JPH11188255A - Gas-liquid mixing tank - Google Patents

Gas-liquid mixing tank

Info

Publication number
JPH11188255A
JPH11188255A JP36617397A JP36617397A JPH11188255A JP H11188255 A JPH11188255 A JP H11188255A JP 36617397 A JP36617397 A JP 36617397A JP 36617397 A JP36617397 A JP 36617397A JP H11188255 A JPH11188255 A JP H11188255A
Authority
JP
Japan
Prior art keywords
gas
water
treated
float
mixing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36617397A
Other languages
Japanese (ja)
Inventor
Giichi Harada
義一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP36617397A priority Critical patent/JPH11188255A/en
Publication of JPH11188255A publication Critical patent/JPH11188255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the production efficiency of the water contg. dissolved gas or the decomposition efficiency of the component to be treated in a gas by a feed gas in a gas-liq. mixing tank for mixing the water to be treated and the small bubbles of gas to dissolve the gas in the water or to react the gas with the water by suppressing the liberation of the dissolved gas component from a gas-liq. interface in the mixing tank. SOLUTION: The floats 1 as many as to almost cover the gas-liq. interface 26 are floated on the water 22 to be treated. The water 22 injected under the water surface while the floats 1 are floated from a water feed pipe 8 is mixed with the small bubbles of a gas 25 supplied from a gas pipe 32 and a diffuser 23. Besides, the float 1 is hollowed, liq. and gas are introduced into the hollow part to control the sp.gr. of the float 1 to 1/2 of that of the water 22, and the upper half of the float 1 is floated in a gas phase 2 and the lower half positioned in the water 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、用水あるいは排水
等の水処理システムに使用する気液混合槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid mixing tank used in a water treatment system for service water or waste water.

【0002】[0002]

【従来の技術】水処理システムにおいて使用されている
ガス成分を被処理水中に溶解させるための気液混合槽、
または被処理水中の溶存成分とガス成分を反応させるた
めの気液混合槽の従来例を図4に示す。
2. Description of the Related Art A gas-liquid mixing tank for dissolving gas components used in a water treatment system into water to be treated.
Alternatively, FIG. 4 shows a conventional example of a gas-liquid mixing tank for reacting a dissolved component and a gas component in the water to be treated.

【0003】混合槽20内においては、ポンプ21によ
り給水管31から供給された被処理水22は、コンプレ
ッサ24により圧送されるとともに送気管32を介し
て、混合槽20内部の下方に設置された散気装置23か
ら小気泡として供給されるガス25と、気液混合され
る。
In the mixing tank 20, the water to be treated 22 supplied from a water supply pipe 31 by a pump 21 is pumped by a compressor 24 and installed below the inside of the mixing tank 20 via an air supply pipe 32. Gas-liquid mixing is performed with the gas 25 supplied as small bubbles from the air diffuser 23.

【0004】また、小気泡のガス25は被処理水22中
に溶解あるいは反応しながら、浮力により上方に向かっ
て移動し、気液境界面26を介してガス相27に放出さ
れ、排気管28を通って系外に排気される。なお、ガス
25を溶解あるいは反応させた処理水29は、排水管3
0を通して移送される。
The gas 25 of small bubbles moves upward by buoyancy while dissolving or reacting in the water 22 to be treated, and is released to the gas phase 27 through the gas-liquid boundary surface 26, and is discharged to the exhaust pipe 28. It is exhausted outside through the system. The treated water 29 in which the gas 25 is dissolved or reacted is supplied to the drain pipe 3
Transported through 0.

【0005】上記従来の気液混合槽において、被処理水
22とガス25の成分の反応が無い場合、すなわち供給
するガス25の成分を被処理水22中に溶解させる目的
で使用する場合には、被処理水22中におけるガス25
の成分の溶存濃度CA の上昇速度は(1)式に従う。
In the above-mentioned conventional gas-liquid mixing tank, when there is no reaction between the water to be treated 22 and the components of the gas 25, that is, when the components of the gas 25 to be supplied are used for dissolving in the water to be treated 22, Gas 25 in the water to be treated 22
Rate of increase in dissolved gas concentration C A of the components is in accordance with equation (1).

