain direction and contact-fixing it to a roll.

本発明において、熱可塑性樹脂炭素繊維複合材を縦方向、横方向、水平方向に裁断した断面を、図4〜6に示す。縦断面の図4には炭素繊維が長さ方向に見える。また、横断面の図5には炭素繊維の切断面が見える。さらに、水平断面の図6には水平に広がる炭素繊維が長さ方向に見える。 In the present invention, the cross sections of the thermoplastic resin carbon fiber composite material cut in the vertical direction, the horizontal direction, and the horizontal direction are shown in FIGS. 4 to 6. In FIG. 4 of the vertical cross section, carbon fibers are visible in the length direction. Further, the cut surface of the carbon fiber can be seen in FIG. 5 in the cross section. Further, in FIG. 6 of the horizontal cross section, the carbon fibers spreading horizontally can be seen in the length direction.

このことより、本発明において、熱可塑性樹脂炭素繊維複合材の内部で、炭素繊維が一方向に配向していることが判る。 From this, it can be seen that in the present invention, the carbon fibers are oriented in one direction inside the thermoplastic resin carbon fiber composite material.

本発明において、熱可塑性樹脂炭素繊維複合材は炭素繊維の配向とミリ波の直線偏波方向が平行の時、炭素繊維の配向とミリ波の直線偏波方向が90°直交の時と比べて透過減衰量が10〜50dB小さい。 In the present invention, the thermoplastic resin carbon fiber composite material is compared with the case where the carbon fiber orientation and the linear polarization direction of the millimeter wave are parallel to each other and the carbon fiber orientation and the linear polarization direction of the millimeter wave are 90 ° orthogonal to each other. The amount of transmission attenuation is small by 10 to 50 dB.

本発明の熱可塑性樹脂炭素繊維複合材は、可視光における偏光板の機能と同様に、特定の直線偏波方向のミリ波に対して遮蔽性を有する。 The thermoplastic resin carbon fiber composite material of the present invention has a shielding property against millimeter waves in a specific linearly polarized direction, similar to the function of a polarizing plate in visible light.

図7に示すように炭素繊維の配向とミリ波の直線偏波方向が平行に一致している場合、ミリ波は透過する。一方、図8に示すように炭素繊維の配向とミリ波の直線偏波方向が90°直交している場合、ミリ波の進行は阻害され遮蔽性を示す。 As shown in FIG. 7, when the orientation of the carbon fibers and the linear polarization direction of the millimeter wave coincide in parallel, the millimeter wave is transmitted. On the other hand, when the orientation of the carbon fibers and the linearly polarized direction of the millimeter wave are orthogonal to each other by 90 ° as shown in FIG. 8, the progress of the millimeter wave is hindered and a shielding property is exhibited.

ミリ波の遮蔽性は、本発明の熱可塑性樹脂炭素繊維複合材の厚み、炭素繊維の割合によって制御することができる。 The millimeter-wave shielding property can be controlled by the thickness of the thermoplastic resin carbon fiber composite material of the present invention and the ratio of carbon fibers.

本発明において、熱可塑性樹脂炭素繊維複合材は複数の貫通孔を有する多孔構造体でもよく、多孔構造体の厚さが0.05〜10mmで、貫通孔の孔径が0.1〜100mm、貫通孔の開口部面積の合計が多孔構造体に対して5〜75%である多孔構造体が使用可能である。 In the present invention, the thermoplastic resin carbon fiber composite material may be a porous structure having a plurality of through holes, the thickness of the porous structure is 0.05 to 10 mm, the pore diameter of the through holes is 0.1 to 100 mm, and the through holes are penetrated. A porous structure having a total hole opening area of 5 to 75% of the porous structure can be used.

本発明の熱可塑性樹脂炭素繊維複合材をパンチング加工することで、図9に示す貫通孔を有する多孔構造体を得ることができる。 By punching the thermoplastic resin carbon fiber composite material of the present invention, a porous structure having through holes shown in FIG. 9 can be obtained.

多孔構造体は複数の貫通孔を有しており、多孔構造体の厚さが0.05〜10mmで、貫通孔の孔径が0.1〜100mm、貫通孔の開口部面積の合計が多孔構造体に対して5〜75%である。 The porous structure has a plurality of through holes, the thickness of the porous structure is 0.05 to 10 mm, the hole diameter of the through holes is 0.1 to 100 mm, and the total opening area of the through holes is the porous structure. 5 to 75% of the body.

前記貫通孔の孔径は0.1〜100mmであることが好ましい。1〜10mmがよりこのましく、2〜5mmがさらにより好ましい。また、孔の形状は円形でも楕円でも多角形でも構わない。 The hole diameter of the through hole is preferably 0.1 to 100 mm. 1 to 10 mm is more preferable, and 2 to 5 mm is even more preferable. Further, the shape of the hole may be circular, elliptical or polygonal.

また、本発明の熱可塑性樹脂炭素繊維複合材をエキスパンド加工することでも、貫通孔を有する多孔構造体を得ることができる。 Further, a porous structure having through holes can also be obtained by expanding the thermoplastic resin carbon fiber composite material of the present invention.

エキスパンド加工で得られる多孔構造体は菱形または六角形の貫通孔を有しており、多孔構造体の厚さが0.05〜10mmで、1つの貫通孔の開口部面積が0.02〜39000mm、貫通孔の開口部面積の合計が多孔構造体に対して5〜90%である。 The porous structure obtained by the expanding process has rhombic or hexagonal through holes, the thickness of the porous structure is 0.05 to 10 mm, and the opening area of one through hole is 0.02 to 39000 mm. 2. The total opening area of the through holes is 5 to 90% of the porous structure.

前記多孔構造体の開孔率と孔の大きさは、ミリ波の遮蔽性に関わり、開孔率や孔が小さいと遮蔽性は良くなり、大きすぎると不要なミリ波を透過させる。 The pore opening ratio and the pore size of the porous structure are related to the millimeter wave shielding property. If the pore opening ratio and the pores are small, the shielding property is improved, and if it is too large, unnecessary millimeter waves are transmitted.

