JPH11186379A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11186379A
JPH11186379A JP9364912A JP36491297A JPH11186379A JP H11186379 A JPH11186379 A JP H11186379A JP 9364912 A JP9364912 A JP 9364912A JP 36491297 A JP36491297 A JP 36491297A JP H11186379 A JPH11186379 A JP H11186379A
Authority
JP
Japan
Prior art keywords
insulating film
groove
wiring layer
deposited
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9364912A
Other languages
Japanese (ja)
Inventor
Tadashi Ikeda
直史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9364912A priority Critical patent/JPH11186379A/en
Publication of JPH11186379A publication Critical patent/JPH11186379A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a semiconductor device having superior characteristics and high reliability, even when mixed with wide and narrow regions which are spaced by element isolating trenches. SOLUTION: This manufacturing method comprises the steps of etching a wiring layer 14, a gate insulation film 13 and a semiconductor substrate 11 to form element isolating trenches 15, depositing an insulation film 16 by biased ECR-CVD method, and etching back to retain this film 16 in the trenches 15 so as to make the wiring layer 14 thicker than the deposited insulation film 16. As a result, the surface of the insulation film 16 filling up the narrow-spaced trenches 15 can be made higher than that of the substrate 11 even after completely removing the insulation film 16 on the wiring layer 14 between the wide- spaced trenched 15 themselves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願の発明は、半導体基体の
溝に絶縁膜を埋めて素子間を絶縁分離する半導体装置の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device in which an insulating film is buried in a groove of a semiconductor substrate to insulate and isolate elements from each other.

【0002】[0002]

【従来の技術】半導体装置における素子分離方法として
は、選択酸化(LOCOS)法によって形成した酸化膜
による絶縁分離が従来から多く用いられている。しか
し、選択酸化法は、バーズビークによって大きな寸法変
換差を生じるので、高集積化が進められている半導体装
置の製造に適用することが困難になってきている。この
ため、寸法変換差の小さな素子分離方法として、半導体
基体に溝を形成し、この溝を埋める絶縁膜で素子間を絶
縁分離する方法が考えられている。
2. Description of the Related Art As an element isolation method in a semiconductor device, insulation isolation using an oxide film formed by a selective oxidation (LOCOS) method has been widely used. However, since the selective oxidation method causes a large dimensional conversion difference due to bird's beak, it has become difficult to apply the selective oxidation method to the manufacture of a semiconductor device whose integration is advanced. For this reason, as a device isolation method with a small dimensional conversion difference, a method of forming a groove in a semiconductor substrate and insulatingly separating elements with an insulating film filling the groove has been considered.

【0003】なお、溝を絶縁膜で埋めるためには、溝を
形成した半導体基体上に絶縁膜を堆積させるが、幅の狭
い溝と広い溝とが混在していると、堆積させた絶縁膜を
エッチバックするだけの簡単な工程では表面の平坦な絶
縁膜でこれらの溝を埋めることができず、化学的機械的
研磨等の複雑な工程が必要になる。そこで、幅が広くて
寸法変換差による支障が少ない素子分離領域には選択酸
化法を適用し、幅の狭い素子分離領域にのみ溝絶縁分離
法を適用する方法が考えられている。
In order to fill the groove with an insulating film, an insulating film is deposited on the semiconductor substrate on which the groove has been formed. However, if a narrow groove and a wide groove are mixed, the deposited insulating film is formed. However, these steps cannot be filled with an insulating film having a flat surface, and a complicated process such as chemical mechanical polishing is required. Therefore, a method has been considered in which a selective oxidation method is applied to an element isolation region having a large width and little hindrance due to a dimensional conversion difference, and a trench isolation method is applied only to an element isolation region having a small width.

【0004】この方法で製造された半導体装置では、選
択酸化法が適用されていない領域における素子分離用の
溝同士の間隔は狭いが、選択酸化法が適用された素子分
離領域の両側における素子分離用の溝同士についてはそ
れらの間隔が広いことになるので、素子分離用の溝同士
の間隔の狭い領域と広い領域とが混在していることにな
る。
In the semiconductor device manufactured by this method, the distance between the element isolation grooves in a region where the selective oxidation method is not applied is narrow, but the element isolation grooves on both sides of the element isolation region where the selective oxidation method is applied. Since the gaps between the trenches for isolation are wide, a region where the gap between the trenches for element isolation is narrow and a wide region are mixed.