【0006】 dCA /dt=kL1(CX −C) ・・・(1) CX :供給されるガスの気相濃度に対して平衡となる溶
存ガス濃度 C : 溶存ガス濃度
[0006] dC A / dt = k L a 1 (C X -C) ··· (1) C X: dissolved gas concentration becomes balanced with respect to the gas phase concentration of the gas supplied C: Dissolved gas concentration

【0007】(1)式から明らかなように、ガス25の
溶存濃度(式中、CA と記す。)の上昇速度(式中、d
A /dtと記す。)は、液側総括物質移動係数(式
中、kL と記す。)および単位体積あたりの気液接触面
積(式中、a1 と記す。)に比例する。なお、ここで示
す気液接触面積a1 は、被処理水22の単位体積中に含
まれるガス25の気泡の表面積の和に相当する。
[0007] (1) As apparent from the equation (wherein, referred to as C A.) Dissolved concentration of the gas 25 increase rate (wherein the, d
Notation C A / dt. ) Is proportional to the liquid-side overall mass transfer coefficient (denoted as k L in the formula) and the gas-liquid contact area per unit volume (denoted as a 1 in the formula). Note that the gas-liquid contact area a 1 shown here corresponds to the sum of the surface areas of the bubbles of the gas 25 contained in the unit volume of the water 22 to be treated.

【0008】さらに、これに並行して被処理水22中に
溶解したガス25の成分は、混合槽20内の気液境界面
26からガス相27に発散し、被処理水22中における
ガス25の成分の溶存濃度CA を低下させる。なお、発
散にともなう溶存濃度CB の減少速度は、(2)式に従
う。
Further, in parallel with this, the components of the gas 25 dissolved in the water to be treated 22 diverge from the gas-liquid boundary surface 26 in the mixing tank 20 to the gas phase 27, and the gas 25 in the water to be treated 22 reducing the dissolved gas concentration C a of the component. Incidentally, the rate of decrease in the dissolved concentration C B due to divergence follows a (2).

【0009】 dCB /dt=kL2(C−CY) ・・・(2) C :溶存ガス濃度 CY :気液境界面上部のガス相に溜まった供給ガスの気
相濃度に対して平衡となる溶存ガス濃度
[0009] dC B / dt = k L a 2 (C-C Y) ··· (2) C: Dissolved gas concentration C Y: to the gas phase concentration of the feed gas collected in the gas phase of the gas-liquid boundary surface top Dissolved gas concentration at equilibrium

【0010】(2)式から明らかなように、溶存ガス2
5の発散にともなう溶存濃度(式中、CB と記す。)の
減少速度(式中、dCB /dtと記す。)は、液側総括
物質移動係数kL および単位体積あたりの気液接触面積
(式中、a2 と記す。)に比例する。なお、ここで示す
気液接触面積a2 は、気液境界面26の表面積を混合槽
20内に貯留する被処理水22の容積で除した値に近似
できる。
As apparent from the equation (2), the dissolved gas 2
Dissolved gas concentration due to divergence of 5 (wherein, referred to as C B.) Decreasing speed (in the formula, referred to as dC B / dt.) Of the liquid side overall mass transfer coefficient k L and the gas-liquid contact per unit volume area (in the formula, referred to as a 2.) proportional to. The gas-liquid contact area a 2 shown here can be approximated to a value obtained by dividing the surface area of the gas-liquid boundary surface 26 by the volume of the water to be treated 22 stored in the mixing tank 20.

【0011】したがって、ガス25の成分を被処理水2
2中に溶解させる目的で使用する従来の気液混合槽で
は、小気泡化させたガス25の成分の溶解による溶存濃
度CAの上昇と、気液境界面26からの発散にともなう
溶存濃度CB の低下が並行して起こり、この両現象と被
処理水22の供給量で処理水29におけるガス25の成
分の溶存濃度が決定される。
Therefore, the components of the gas 25 are
In a conventional gas-liquid mixing tank to be used for the purpose of dissolving in 2, the dissolved concentration C and increasing the dissolved concentration C A by dissolution of the components of the gas 25 obtained by the small aerated, due to the divergence from the gas-liquid boundary surface 26 The decrease in B occurs in parallel, and the dissolved concentration of the component of the gas 25 in the treated water 29 is determined by both these phenomena and the supply amount of the treated water 22.