また、開口率や孔が大きすぎると多孔構造体の強度が低下して、破損が起こる。そのため、前記貫通孔の開口部面積の合計が多孔構造体に対して5〜75%であることが好ましい。15〜60%であることがより好ましく、30〜50%であることが更に好ましい。 Further, if the aperture ratio or the pores are too large, the strength of the porous structure is lowered and damage occurs. Therefore, it is preferable that the total opening area of the through holes is 5 to 75% with respect to the porous structure. It is more preferably 15 to 60%, and even more preferably 30 to 50%.

本発明において、熱可塑性樹脂炭素繊維複合材を2枚以上重ね、かつ、炭素繊維の方向を0〜90度で交差することで、ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材からなる遮蔽部材となる。 In the present invention, a shielding member made of a thermoplastic resin carbon fiber composite material that shields millimeter waves by stacking two or more thermoplastic resin carbon fiber composite materials and intersecting the directions of carbon fibers at 0 to 90 degrees. It becomes.

本発明の熱可塑性樹脂炭素繊維複合材は、2枚以上重ね、かつ、炭素繊維の配向方向を0〜90度で交差することで、ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材からなる遮蔽部材として使用することが好ましい。 The thermoplastic resin carbon fiber composite material of the present invention is made of a thermoplastic resin carbon fiber composite material that shields millimeter waves by stacking two or more sheets and intersecting the orientation directions of carbon fibers at 0 to 90 degrees. It is preferable to use it as a member.

本発明の熱可塑性樹脂炭素繊維複合材料は、炭素繊維が一方向に配向しているため、特定の直線偏波のミリ波は遮蔽するが、規則性のない非偏波のミリ波であると炭素繊維の配向とミリ波の直線偏波が一致する部分はミリ波が透過してしまう。 In the thermoplastic resin carbon fiber composite material of the present invention, since the carbon fibers are oriented in one direction, the millimeter wave of specific linearly polarized light is shielded, but the millimeter wave of non-polarized light is not regular. Millimeter waves pass through the portion where the orientation of the carbon fibers and the linearly polarized light of the millimeter waves match.

そこで、熱可塑性樹脂炭素繊維複合材料を2枚重ね、そのうち一枚を配向が90度になるよう直交させることで、ミリ波の遮蔽性が向上する。さらに3枚4枚と重ねると遮蔽性は向上する。一方、透過させたいミリ波は、炭素繊維の配向と直線偏波の方向を一致させることで透過性は向上する。 Therefore, by stacking two thermoplastic resin carbon fiber composite materials and making one of them orthogonal so that the orientation is 90 degrees, the shielding property of millimeter waves is improved. Further, when three or four sheets are stacked, the shielding property is improved. On the other hand, the transparency of millimeter waves to be transmitted is improved by matching the orientation of carbon fibers with the direction of linearly polarized waves.

また、多孔構造体を使用することで透過性は向上する。さらに多孔構造体を2枚以上重ねるとより効果的であり、孔の大きさや、孔のピッチ、開口率、角度を変えることで、遮蔽性は制御することができる。 Further, the permeability is improved by using the porous structure. Further, it is more effective to stack two or more porous structures, and the shielding property can be controlled by changing the hole size, the hole pitch, the aperture ratio, and the angle.

すなわち、本発明におけるミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材料を使用することで、ミリ波レーダ装置において目的とする障害物以外から反射されたミリ波の受信を遮蔽するとともに、積層した熱可塑性樹脂炭素繊維複合材料を部分的に回転させる機構を導入することで、外部環境に応じてミリ波の遮蔽性を制御可能な遮蔽部材を提供することができ、自動車の安全走行に寄与することができる。 That is, by using the thermoplastic resin carbon fiber composite material that shields the millimeter wave in the present invention, the reception of the millimeter wave reflected from other than the target obstacle in the millimeter wave radar device is shielded and the laminated heat is laminated. By introducing a mechanism that partially rotates the thermoplastic resin carbon fiber composite material, it is possible to provide a shielding member that can control the shielding property of millimeter waves according to the external environment, which contributes to the safe driving of automobiles. Can be done.

以下、実施例および比較例に基づいて本発明を詳細に説明する。なお、各実施例および比較例における試験条件は、特に記載しない限り、基本的に実施例1に準じるものとする。 Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples. Unless otherwise specified, the test conditions in each Example and Comparative Example are basically the same as those in Example 1.

(使用した材料)
(A)炭素繊維
繊維径が7μmの炭素繊維。
(Material used)
(A) Carbon fiber A carbon fiber having a fiber diameter of 7 μm.

(B)第1の熱可塑性樹脂
B1:ナイロン6(融点:225℃、275℃における粘度:80poise)
B2:PP(ポリプロピレン)(融点:170℃、220℃における粘度:75poise)
B3:ABS(アクロニトリルブタジエンスチレン共重合体)(ガラス転移点(軟化点):190℃、240℃における粘度:490poise)
B4:PPS(ポリフェニレンサルファイド)(融点:285℃、335℃における粘度:150poise) 。
(B) First thermoplastic resin B1: Nylon 6 (melting point: 225 ° C., viscosity at 275 ° C.: 80 poise)
B2: PP (polypropylene) (melting point: 170 ° C, viscosity at 220 ° C: 75 poise)
B3: ABS (acrylonitrile butadiene styrene copolymer) (glass transition point (softening point): viscosity at 190 ° C. and 240 ° C.: 490 poise)
B4: PPS (polyphenylene sulfide) (melting point: 285 ° C., viscosity at 335 ° C.: 150 poise).