【0005】図5は、この様な溝絶縁分離法と選択酸化
法との両方を用いるNAND型のフラッシュEEPRO
Mの製造方法の一従来例を示している。この一従来例で
は、図5(a)に示す様に、半導体基板11のうちで幅
の広い素子分離領域にすべき領域、例えば周辺回路部の
素子分離領域にすべき領域に選択酸化法で酸化膜12を
形成する。そして、酸化膜12に囲まれている領域、例
えばメモリセル部にすべき領域の半導体基板11の表面
にゲート絶縁膜13を形成する。
FIG. 5 shows a NAND flash EEPROM using both the trench isolation method and the selective oxidation method.
1 shows a conventional example of a method for manufacturing M. In this conventional example, as shown in FIG. 5A, a region to be a wide element isolation region in the semiconductor substrate 11, for example, a region to be an element isolation region in a peripheral circuit portion is selectively oxidized. An oxide film 12 is formed. Then, a gate insulating film 13 is formed on a surface of the semiconductor substrate 11 in a region surrounded by the oxide film 12, for example, a region to be a memory cell portion.

【0006】次に、図5(b)に示す様に、浮遊ゲート
を形成するための配線層14を酸化膜12上及びゲート
絶縁膜13上に堆積させる。そして、形成すべき溝のパ
ターンのレジスト(図示せず)をマスクにして、図5
(c)に示す様に、配線層14とゲート絶縁膜13と半
導体基板11とを連続的にエッチングして、半導体基板
11に溝15を形成する。なお、溝15中への絶縁膜の
埋め込みを容易にするために、溝15を多少先細り状に
して溝15の側面を傾斜させる。
Next, as shown in FIG. 5B, a wiring layer 14 for forming a floating gate is deposited on the oxide film 12 and the gate insulating film 13. Then, using a resist (not shown) of a groove pattern to be formed as a mask, FIG.
As shown in FIG. 1C, the wiring layer 14, the gate insulating film 13, and the semiconductor substrate 11 are continuously etched to form a groove 15 in the semiconductor substrate 11. In order to facilitate the embedding of the insulating film in the groove 15, the groove 15 is slightly tapered so that the side surface of the groove 15 is inclined.

【0007】次に、図5(d)に示す様に、減圧CVD
法等のコンフォーマルなCVD法で配線層14よりも厚
い絶縁膜16を堆積させて、溝15を絶縁膜16で埋め
る。そして、図5(e)に示す様に、絶縁膜16の全面
をエッチバックして、配線層14上の絶縁膜16を除去
すると共に溝15内に絶縁膜16を残す。その後、後述
する本願の発明の第1実施形態と実質的に同様の工程を
実行して、このフラッシュEEPROMを完成させる。
Next, as shown in FIG.
An insulating film 16 thicker than the wiring layer 14 is deposited by a conformal CVD method such as a method, and the trench 15 is filled with the insulating film 16. Then, as shown in FIG. 5E, the entire surface of the insulating film 16 is etched back to remove the insulating film 16 on the wiring layer 14 and leave the insulating film 16 in the groove 15. Thereafter, substantially the same steps as those of the first embodiment of the present invention to be described later are executed to complete the flash EEPROM.

【0008】図6は、溝絶縁分離法と選択酸化法との両
方を用いてNAND型のフラッシュEEPROMを製造
するために考えられている方法であって、図5に示した
一従来例とは別の方法を示している。この別の方法で
も、図6(a)〜(c)に示す様に、溝15を形成する
までは、図5に示した一従来例と実質的に同様の工程を
実行する。
FIG. 6 shows a method considered to manufacture a NAND flash EEPROM by using both the trench isolation method and the selective oxidation method, which is different from the conventional example shown in FIG. Another method is shown. Even in this alternative method, as shown in FIGS. 6A to 6C, until the groove 15 is formed, substantially the same steps as those in the conventional example shown in FIG. 5 are executed.

【0009】この別の方法では、その後、図6(d)に
示す様に、バイアスECR−CVD法等で配線層14よ
りも厚い絶縁膜16を堆積させて、溝15を絶縁膜16
で埋める。そして、図6(e)に示す様に、絶縁膜16
の全面のエッチバック以降の工程について、再び、図5
に示した一従来例と実質的に同様の工程を実行する。
In this alternative method, thereafter, as shown in FIG. 6D, an insulating film 16 thicker than the wiring layer 14 is deposited by a bias ECR-CVD method or the like, and the groove 15 is formed in the insulating film 16.
Fill with. Then, as shown in FIG.
The process after the etch back of the entire surface of FIG.
The steps substantially the same as those of the conventional example shown in FIG.