【0012】次に、供給されるガス25の成分を被処理
水22と反応させる場合には、被処理水22中の溶存ガ
ス濃度CC の減少速度は、(3)式に従う。
[0012] Next, the components of the gas 25 to be supplied for reacting with the water to be treated 22, the rate of decrease in the dissolved gas concentration C C in the treated water 22, according to equation (3).

【0013】 dCC/dt=kL3(C−CY)+kC ・・・(3) k :ガス成分と溶液中の被処理成分の反応速度定数[0013] dC C / dt = k L a 3 (C-C Y) + kC ··· (3) k: reaction rate constant of the component to be treated in the gas component in solution

【0014】混合槽20内において反応をともなう場合
には、(3)式から明らかなように、被処理水22中に
溶解した溶存ガス25の成分は、被処理水22中の被処
理成分との反応による消耗(式中、kCと記す。)、お
よび気液境界面26からの発散による消耗(式中、kL
3(C−CY)と記す。)により、溶存濃度(式中、C
C と記す。)の低下が生じる。
When a reaction occurs in the mixing tank 20, as is apparent from the equation (3), the components of the dissolved gas 25 dissolved in the water to be treated 22 are different from the components to be treated in the water 22 to be treated. (Represented by kC in the formula) and by divergence from the gas-liquid interface 26 (k L in the formula)
a 3 (C-C Y ). ), The dissolved concentration (where C
Notation C ) Occurs.

【0015】したがって、溶存ガス25の発散にともな
う溶存濃度CC の減少量kL3(C−CY)は、単位体
積あたりの気液接触面積(式中、a3と記す。)、すな
わち気液境界面26の表面積を混合槽20内に貯留する
被処理水22の容積で除した値に比例し、前記(2)式
に示した気液間に反応をともなわない場合と同様の傾向
を示す。
[0015] Thus, the dissolved concentration due to the divergence of the dissolved gases 25 C C reduction k L a 3 of (C-C Y), the gas-liquid contact area per unit volume (in the formula, referred to as a 3.), That is, it is proportional to a value obtained by dividing the surface area of the gas-liquid boundary surface 26 by the volume of the water 22 to be stored in the mixing tank 20, and is the same as the case where there is no reaction between gas and liquid shown in the above equation (2). Show the trend.

【0016】[0016]

【発明が解決しようとする課題】上述の従来の気液混合
槽においては、ガス25の成分を被処理水22に溶解さ
せる場合、およびガス25の成分と被処理水22中の成
分を反応させる場合のいずれも、気液境界面26からの
溶存ガス25の発散が効率低下の原因となる。したがっ
て、過剰量のガス25の供給や被処理水22の混合槽2
0における滞留時間を延長することで処理性能を向上さ
せている。このため、過剰性能を備えたガス25の供給
源の設置や被処理水22の削減が必要となる。
In the above-mentioned conventional gas-liquid mixing tank, when the components of the gas 25 are dissolved in the water 22 to be treated, and the components of the gas 25 react with the components in the water 22 to be treated. In any case, the divergence of the dissolved gas 25 from the gas-liquid interface 26 causes a reduction in efficiency. Therefore, the supply of an excessive amount of gas 25 and the mixing tank 2
The processing performance is improved by extending the residence time at 0. For this reason, it is necessary to provide a supply source of the gas 25 having excessive performance and to reduce the water 22 to be treated.