(C)第2の熱可塑性樹脂
C1:ナイロン6(融点:225℃、275℃における粘度:1,150poise)
C2:PP(ポリプロピレン)(融点:170℃、220℃における粘度:1,700poise)
C3:ABS(アクロニトリルブタジエンスチレン共重合体)(ガラス転移点(軟化点):190℃、240℃における粘度:2,600poise)
C4:PPS(ポリフェニレンサルファイド)(融点:285℃、335℃における粘度:8,100poise)
(D)熱可塑性樹脂炭素繊維複合材料のペレット
D1:炭素繊維を20重量%、第1の熱可塑性樹脂B1を50重量%、第2の熱可塑性樹脂C1を30重量%含有する。
(C) Second thermoplastic resin C1: Nylon 6 (melting point: 225 ° C., viscosity at 275 ° C.: 1,150 poise)
C2: PP (polypropylene) (melting point: 170 ° C, 220 ° C viscosity: 1,700 poise)
C3: ABS (Acrylonitrile-butadiene-styrene copolymer) (Glass transition point (softening point): Viscosity at 190 ° C. and 240 ° C.: 2,600 poise)
C4: PPS (polyphenylene sulfide) (melting point: 285 ° C., viscosity at 335 ° C.: 8,100 poise)
(D) Pellet of Thermoplastic Resin Carbon Fiber Composite Material D1: Contains 20% by weight of carbon fiber, 50% by weight of the first thermoplastic resin B1, and 30% by weight of the second thermoplastic resin C1.

D2:炭素繊維を5重量%、第1の熱可塑性樹脂B1を15重量%、第2の熱可塑性樹脂C1を80重量%含有する。 D2: Contains 5% by weight of carbon fiber, 15% by weight of the first thermoplastic resin B1, and 80% by weight of the second thermoplastic resin C1.

D3:炭素繊維を50重量%、第1の熱可塑性樹脂B1を20重量%、第2の熱可塑性樹脂C1を30重量%含有する。 D3: Contains 50% by weight of carbon fiber, 20% by weight of the first thermoplastic resin B1, and 30% by weight of the second thermoplastic resin C1.

D4:炭素繊維を20重量%、第1の熱可塑性樹脂B2を50重量%、第2の熱可塑性樹脂C2を30重量%含有する。 D4: Contains 20% by weight of carbon fiber, 50% by weight of the first thermoplastic resin B2, and 30% by weight of the second thermoplastic resin C2.

D5:炭素繊維を20重量%、第1の熱可塑性樹脂B3を50重量%、第2の熱可塑性樹脂C3を30重量%含有する。 D5: Contains 20% by weight of carbon fiber, 50% by weight of the first thermoplastic resin B3, and 30% by weight of the second thermoplastic resin C3.

D6:炭素繊維を20重量%、第1の熱可塑性樹脂B4を50重量%、第2の熱可塑性樹脂C4を30重量%含有する。 D6: Contains 20% by weight of carbon fiber, 50% by weight of the first thermoplastic resin B4, and 30% by weight of the second thermoplastic resin C4.

(粘度の測定に使用した機器)
東洋精機製作所製キャピラリーレオメーター キャピログラフ1D
(繊維長が0.01〜0.5mmの炭素繊維の割合の測定に使用した機器)
キーエンス製デジタルマイクロスコープVHX−5000
画像解析用PC 。
(Equipment used for measuring viscosity)
Capillary Rheometer Capillary Graph 1D manufactured by Toyo Seiki Seisakusho
(Equipment used to measure the proportion of carbon fibers with a fiber length of 0.01 to 0.5 mm)
KEYENCE Digital Microscope VHX-5000
PC for image analysis.

(繊維長が0.01〜0.5mmの炭素繊維の割合の測定方法)
熱可塑性樹脂炭素繊維複合材に燃焼処理または溶液抽出処理を施し、含有する炭素繊維のみを分離したのち、炭素繊維のみをデジタルマイクロスコープにて撮影し、画像処理ソフトにより炭素繊維長ごとの本数を計測し、炭素繊維長分布を求めた。
(Measuring method for the proportion of carbon fibers with a fiber length of 0.01 to 0.5 mm)
The thermoplastic resin carbon fiber composite material is subjected to combustion treatment or solution extraction treatment to separate only the carbon fibers contained therein, and then only the carbon fibers are photographed with a digital microscope, and the number of carbon fibers for each carbon fiber length is determined by image processing software. The carbon fiber length distribution was determined by measurement.

(30°以内の一方向に配向している炭素繊維の割合の測定に使用した機器)
ヤマト科学製X線CT装置TDM1000-IS
配向解析用PC 。
(Equipment used to measure the proportion of carbon fibers oriented in one direction within 30 °)
Yamato Scientific X-ray CT device TDM1000-IS
PC for orientation analysis.

(30°以内の一方向に配向している炭素繊維の割合の測定方法)
X線CT装置にて熱可塑性樹脂炭素繊維複合材のCTデータを測定し、配向解析ソフトにより、炭素繊維の配向方向を解析した。
(Measuring method of the ratio of carbon fibers oriented in one direction within 30 °)
The CT data of the thermoplastic resin carbon fiber composite material was measured with an X-ray CT apparatus, and the orientation direction of the carbon fibers was analyzed with the orientation analysis software.

(ミリ波の透過減衰量の測定に使用した機器)
KEYSIGHT製 ネットワークアナライザ N5227A
Virginia Diodes製 ミリ波モジュール WR10−VNAX 。
(Equipment used to measure the transmission attenuation of millimeter waves)
KEYSIGHT network analyzer N5227A
Millimeter wave module WR10-VNAX manufactured by Virginia Dimensions.