【0010】[0010]

【発明が解決しようとする課題】ところで、減圧CVD
法等のコンフォーマルなCVD法では、図5(d)に示
した様に、間隔の狭い溝15同士の間の配線層14上に
堆積させた絶縁膜16も、間隔の広い溝15同士の間つ
まり選択酸化法で形成した酸化膜12上の配線層14上
に堆積させた絶縁膜16も厚さが互いに略等しい。
By the way, low pressure CVD
In a conformal CVD method such as the CVD method, as shown in FIG. 5D, the insulating film 16 deposited on the wiring layer 14 between the grooves 15 having a small gap is also used for forming the insulating film 16 between the grooves 15 having a large gap. The thickness of the insulating film 16 deposited on the wiring layer 14 on the oxide film 12 formed by the selective oxidation method is substantially the same.

【0011】このため、配線層14上からこの配線層1
4よりも厚い絶縁膜16を完全に除去するために、絶縁
膜16のエッチバック時にある程度のオーバエッチング
を行っても、図5(e)に示した様に、溝15を埋める
絶縁膜16の表面を半導体基板11の表面よりも高くす
ることができる。
For this reason, the wiring layer 1
In order to completely remove the insulating film 16 thicker than 4, as shown in FIG. 5E, even if a certain degree of over-etching is performed at the time of etching back the insulating film 16, the insulating film 16 filling the groove 15 is not removed. The surface can be higher than the surface of the semiconductor substrate 11.

【0012】この結果、浮遊ゲートと制御ゲートとの間
の容量結合用の絶縁膜等をその後に形成しても、溝15
の開口部に接する素子形成領域の角部における電界の集
中を抑制することができる。従って、図5に示した一従
来例では、信頼性の高い半導体装置を製造することがで
きる。
As a result, even if an insulating film or the like for capacitive coupling between the floating gate and the control gate is subsequently formed, the trench 15
Concentration of the electric field at the corner of the element formation region in contact with the opening can be suppressed. Therefore, in the conventional example shown in FIG. 5, a highly reliable semiconductor device can be manufactured.

【0013】ところが、減圧CVD法等のコンフォーマ
ルなCVD法は、溝15の底面にも側面にも略同じ速さ
で絶縁膜16を堆積させるので、この絶縁膜16は溝1
5を底面及び側面の両方から略同じ速さで埋めていく。
このため、溝15の側面に堆積した絶縁膜16同士が溝
15の中央で接触した部分に、半導体基板11の表面に
垂直な方向の長い鬆(図示せず)が形成され易い。
However, in a conformal CVD method such as a low pressure CVD method, the insulating film 16 is deposited on the bottom face and the side face of the groove 15 at substantially the same speed.
5 is filled at substantially the same speed from both the bottom and side surfaces.
For this reason, a long void (not shown) in the direction perpendicular to the surface of the semiconductor substrate 11 is likely to be formed in a portion where the insulating films 16 deposited on the side surfaces of the groove 15 contact each other at the center of the groove 15.

【0014】絶縁膜16に鬆が形成されると、その後に
受けるエッチングで鬆の部分の絶縁膜16が除去され易
く、また、絶縁膜16の絶縁耐圧も低くなる。このた
め、図5に示した一従来例では、品質の優れた絶縁膜1
6で溝15を埋めることが困難で、特性の優れた半導体
装置を製造することが困難であった。
When voids are formed in the insulating film 16, the insulating film 16 in the voids is easily removed by the subsequent etching, and the withstand voltage of the insulating film 16 is lowered. For this reason, in the conventional example shown in FIG.
6, it was difficult to fill the groove 15, and it was difficult to manufacture a semiconductor device having excellent characteristics.

【0015】一方、バイアスECR−CVD法では、膜
の堆積と堆積させた膜のエッチングとが同時に進行する
が、図4(a)に示す様に、半導体基板の表面に対する
堆積面の角度によって堆積速度もエッチング速度も異な
っており、その結果、図4(b)に示す様に、実際の堆
積速度も角度によって異なっている。
On the other hand, in the bias ECR-CVD method, the deposition of the film and the etching of the deposited film proceed simultaneously. However, as shown in FIG. 4A, the deposition depends on the angle of the deposition surface with respect to the surface of the semiconductor substrate. Both the rate and the etching rate are different, and as a result, as shown in FIG. 4B, the actual deposition rate is also different depending on the angle.