【0017】そこで本発明は、気液混合槽における気液
境界面からの溶存ガス成分の発散を抑制することによ
り、ガス溶解水の製造効率や供給ガスによる液中の被処
理成分の分解効率を向上させることを目的とする。
Therefore, the present invention suppresses the emission of dissolved gas components from the gas-liquid interface in the gas-liquid mixing tank, thereby improving the production efficiency of the gas-dissolved water and the decomposition efficiency of the components to be treated in the liquid by the supply gas. The purpose is to improve.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に本発明では、混合槽内に被処理水を供給するととも
に、この被処理水中に小気泡としてガスを供給して、前
記被処理水に前記ガスを溶解あるいは反応させ、かつ前
記被処理水の上方に前記ガスのガス相が形成される気液
混合槽において、球状の浮き子を前記被処理水の水面全
体に浮遊させるとともに、前記浮き子の上半分が前記ガ
ス相中に、かつ下半分が前記被処理水中にそれぞれ位置
するようにする。これにより、混合槽内の気液境界面の
大部分が浮き子で遮蔽されるため、溶存ガス成分の発散
量に深く関与する気液境界面積を著しく低減できる。す
なわち、発散による溶存ガス成分の浪費を抑制すること
が可能となる。
In order to achieve the above object, according to the present invention, water to be treated is supplied into a mixing tank, and gas is supplied as small bubbles into the water to be treated. In the gas-liquid mixing tank in which the gas is dissolved or reacted, and a gas phase of the gas is formed above the water to be treated, a spherical float is floated on the entire surface of the water to be treated, The upper half of the float is located in the gas phase and the lower half is located in the water to be treated. Thereby, since most of the gas-liquid boundary surface in the mixing tank is shielded by the float, the gas-liquid boundary area that is deeply involved in the amount of the dissolved gas component diverged can be significantly reduced. That is, waste of the dissolved gas component due to divergence can be suppressed.

【0019】また、前記浮き子は中空に形成することが
好ましい。これにより、浮き子の素材にかかわらず、浮
き子の上半分がガス相中に、かつ下半分が被処理水中に
それぞれ位置させることができる。
Further, it is preferable that the float is formed hollow. Thereby, regardless of the material of the float, the upper half of the float can be located in the gas phase and the lower half can be located in the water to be treated.

【0020】さらに、前記浮き子は中空部内に液体およ
び気体が収納することが好ましい。これにより、浮き子
の素材を減少させることができる。
Further, it is preferable that the float has a hollow portion in which liquid and gas are stored. Thereby, the material of the float can be reduced.

【0021】また、前記被処理水を供給する給水管は、
前記混合槽内へ前記ガス相の位置から導入され、その先
端部が前記浮き子よりも下方の前記被処理水中に位置す
るようにすることが好ましい。これにより、被処理水の
水面に乱流を生じさせず、浮き子による気液境界面の遮
蔽効果を安定化させることができる。
The water supply pipe for supplying the water to be treated is
It is preferable that the gas phase is introduced into the mixing tank from the position of the gas phase, and that the tip is positioned in the water to be treated below the float. Thereby, the turbulence does not occur on the surface of the water to be treated, and the effect of shielding the gas-liquid boundary surface by the float can be stabilized.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図1、図2および図3を用いて説明する。これらの図
において、浮き子1は被処理水22およびガス25によ
って容易に侵されない素材、例えばポリエチレンあるい
はポリプロピレンなどの樹脂によって、滑らかな外壁2
を有する球状に形成される。なお、使用条件によって
は、外壁2の外表面にフッ素樹脂によるコーティングを
施して、耐食性を向上させることが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1, 2 and 3. FIG. In these figures, the float 1 is made of a material that is not easily affected by the water to be treated 22 and the gas 25, for example, a resin such as polyethylene or polypropylene, and is made of a smooth outer wall 2.
Is formed in a spherical shape having Depending on the use conditions, it is preferable to improve the corrosion resistance by coating the outer surface of the outer wall 2 with a fluororesin.