(透過減衰量の測定方法)
対面するように設置した送信側および受信側のミリ波モジュールの間に熱可塑性樹脂炭素繊維複合材からなる試料を設置する。送信側ミリ波モジュールから照射された特定周波数および特定偏波のミリ波は試料を透過して受信側ミリ波モジュールにて検出される。受信側ミリ波モジュールに接続されたネットワークアナライザにより、透過減衰量を計測した。
(Measurement method of transmission attenuation)
A sample made of a thermoplastic resin carbon fiber composite material is installed between the millimeter wave modules on the transmitting side and the receiving side installed so as to face each other. Millimeter waves of a specific frequency and a specific polarization emitted from the transmission side millimeter wave module pass through the sample and are detected by the reception side millimeter wave module. The transmission attenuation was measured by a network analyzer connected to the receiving millimeter wave module.

(実施例1)
ナイロン6からなる第1の熱可塑性樹脂B1、第2の熱可塑性樹脂C1および炭素繊維を押出機に投入し、加熱・混錬することで熱可塑性樹脂炭素繊維複合材料のペレットD1を得た。
(Example 1)
The first thermoplastic resin B1 made of nylon 6, the second thermoplastic resin C1 and the carbon fiber were put into an extruder and heated and kneaded to obtain pellets D1 of the thermoplastic resin carbon fiber composite material.

このペレットD1を押出機に投入し、溶融しながらダイスより一定方向に押し出し、ロールに接触定着させることで、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。 The pellet D1 is put into an extruder, extruded in a certain direction from a die while melting, and contact-fixed to a roll to form a sheet-shaped thermoplastic resin carbon fiber composite material having a thickness of 0.3 mm, a width of 640 mm, and a length of 1000 mm. I made one.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は73重量%であり、30°以内の一方向に配向している炭素繊維が84重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 73% by weight, and 84 carbon fibers oriented in one direction within 30 ° are 84. It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が平行に一致するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−14.1dBであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of the millimeter wave at 70 to 90 GHz was measured so that the orientation of the carbon fiber and the linearly polarized direction of the millimeter wave coincided in parallel. It was 1 dB.

(実施例2)
実施例1に記載の方法にて得たペレットD1を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 2)
Using the pellet D1 obtained by the method described in Example 1, a sheet-shaped thermoplastic resin carbon fiber composite material having a thickness of 0.3 mm, a width of 640 mm, and a length of 1000 mm was prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は74重量%であり、30°以内の一方向に配向している炭素繊維が85重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 74% by weight, and 85 carbon fibers oriented in one direction within 30 ° are 85. It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が90°直交するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−34.3dBであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of the millimeter wave at 70 to 90 GHz was measured so that the orientation of the carbon fiber and the linearly polarized direction of the millimeter wave were orthogonal to each other by 90 °. It was 3 dB.

(実施例3)
実施例1と同様の方法にて得たペレットD2を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 3)
Using the pellet D2 obtained by the same method as in Example 1, one sheet-shaped thermoplastic resin carbon fiber composite material having a thickness of 0.3 mm, a width of 640 mm, and a length of 1000 mm was prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は80重量%であり、30°以内の一方向に配向している炭素繊維が81重量%であった。
この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が平行に一致するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−10.8dBであった。
In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 80% by weight, and 81 carbon fibers oriented in one direction within 30 ° are 81. It was% by weight.
Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of millimeter waves at 70 to 90 GHz was measured so that the orientation of the carbon fibers and the linearly polarized direction of the millimeter waves coincided in parallel. It was 8 dB.

(実施例4)
実施例1と同様の方法にて得たペレットD2を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成する。
得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は82重量%であり、30°以内の一方向に配向している炭素繊維が78重量%であった。
(Example 4)
Using the pellet D2 obtained by the same method as in Example 1, one sheet-shaped thermoplastic resin carbon fiber composite material having a thickness of 0.3 mm, a width of 640 mm, and a length of 1000 mm is prepared.
In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 82% by weight, and 78 carbon fibers oriented in one direction within 30 ° are produced. It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が90°直交するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−23.7dBであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of millimeter waves at 70 to 90 GHz was measured so that the orientation of the carbon fibers and the linearly polarized direction of the millimeter waves were orthogonal to each other by 90 °. It was 7 dB.

(実施例5)
実施例1と同様の方法にて得たペレットD3を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 5)
Using the pellet D3 obtained by the same method as in Example 1, one sheet-shaped thermoplastic resin carbon fiber composite material having a thickness of 0.3 mm, a width of 640 mm, and a length of 1000 mm was prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は76重量%であり、30°以内の一方向に配向している炭素繊維が77重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 76% by weight, and 77 carbon fibers oriented in one direction within 30 ° It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が平行に一致するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−50dB以上となり、測定限界越えであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of millimeter waves at 70 to 90 GHz was measured so that the orientation of the carbon fibers and the linearly polarized direction of the millimeter waves coincided in parallel. The average was -50 dB or more. It exceeded the measurement limit.

(実施例6)
実施例1と同様の方法にて、ポリプロピレンからなる第1の熱可塑性樹脂B2、第2の熱可塑性樹脂C2および炭素繊維から得たペレットD4を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 6)
Using the first thermoplastic resin B2 made of polypropylene, the second thermoplastic resin C2, and the pellet D4 obtained from carbon fiber in the same manner as in Example 1, the thickness is 0.3 mm, the width is 640 mm, and the length is 640 mm. A 1000 mm sheet-shaped thermoplastic resin carbon fiber composite material was prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は81重量%であり、30°以内の一方向に配向している炭素繊維が79重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 81% by weight, and 79 carbon fibers oriented in one direction within 30 ° It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が90°直交するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−31.0dBであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of the millimeter wave at 70 to 90 GHz was measured so that the orientation of the carbon fiber and the linearly polarized direction of the millimeter wave were orthogonal to each other by 90 °. It was 0 dB.