【0023】また、浮き子1は上半分がガス相27中に
位置し、下半分が被処理水22中に位置するように、被
処理水22に浮遊されており、しかも被処理水22の水
面全体、すなわち気液境界面26が浮き子1によってほ
ぼ隠れる程度の数量が浮遊されている。すなわち、浮き
子1の比重を被処理水22の比重のほぼ1/2に形成す
ることにより、浮き子1の上半分をガス相27に、下半
分を被処理水22中にそれぞれ位置させることができ
る。
The float 1 is suspended in the water 22 so that the upper half is located in the gas phase 27 and the lower half is located in the water 22. The whole water surface, that is, the gas-liquid boundary surface 26 is floated in such a quantity that it is almost hidden by the float 1. That is, by forming the specific gravity of the float 1 to be approximately half the specific gravity of the water 22 to be treated, the upper half of the float 1 is located in the gas phase 27 and the lower half thereof is located in the water 22 to be treated. Can be.

【0024】この場合、浮き子1の素材の比重が被処理
水22の比重のほぼ1/2程度である場合には、浮き子
1はその素材のみで球状に形成すればよいが、ポリエチ
レンあるいはポリプロピレンなどの樹脂で浮き子1を形
成する場合には、これら樹脂の比重は被処理水22の比
重にほぼ等しく、1/2よりもかなり大きいので、外壁
2内に中空部を形成すればよい。
In this case, when the specific gravity of the material of the float 1 is about 1/2 of the specific gravity of the water 22 to be treated, the float 1 may be formed into a spherical shape using only the material. When the float 1 is formed of a resin such as polypropylene, the specific gravity of these resins is substantially equal to the specific gravity of the water to be treated 22 and is considerably larger than 1/2, so that a hollow portion may be formed in the outer wall 2. .

【0025】また、図1に示すように、中空部内の一部
には、外壁2と反応を生じない被処理水22あるいは水
などの液体3を収納し、残りの部分には、外壁2および
液体3と反応を生じない安定な気体4、例えば空気、窒
素あるいはアルゴンなどの不活性ガスを収納すれば、外
壁2を薄くすることができるので、浮き子1の素材を減
少することができる。
As shown in FIG. 1, a part of the hollow portion accommodates a liquid 3 such as water to be treated 22 or water which does not react with the outer wall 2, and the remaining portion includes the outer wall 2 and the liquid 3. If a stable gas 4 that does not react with the liquid 3 is stored, for example, an inert gas such as air, nitrogen, or argon, the outer wall 2 can be made thinner, so that the material of the float 1 can be reduced.

【0026】また、被処理水22を供給する給水管8
は、混合槽20内へガス相27の位置から導入し、その
先端部を下降させて、浮き子1よりも下方の被処理水2
2中に位置するように配設される。なお、他の部分につ
いては、上記従来の気液混合槽と全く同様に構成される
ので、同一符号を付し、その説明は省略する。
The water supply pipe 8 for supplying the water to be treated 22
Is introduced into the mixing tank 20 from the position of the gas phase 27, and the leading end thereof is lowered so that the water 2 to be treated below the float 1 is removed.
2 are disposed. Since the other parts are configured in exactly the same manner as the conventional gas-liquid mixing tank, the same reference numerals are given and the description thereof is omitted.

【0027】かかる本発明の気液混合槽においては、被
処理水22は、外部の給水ポンプ21により給水管8を
介して、気液境界面26に乱れが生ずることなく、気液
境界面26下の被処理水22中に注入される。また、被
処理水22に溶解あるいは反応させるガス25は、外部
のコンプレッサ24により送気管32および散気装置2
3を介して、小気泡として被処理水22中に供給され
る。
In the gas-liquid mixing tank of the present invention, the water 22 to be treated is supplied to the gas-liquid interface 26 by the external water supply pump 21 via the water supply pipe 8 without disturbing the gas-liquid interface 26. It is injected into the to-be-treated water 22 below. The gas 25 to be dissolved or reacted with the water to be treated 22 is supplied by an external compressor 24 to an air supply pipe 32 and a diffuser 2.
3 and supplied as small bubbles into the water 22 to be treated.

【0028】小気泡のガス25は、被処理水22中に溶
解あるいは反応しながら浮力により上方へ移動し、未溶
解あるいは未反応のガス25は、浮き子1の浮遊する気
液境界面26に到達する。なお、被処理水22はガス2
5と気液混合された後に、排水管30を介して、処理水
29として外部に排水される。
The gas 25 of the small bubbles moves upward by buoyancy while dissolving or reacting in the water to be treated 22, and the undissolved or unreacted gas 25 moves to the gas-liquid interface 26 where the float 1 floats. To reach. The water to be treated 22 is gas 2
After being mixed with the gas 5, it is drained to the outside as treated water 29 via a drain pipe 30.

【0029】気液境界面26において、未溶解あるいは
未反応のガス25が被処理水22中からガス相27に放
出される状態を図3に示す。未溶解あるいは未反応の小
気泡のガス25は、浮き子1の外壁2に沿って気液境界
面26に向かって移動し、隣接する浮き子1の間に形成
されるわずかな気液接触面15からガス相27に放出さ
れる。
FIG. 3 shows a state in which the undissolved or unreacted gas 25 is released from the water to be treated 22 to the gas phase 27 at the gas-liquid boundary surface 26. Undissolved or unreacted small gas bubbles 25 move along the outer wall 2 of the float 1 toward the gas-liquid interface 26 and a slight gas-liquid contact surface formed between adjacent floats 1. From 15 is released to the gas phase 27.

【0030】また、ガス25の放出に十分な気液接触面
15がない場合には、未溶解あるいは未反応の小気泡の
ガス25は蓄積した気溜まり17となり、浮き子1を押
しのけてガス相27に放出される。このとき、押しのけ
られる浮き子1は、上半分がガス相27中に、かつ下半
分が被処理水22中にそれぞれ位置するように浮遊して
いるため、容易に気液境界面26から浮き上がることな
く、矢印18の方向に回転しながら押しのけられ、気溜
まり17の放出とともに元の位置に戻るので、無駄な気
液接触面15が形成されることなく、気液境界面26は
常に浮き子1によって遮蔽されることになる。
If there is not enough gas-liquid contact surface 15 to release gas 25, undissolved or unreacted small gas 25 becomes accumulated pool 17 and pushes float 1 to the gas phase. Released to 27. At this time, since the float 1 that is displaced floats so that the upper half is positioned in the gas phase 27 and the lower half is positioned in the water 22 to be treated, the float 1 can be easily lifted from the gas-liquid interface 26. However, the gas-liquid interface 15 is pushed back while rotating in the direction of the arrow 18 and returns to the original position together with the discharge of the air pocket 17, so that the gas-liquid boundary surface 26 is always kept on the float 1 without the useless gas-liquid contact surface 15 being formed. Will be shielded.

【0031】したがって、混合槽20内におけるガス2
5の溶解または気液反応を行わせる場合、前記(2)式
および(3)式に示した気液境界面26からの溶存ガス
25の成分の発散にともなう濃度低下に深く関与する気
液境界面26の表面積a2、a3 を常に小さな値に保持
できる。すなわち、気液境界面26からの溶存ガス25
の成分の発散を抑制することが可能となる。
Therefore, the gas 2 in the mixing tank 20
In the case of performing the dissolution or gas-liquid reaction of No. 5, the gas-liquid boundary which is deeply involved in the concentration decrease due to the emission of the component of the dissolved gas 25 from the gas-liquid boundary surface 26 shown in the equations (2) and (3) The surface areas a 2 and a 3 of the surface 26 can always be kept small. That is, the dissolved gas 25 from the gas-liquid interface 26
Divergence of the component can be suppressed.

【0032】[0032]

【発明の効果】以上、説明したように、本発明の気液混
合槽においては、浮き子を気液境界面の全面に浮遊させ
ることにより、気液境界面からガス相に発散する溶存ガ
ス成分を大幅に低減できるため、溶存ガス成分を効率的
に活用でき、ガス供給量の削減や処理性能の向上が可能
となる。
As described above, in the gas-liquid mixing tank of the present invention, the float is floated over the entire surface of the gas-liquid interface, so that the dissolved gas component diverging from the gas-liquid interface to the gas phase. , The dissolved gas component can be used efficiently, and the gas supply amount can be reduced and the processing performance can be improved.