(実施例7)
実施例1と同様の方法にて、アクロニトリルブタジエンスチレン共重合体からなる第1の熱可塑性樹脂B3、第2の熱可塑性樹脂C3および炭素繊維から得たペレットD5を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 7)
Using a first thermoplastic resin B3 made of an acrylonitrile butadiene styrene copolymer, a second thermoplastic resin C3, and pellets D5 obtained from carbon fibers in the same manner as in Example 1, the thickness was 0.3 mm. , A sheet-shaped thermoplastic resin carbon fiber composite material having a width of 640 mm and a length of 1000 mm was prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は78重量%であり、30°以内の一方向に配向している炭素繊維が78重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 78% by weight, and 78 carbon fibers oriented in one direction within 30 ° are 78. It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が90°直交するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−32.6dBであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of the millimeter wave at 70 to 90 GHz was measured so that the orientation of the carbon fiber and the linearly polarized direction of the millimeter wave were orthogonal to each other by 90 °. It was 6 dB.

(実施例8)
実施例1と同様の方法にて、ポリフェニレンサルファイドからなる第1の熱可塑性樹脂B4、第2の熱可塑性樹脂C4および炭素繊維から得たペレットD6を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 8)
Using the first thermoplastic resin B4 made of polyphenylene sulfide, the second thermoplastic resin C4, and the pellet D6 obtained from carbon fiber in the same manner as in Example 1, the thickness is 0.3 mm, the width is 640 mm, and the length is long. A sheet-shaped thermoplastic resin carbon fiber composite material having a size of 1000 mm was prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は76重量%であり、30°以内の一方向に配向している炭素繊維が83重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 76% by weight, and 83 carbon fibers oriented in one direction within 30 ° are produced. It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が90°直交するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−37.5dBであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of millimeter waves at 70 to 90 GHz was measured so that the orientation of the carbon fibers and the linearly polarized direction of the millimeter waves were orthogonal to each other by 90 °. It was 5 dB.

(実施例9)
実施例1に記載の方法にて得たペレットD1を用いて、厚み0.5mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 9)
Using the pellet D1 obtained by the method described in Example 1, a sheet-shaped thermoplastic resin carbon fiber composite material having a thickness of 0.5 mm, a width of 640 mm, and a length of 1000 mm was prepared.

得られた熱可塑性樹脂炭素繊維複合材にパンチングマシーンを用いて孔開け加工を施し、多孔構造体を1枚作成した。 The obtained thermoplastic resin carbon fiber composite material was perforated using a punching machine to prepare one porous structure.

得られた多孔構造体において、繊維長が0.01〜0.5mmである炭素繊維の割合は78重量%であり、30°以内の一方向に配向している炭素繊維が83重量%であった。 In the obtained porous structure, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm was 78% by weight, and the proportion of carbon fibers oriented in one direction within 30 ° was 83% by weight. It was.

また、多孔構造体の貫通孔の開口部の形状は直径3.0mmの真円形状であり、開口部の中心から隣接する開口部の中心までの間隔は4mm、孔と孔の間の幅は1mmであった。貫通孔の配置は60°千鳥配置であり、開孔率は51.0%であった。 The shape of the opening of the through hole of the porous structure is a perfect circle with a diameter of 3.0 mm, the distance from the center of the opening to the center of the adjacent opening is 4 mm, and the width between the holes is It was 1 mm. The arrangement of the through holes was a 60 ° staggered arrangement, and the opening ratio was 51.0%.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が90°直交するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−14.8dBであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of millimeter waves at 70 to 90 GHz was measured so that the orientation of the carbon fibers and the linearly polarized direction of the millimeter waves were orthogonal to each other by 90 °. It was 8 dB.

(実施例10)
実施例1に記載の方法にて得たペレットD1を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を2枚作成した。
(Example 10)
Using the pellet D1 obtained by the method described in Example 1, two sheet-shaped thermoplastic resin carbon fiber composite materials having a thickness of 0.3 mm, a width of 640 mm, and a length of 1000 mm were prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は75重量%であり、30°以内の一方向に配向している炭素繊維が84重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 75% by weight, and 84 carbon fibers oriented in one direction within 30 ° are 84. It was% by weight.

この熱可塑性樹脂炭素繊維複合材2枚を炭素繊維の配向が平行に一致するように重ね、炭素繊維の配向とミリ波の直線偏波方向が平行に一致するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−27.0dBであった。 The two thermoplastic resin carbon fiber composite materials are laminated so that the orientations of the carbon fibers are parallel to each other, and the millimeter waves of 70 to 90 GHz are aligned so that the orientations of the carbon fibers and the linear polarization directions of the millimeter waves are parallel to each other. When the transmission attenuation of the above was measured, it was -27.0 dB on average.

(実施例11)
実施例1に記載の方法にて得たペレットD1を用いて、厚み0.3mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を2枚作成した。
(Example 11)
Using the pellet D1 obtained by the method described in Example 1, two sheet-shaped thermoplastic resin carbon fiber composite materials having a thickness of 0.3 mm, a width of 640 mm, and a length of 1000 mm were prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は75重量%であり、30°以内の一方向に配向している炭素繊維が84重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 75% by weight, and 84 carbon fibers oriented in one direction within 30 ° are 84. It was% by weight.

この熱可塑性樹脂炭素繊維複合材2枚を炭素繊維の配向が90°直交するように重ね、一方の熱可塑性樹脂炭素繊維複合材の炭素繊維の配向とミリ波の直線偏波方向が平行に一致するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−46.6dBであった。 Two pieces of the thermoplastic resin carbon fiber composite material are stacked so that the carbon fiber orientations are orthogonal to each other by 90 °, and the carbon fiber orientation of one of the thermoplastic resin carbon fiber composite materials and the linear polarization direction of the millimeter wave coincide in parallel. As a result, the transmission attenuation of the millimeter wave of 70 to 90 GHz was measured and found to be -46.6 dB on average.

(実施例12)
実施例1に記載の方法にて得たペレットD1を用いて、厚み1.0mm、幅640mm、長さ1000mmのシート状の熱可塑性樹脂炭素繊維複合材を1枚作成した。
(Example 12)
Using the pellet D1 obtained by the method described in Example 1, a sheet-shaped thermoplastic resin carbon fiber composite material having a thickness of 1.0 mm, a width of 640 mm, and a length of 1000 mm was prepared.