【0033】また、浮き子は上半分がガス相中に、かつ
下半分が被処理水中にそれぞれ位置しているので、被処
理水中のガスが気液境界面からガス相に放出されるとき
に、浮き子が浮き上がって大量のガスが一度に放出され
ることがないので、ガスの発散を抑制することができ
る。さらに、隣接する複数の浮き子の接点が球の中心線
上に位置し、かつ気液境界面と一致するので、気液接触
面を最小にでき、しかも浮き子の数量も最小にすること
ができる。
Also, since the upper half of the float is located in the gas phase and the lower half is located in the water to be treated, the gas in the water to be treated is discharged from the gas-liquid interface to the gas phase. Since the float does not rise and a large amount of gas is not released at a time, gas divergence can be suppressed. Further, since the contacts of the plurality of adjacent floats are located on the center line of the sphere and coincide with the gas-liquid boundary surface, the gas-liquid contact surface can be minimized, and the number of floats can be minimized. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の気液混合槽に使用する浮き子の断面を
示す図である。
FIG. 1 is a view showing a cross section of a float used in a gas-liquid mixing tank of the present invention.

【図2】本発明の気液混合槽の断面を示す図である。FIG. 2 is a diagram showing a cross section of the gas-liquid mixing tank of the present invention.

【図3】本発明の気液混合槽内部の気液境界面における
未溶解ガスの脱気状態を示す図である。
FIG. 3 is a diagram showing a degassed state of an undissolved gas at a gas-liquid boundary surface inside a gas-liquid mixing tank of the present invention.

【図4】従来の気液混合槽の断面を示す図である。FIG. 4 is a diagram showing a cross section of a conventional gas-liquid mixing tank.

【符号の説明】[Explanation of symbols]

1 浮き子 2 外壁 3 液体 4 気体 8 給水管 20 混合槽 22 被処理水 25 ガス 26 気液境界面 27 ガス相 DESCRIPTION OF SYMBOLS 1 Float 2 Outer wall 3 Liquid 4 Gas 8 Water supply pipe 20 Mixing tank 22 Water to be treated 25 Gas 26 Gas-liquid interface 27 Gas phase

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 混合槽内に被処理水を供給するととも
に、この被処理水中に小気泡としてガスを供給して、前
記被処理水に前記ガスを溶解あるいは反応させ、かつ前
記被処理水の上方に前記ガスのガス相が形成される気液
混合槽において、球状の浮き子を前記被処理水の水面全
体に浮遊させるとともに、前記浮き子の上半分が前記ガ
ス相中に、かつ下半分が前記被処理水中にそれぞれ位置
するようにしたことを特徴とする気液混合槽。
1. A method for supplying water to be treated into a mixing tank, supplying gas as small bubbles into the water to be treated, dissolving or reacting the gas in the water to be treated, and In a gas-liquid mixing tank in which a gas phase of the gas is formed, a spherical float is floated on the entire surface of the water to be treated, and an upper half of the float is in the gas phase and a lower half. Are located in the for-treatment water, respectively.
【請求項2】 前記浮き子は中空に形成されたことを特
徴とする請求項1記載の気液混合槽。
2. The gas-liquid mixing tank according to claim 1, wherein the float is formed hollow.
【請求項3】 前記浮き子は中空部内に液体および気体
が収納されたことを特徴とする請求項2記載の気液混合
槽。
3. The gas-liquid mixing tank according to claim 2, wherein the float has a liquid and a gas stored in a hollow portion.
【請求項4】 前記被処理水を供給する給水管は、前記
混合槽内へ前記ガス相の位置から導入され、その先端部
が前記浮き子よりも下方の前記被処理水中に位置するよ
うにしたことを特徴とする請求項1及至3いずれか1項
に記載の気液混合槽。
4. A water supply pipe for supplying the water to be treated is introduced into the mixing tank from the position of the gas phase, and a tip of the water supply pipe is located in the water to be treated below the float. The gas-liquid mixing tank according to any one of claims 1 to 3, wherein:
JP36617397A 1997-12-25 1997-12-25 Gas-liquid mixing tank Pending JPH11188255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36617397A JPH11188255A (en) 1997-12-25 1997-12-25 Gas-liquid mixing tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36617397A JPH11188255A (en) 1997-12-25 1997-12-25 Gas-liquid mixing tank