得られた熱可塑性樹脂炭素繊維複合材において、繊維長が0.01〜0.5mmである炭素繊維の割合は77重量%であり、30°以内の一方向に配向している炭素繊維が86重量%であった。 In the obtained thermoplastic resin carbon fiber composite material, the proportion of carbon fibers having a fiber length of 0.01 to 0.5 mm is 77% by weight, and 86 carbon fibers oriented in one direction within 30 ° are 86. It was% by weight.

この熱可塑性樹脂炭素繊維複合材を用いて炭素繊維の配向とミリ波の直線偏波方向が90°直交するように、70〜90GHzのミリ波の透過減衰量を測定したところ、平均−50dB以上となり、測定限界越えであった。 Using this thermoplastic resin carbon fiber composite material, the transmission attenuation of 70 to 90 GHz millimeter waves was measured so that the orientation of the carbon fibers and the linearly polarized direction of the millimeter waves were orthogonal to each other by 90 °. As a result, the average was -50 dB or more. The measurement limit was exceeded.

(比較例1)
ナイロン6からなる第2の熱可塑性樹脂C1を押出機に投入し、溶融しながら、ダイスより一定方向に押し出し、ロールに接触定着させることで、厚み1.0mm、幅640mm、長さ1000mmのシート状の素材を1枚作成した。
(Comparative Example 1)
A second thermoplastic resin C1 made of nylon 6 is put into an extruder, extruded in a certain direction from a die while being melted, and contact-fixed to a roll to obtain a sheet having a thickness of 1.0 mm, a width of 640 mm, and a length of 1000 mm. I made one piece of material.

この素材を用いて70〜90GHzのミリ波の透過減衰量を測定したところ、平均−2.6dBであった。 When the transmission attenuation of a millimeter wave of 70 to 90 GHz was measured using this material, it was an average of -2.6 dB.

(比較例2)
比較例1に記載の方法にて、ポリプロピレンからなる第2の熱可塑性樹脂C2を用いて、厚み1.0mm、幅640mm、長さ1000mmのシート状の素材を1枚作成した。
この素材を用いて70〜90GHzのミリ波の透過減衰量を測定したところ、平均−1.9dBであった。
(Comparative Example 2)
By the method described in Comparative Example 1, one sheet-like material having a thickness of 1.0 mm, a width of 640 mm, and a length of 1000 mm was prepared using a second thermoplastic resin C2 made of polypropylene.
When the transmission attenuation of a millimeter wave of 70 to 90 GHz was measured using this material, it was 1.9 dB on average.

(比較例3)
比較例1に記載の方法にて、アクロニトリルブタジエンスチレン共重合体からなる第2の熱可塑性樹脂C3を用いて、厚み1.0mm、幅640mm、長さ1000mmのシート状の素材を1枚作成した。
(Comparative Example 3)
By the method described in Comparative Example 1, one sheet-like material having a thickness of 1.0 mm, a width of 640 mm, and a length of 1000 mm was prepared by using a second thermoplastic resin C3 made of an acrylonitrile-butadiene-styrene copolymer. did.

この素材を用いて70〜90GHzのミリ波の透過減衰量を測定したところ、平均−2.0dBであった。 When the transmission attenuation of a millimeter wave of 70 to 90 GHz was measured using this material, it was an average of −2.0 dB.

(比較例4)
比較例1に記載の方法にて、ポリフェニレンサルファイドからなる第2の熱可塑性樹脂C4を用いて、厚み1.0mm、幅640mm、長さ1000mmのシート状の素材を1枚作成した。
(Comparative Example 4)
By the method described in Comparative Example 1, one sheet-like material having a thickness of 1.0 mm, a width of 640 mm, and a length of 1000 mm was prepared using a second thermoplastic resin C4 made of polyphenylene sulfide.

この素材を用いて70〜90GHzのミリ波の透過減衰量を測定したところ、平均−2.5dBであった。 When the transmission attenuation of millimeter waves of 70 to 90 GHz was measured using this material, it was an average of −2.5 dB.

上記実施例、比較例において使用した材料、複合材の特性、物性を表1に示す。 Table 1 shows the properties and physical properties of the materials and composite materials used in the above Examples and Comparative Examples.

1 熱可塑性樹脂炭素繊維複合材
2 海島構造
3 炭素繊維
4 第1の熱可塑性樹脂
5 第2の熱可塑性樹脂
6 熱可塑性樹脂
7 縦方向
8 横方向
9 水平方向
10 縦方向断面
11 横方向断面
12 水平方向断面
13 炭素繊維の配向
14 直線偏波のミリ波
15 多孔構造体
16 貫通孔
1 Thermoplastic resin Carbon fiber composite material 2 Sea island structure 3 Carbon fiber 4 First thermoplastic resin 5 Second thermoplastic resin 6 Thermoplastic resin 7 Vertical direction 8 Horizontal direction 9 Horizontal direction 10 Vertical cross section 11 Horizontal cross section 12 Horizontal cross section 13 Carbon fiber orientation 14 Linearly polarized millimeter wave 15 Porous structure 16 Through hole

Claims (8)

熱可塑性樹脂および炭素繊維を含む熱可塑性樹脂炭素繊維複合材料からなり、該熱可塑性樹脂炭素繊維複合材料が炭素繊維を5〜50重量%含有し、繊維長が0.01〜0.5mmである炭素繊維の割合が全炭素繊維中60重量%以上である、ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材。 It is composed of a thermoplastic resin carbon fiber composite material containing a thermoplastic resin and carbon fibers, and the thermoplastic resin carbon fiber composite material contains 5 to 50% by weight of carbon fibers and has a fiber length of 0.01 to 0.5 mm. A thermoplastic resin carbon fiber composite material that shields millimeter waves and has a carbon fiber ratio of 60% by weight or more in the total carbon fibers. 前記熱可塑性樹脂が、少なくとも粘度の異なる第1の熱可塑性樹脂と第2の熱可塑性樹脂とを含み、熱可塑性樹脂の融点、またはガラス転移点、または軟化点から20〜50℃の高い所定温度において、第2の熱可塑性樹脂の粘度が第1の熱可塑性樹脂の粘度の3〜70倍である請求項1に記載のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材。 The thermoplastic resin contains at least a first thermoplastic resin and a second thermoplastic resin having different viscosities, and has a high predetermined temperature of 20 to 50 ° C. from the melting point of the thermoplastic resin, the glass transition point, or the softening point. The thermoplastic resin carbon fiber composite material according to claim 1, wherein the viscosity of the second thermoplastic resin is 3 to 70 times the viscosity of the first thermoplastic resin. 前記第1の熱可塑性樹脂および第2の熱可塑性樹脂がポリアミド、ポリプロピレン、アクロニトリルブタジエンスチレン共重合体、ポリフェニレンサルファイドである請求項1または2に記載のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材。 The thermoplastic resin carbon fiber composite according to claim 1 or 2, wherein the first thermoplastic resin and the second thermoplastic resin are polyamide, polypropylene, acronitrile butadiene styrene copolymer, and polyphenylene sulfide. Material. 前記熱可塑性樹脂炭素繊維複合材において、全炭素繊維中60重量%以上の炭素繊維が30°以内の一方向に配向している請求項1〜3のいずれかに記載のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材。 The heat for shielding millimeter waves according to any one of claims 1 to 3, wherein in the thermoplastic resin carbon fiber composite material, 60% by weight or more of the carbon fibers in the total carbon fibers are oriented in one direction within 30 °. Thermoplastic resin Carbon fiber composite material. 前記熱可塑性樹脂炭素繊維複合材において、炭素繊維の配向とミリ波の直線偏波方向が平行の時、炭素繊維の配向とミリ波の直線偏波方向が90°直交の時と比べて透過減衰量が10〜50dB小さい、請求項1〜4のいずれかに記載のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材。 In the thermoplastic resin carbon fiber composite material, when the carbon fiber orientation and the linear polarization direction of the millimeter wave are parallel, the transmission attenuation is compared with the case where the carbon fiber orientation and the linear polarization direction of the millimeter wave are orthogonal to each other by 90 °. The thermoplastic resin carbon fiber composite material that shields millimeter waves according to any one of claims 1 to 4, wherein the amount is as small as 10 to 50 dB. 前記熱可塑性樹脂炭素繊維複合材が、複数の貫通孔を有する多孔構造体であり、多孔構造体の厚さが0.05〜10mmで、貫通孔の孔径が0.1〜100mm、貫通孔の開口部面積の合計が多孔構造体に対して5〜75%である請求項1〜5のいずれかに記載のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材。 The thermoplastic resin carbon fiber composite material is a porous structure having a plurality of through holes, the thickness of the porous structure is 0.05 to 10 mm, the pore diameter of the through holes is 0.1 to 100 mm, and the through holes The thermoplastic resin carbon fiber composite material that shields millimeter waves according to any one of claims 1 to 5, wherein the total opening area is 5 to 75% with respect to the porous structure. 請求項1〜6のいずれかに記載のミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材を2枚以上重ね、かつ、炭素繊維の方向を0〜90度で交差することで、ミリ波を遮蔽する熱可塑性樹脂炭素繊維複合材からなる遮蔽部材。 By stacking two or more thermoplastic resin carbon fiber composite materials for shielding millimeter waves according to any one of claims 1 to 6 and intersecting the directions of carbon fibers at 0 to 90 degrees, millimeter waves are shielded. A shielding member made of a thermoplastic resin carbon fiber composite material. 全繊維中60重量%以上の繊維が、繊維長0.01〜0.5mmである炭素繊維を、5〜50重量%含有する熱可塑性樹脂ペレットを、押出機で溶融し、ダイスより一定方向に押出し、ロールに接触定着させる、熱可塑性樹脂炭素繊維複合材料の製造方法であって、前記熱可塑性樹脂が、少なくとも粘度の異なる第1の熱可塑性樹脂と第2の熱可塑性樹脂を含み、熱可塑性樹脂の融点、またはガラス転移点、または軟化点から20〜50℃の高い所定温度において、第2の熱可塑性樹脂の粘度が前記第1の熱可塑性樹脂の粘度の3〜70倍である熱可塑性樹脂炭素繊維複合材料の製造方法。
Thermoplastic resin pellets containing 5 to 50% by weight of carbon fibers in which 60% by weight or more of the total fibers have a fiber length of 0.01 to 0.5 mm are melted by an extruder and oriented in a certain direction from the die. A method for producing a thermoplastic resin carbon fiber composite material that is extruded and contact-fixed to a roll, wherein the thermoplastic resin contains at least a first thermoplastic resin and a second thermoplastic resin having different viscosities, and is thermoplastic. Thermoplasticity in which the viscosity of the second thermoplastic resin is 3 to 70 times the viscosity of the first thermoplastic resin at a predetermined temperature as high as 20 to 50 ° C. from the melting point of the resin, the glass transition point, or the softening point. A method for producing a resin carbon fiber composite material.
JP2019084996A 2019-04-26 2019-04-26 Thermoplastic resin carbon fiber composite material and shielding material for shielding millimeter waves Active JP7269788B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019084996A JP7269788B2 (en) 2019-04-26 2019-04-26 Thermoplastic resin carbon fiber composite material and shielding material for shielding millimeter waves
JP2022205218A JP7379649B2 (en) 2019-04-26 2022-12-22 Thermoplastic resin carbon fiber composite materials and shielding materials that shield millimeter waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019084996A JP7269788B2 (en) 2019-04-26 2019-04-26 Thermoplastic resin carbon fiber composite material and shielding material for shielding millimeter waves