Publications (1)

Publication Number Publication Date
JPH11188255A true JPH11188255A (en) 1999-07-13

Family

ID=18486105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36617397A Pending JPH11188255A (en) 1997-12-25 1997-12-25 Gas-liquid mixing tank

Country Status (1)

Country Link
JP (1) JPH11188255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387769B2 (en) 1999-04-16 2008-06-17 Minerals Technologies Inc. Method and apparatus for continuous gas liquid reactions
WO2009040330A2 (en) * 2007-09-25 2009-04-02 Urs Inauen Method for producing biogas
CN106110962A (en) * 2016-08-29 2016-11-16 徐州市安东肥业有限公司 A kind of Liqiud-gas mixing device in liquid fertilizer production
CN106237912A (en) * 2016-08-29 2016-12-21 徐州市安东肥业有限公司 A kind of Liqiud-gas mixing device produced for liquid fertilizer
KR20180061805A (en) * 2016-11-30 2018-06-08 지니스(주) Water purifier including nano bubble producing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387769B2 (en) 1999-04-16 2008-06-17 Minerals Technologies Inc. Method and apparatus for continuous gas liquid reactions
WO2009040330A2 (en) * 2007-09-25 2009-04-02 Urs Inauen Method for producing biogas
WO2009040330A3 (en) * 2007-09-25 2009-05-14 Urs Inauen Method for producing biogas
CN106110962A (en) * 2016-08-29 2016-11-16 徐州市安东肥业有限公司 A kind of Liqiud-gas mixing device in liquid fertilizer production
CN106237912A (en) * 2016-08-29 2016-12-21 徐州市安东肥业有限公司 A kind of Liqiud-gas mixing device produced for liquid fertilizer
KR20180061805A (en) * 2016-11-30 2018-06-08 지니스(주) Water purifier including nano bubble producing device

Similar Documents

Publication Publication Date Title
US5082518A (en) Sparger plate for ozone gas diffusion
US20110096618A1 (en) Method and apparatus for aeration
JPH11188255A (en) Gas-liquid mixing tank
US3953326A (en) Oxygen aeration system for contaminated liquids
JP3091583B2 (en) Method and apparatus for supplying oxygen to electroless plating solution
JPH0722371A (en) Wet cleaning device
JPH1015580A (en) Float type water area purifying apparatus
KR100943756B1 (en) Device for slimming of plate
JP3605683B2 (en) Wastewater treatment equipment using microorganisms
JP3894606B2 (en) Aeration apparatus for sewage aerobic treatment tank and aerobic treatment tank of sewage equipped with the aeration apparatus
JP2019076887A (en) Waste water treatment apparatus and waste water treatment method
CN211522322U (en) Etching case business turn over material structure
JP2000140823A (en) Submerged aeration device
JP2007146195A (en) Plating device
JP2005087830A (en) Membrane separation type activated sludge treatment apparatus
US20040183218A1 (en) Method and apparatus for gasifying a liquid
KR101924264B1 (en) Highly efficient water treatment system that recycles the escaping gas using its own pressure
JP2009254993A (en) Gas-liquid mixer
JPH08173987A (en) Aeration apparatus suitable for tank with high depth of water
JPH10128366A (en) Method for treating waste water using microorganism-immobilized carrier
JP2000140873A (en) Aerobic treating tank and sewage treating method using the same
JPS6051594A (en) Oxidizing treatment apparatus of sewage
JP2001104973A (en) Waste water treatment device
JP2004321899A (en) Biological treatment method and apparatus therefor
JPH0786223A (en) Liquid feed pipe and feeder of treatment liquid using this liquid feed pipe