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022205218A Division JP7379649B2 (en) 2019-04-26 2022-12-22 Thermoplastic resin carbon fiber composite materials and shielding materials that shield millimeter waves

Publications (2)

Publication Number Publication Date
JP2020180236A true JP2020180236A (en) 2020-11-05
JP7269788B2 JP7269788B2 (en) 2023-05-09

Family

ID=73023240

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019084996A Active JP7269788B2 (en) 2019-04-26 2019-04-26 Thermoplastic resin carbon fiber composite material and shielding material for shielding millimeter waves
JP2022205218A Active JP7379649B2 (en) 2019-04-26 2022-12-22 Thermoplastic resin carbon fiber composite materials and shielding materials that shield millimeter waves

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022205218A Active JP7379649B2 (en) 2019-04-26 2022-12-22 Thermoplastic resin carbon fiber composite materials and shielding materials that shield millimeter waves

Country Status (1)

Country Link
JP (2) JP7269788B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188797A (en) * 1997-12-26 1999-07-13 Toray Ind Inc Fiber reinforced resin molded product and its manufacture
JP2000218711A (en) * 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd Carbon fiber-containing thermoplastic resin molded product
JP2015007216A (en) * 2013-05-30 2015-01-15 ダイセルポリマー株式会社 Thermoplastic resin composition for molded article having millimeter wave blocking performance
JP2015078323A (en) * 2013-10-18 2015-04-23 東レプラスチック精工株式会社 Porous structure made of thermoplastic carbon fiber resin base material, and manufacturing method of the same
JP2019050848A (en) * 2017-09-12 2019-04-04 オムロン株式会社 Pulse wave measurement device, blood pressure measurement device, apparatus, pulse wave measurement method and blood pressure measurement method
JP2019161208A (en) * 2017-10-30 2019-09-19 ダイセルポリマー株式会社 Electromagnetic wave shielding molding
JP2020157472A (en) * 2019-03-19 2020-10-01 東レプラスチック精工株式会社 Mesh-like sheet and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185892A (en) 1999-12-27 2001-07-06 Kitagawa Ind Co Ltd Multilayered electric wave absorber
JPWO2017104771A1 (en) 2015-12-16 2018-10-04 Jnc株式会社 Composite sheet, electronic equipment
JP6379320B1 (en) 2018-07-03 2018-08-22 デクセリアルズ株式会社 Electromagnetic wave absorbing heat conducting sheet, method for producing electromagnetic wave absorbing heat conducting sheet, and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188797A (en) * 1997-12-26 1999-07-13 Toray Ind Inc Fiber reinforced resin molded product and its manufacture
JP2000218711A (en) * 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd Carbon fiber-containing thermoplastic resin molded product
JP2015007216A (en) * 2013-05-30 2015-01-15 ダイセルポリマー株式会社 Thermoplastic resin composition for molded article having millimeter wave blocking performance
JP2015078323A (en) * 2013-10-18 2015-04-23 東レプラスチック精工株式会社 Porous structure made of thermoplastic carbon fiber resin base material, and manufacturing method of the same
JP2019050848A (en) * 2017-09-12 2019-04-04 オムロン株式会社 Pulse wave measurement device, blood pressure measurement device, apparatus, pulse wave measurement method and blood pressure measurement method
JP2019161208A (en) * 2017-10-30 2019-09-19 ダイセルポリマー株式会社 Electromagnetic wave shielding molding
JP2020157472A (en) * 2019-03-19 2020-10-01 東レプラスチック精工株式会社 Mesh-like sheet and method for producing the same

Also Published As

Publication number Publication date
JP7379649B2 (en) 2023-11-14
JP2023052028A (en) 2023-04-11
JP7269788B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
Wang et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review
US9840609B2 (en) Thermoplastic resin composition for radar cover
EP3703479B1 (en) Composite material for shielding electromagnetic radiation, raw material for additive manufacturing methods and a product comprising the composite material as well as a method of manufacturing the product
US20130120959A1 (en) Dielectric material sheet and process for production thereof, and electromagnetic wave absorber
US10597508B2 (en) Electromagnetic wave shielding material and layered body for electromagnetic wave shielding
WO2020139569A1 (en) Wideband radome design
JP2019161208A (en) Electromagnetic wave shielding molding
KR20190092490A (en) Electromagnetic wave suppression sheet
WO2020213669A1 (en) Plate-shaped composite material
JP2020180236A (en) Thermoplastic resin carbon fiber composite material and shielding member shielding millimeter waves
KR102168863B1 (en) Electromagnetic-wave-absorbing composite sheet
US10355366B2 (en) Microwave absorbing composite for turbine blade applications
US20160264762A1 (en) Microwave shielding effectiveness based on polyvinyl alcohol/silver hybrid nanocomposites
WO2014196133A1 (en) Thermoplastic resin moulded article, and production method for thermoplastic resin moulded article
JP7306813B2 (en) Electromagnetic wave shielding molding
WO2021100566A1 (en) Laminated sheet
Amudhu et al. Low-Profile Polymer Composite Radar Absorber Embedded with Frequency Selective Surface
KR101948809B1 (en) Method for producing electromagnetic wave absorption structure and electromagnetic wave absorption structure
JP6155862B2 (en) Thermoplastic resin molded article and method for producing thermoplastic resin molded article
CN112795189A (en) Glass fiber composite material and preparation method and application thereof
Isari et al. Structural Design for EMI Shielding: From Underlying Mechanisms to Common Pitfalls
US20230077842A1 (en) Composite material and electromagnetic wave absorber made by molding same
Lam Broadband and wide-angle microwave absorption with resistive films printed on a flexible polyethylene terephthalate substrate
JP6123502B2 (en) Thermoplastic resin molded article and method for producing thermoplastic resin molded article
KR101455116B1 (en) Electromagnetic Wave Absorber For Car Radar and Fabrication Method of The Same.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7269788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150