【0016】つまり、半導体基板の表面と平行な面上に
は堆積させた通りの厚さの膜が残るのに対して、半導体
基板の表面と平行ではない面上には堆積させた厚さより
も薄い膜しか残らない。このため、特に図6に示した様
に先細り状の溝15では、傾斜している側面に絶縁膜1
6が堆積されにくくて、この絶縁膜16は溝15を側面
からよりも速く底面から埋めていく。
That is, a film having a thickness as deposited remains on a surface parallel to the surface of the semiconductor substrate, whereas a film which is not parallel to the surface of the semiconductor substrate has a thickness smaller than that of the deposited film. Only a thin film remains. Therefore, in particular, in the tapered groove 15 as shown in FIG.
The insulating film 16 fills the groove 15 from the bottom faster than the side.

【0017】従って、溝15の側面に堆積した絶縁膜1
6同士が溝15の中央で接触する状態が発生しにくく
て、溝15内の絶縁膜16に半導体基板11の表面に垂
直な方向の長い鬆が形成されにくい。このため、図6に
示した方法では、品質の優れた絶縁膜16で溝15を埋
めることができて、特性の優れた半導体装置を製造する
ことができる。
Therefore, the insulating film 1 deposited on the side surface of the groove 15
It is difficult for a state in which the 6 contact each other at the center of the groove 15, and a long void perpendicular to the surface of the semiconductor substrate 11 is hardly formed in the insulating film 16 in the groove 15. Therefore, according to the method shown in FIG. 6, the trench 15 can be filled with the insulating film 16 having excellent quality, and a semiconductor device having excellent characteristics can be manufactured.

【0018】ところが、溝15を底面から埋めていくC
VD法では、図6(d)に示した様に、間隔の狭い溝1
5同士の間の配線層14上には堆積させた厚さよりも薄
い絶縁膜16しか残らないのに対して、間隔の広い溝1
5同士の間つまり選択酸化法で形成した酸化膜12上の
配線層14上には堆積させた通りの厚さの絶縁膜16が
残る。
However, C filling the groove 15 from the bottom surface
In the VD method, as shown in FIG.
While only the insulating film 16 thinner than the deposited thickness remains on the wiring layer 14 between
An insulating film 16 having a thickness as deposited remains on the wiring layer 14 on the oxide film 12 formed by selective oxidation between the five layers.

【0019】このため、図6(e)に示した様に、溝1
5を埋める絶縁膜16の表面が半導体基板11の表面よ
りも高い位置になる様にしか絶縁膜16をエッチバック
しなければ、酸化膜12上の配線層14上にこの配線層
14よりも厚く堆積させた絶縁膜16がエッチングされ
ずに残る。
For this reason, as shown in FIG.
If the insulating film 16 is etched back only so that the surface of the insulating film 16 filling the layer 5 is higher than the surface of the semiconductor substrate 11, the insulating film 16 is thicker than the wiring layer 14 on the wiring layer 14 on the oxide film 12. The deposited insulating film 16 remains without being etched.

【0020】逆に、酸化膜12上の配線層14上からこ
の配線層14よりも厚い絶縁膜16が完全に除去される
まで絶縁膜16をエッチバックすると、溝15を埋める
絶縁膜16の表面が半導体基板11の表面よりも低くな
る。従って、図6に示した方法では、信頼性の高い半導
体装置を製造することが困難であった。
Conversely, when the insulating film 16 is etched back from the wiring layer 14 on the oxide film 12 until the insulating film 16 thicker than the wiring layer 14 is completely removed, the surface of the insulating film 16 filling the groove 15 is formed. Is lower than the surface of the semiconductor substrate 11. Therefore, it is difficult to manufacture a highly reliable semiconductor device by the method shown in FIG.

【0021】つまり、図5に示した一従来例でも図6に
示した方法でも、素子分離用の溝同士の間隔の狭い領域
と広い領域とが混在していても特性が優れており且つ信
頼性も高い半導体装置を製造することが困難であった。
従って、本願の発明は、素子分離用の溝同士の間隔の狭
い領域と広い領域とが混在していても特性が優れており
且つ信頼性も高い半導体装置を製造することができる方
法を提供することを目的としている。
That is, in both the conventional example shown in FIG. 5 and the method shown in FIG. 6, the characteristics are excellent and the reliability is excellent even if a narrow area and a wide area are separated from each other. It is difficult to manufacture a semiconductor device having high reliability.
Therefore, the invention of the present application provides a method capable of manufacturing a semiconductor device having excellent characteristics and high reliability even in a case where a narrow region and a wide region of an element isolation groove are mixed. It is intended to be.

【0022】[0022]

【課題を解決するための手段】請求項1に係る半導体装
置の製造方法では、配線層と第1の絶縁膜と半導体基体
とを溝分離領域のパターンにエッチングして半導体基体
に素子分離用の溝を形成するので、素子分離用の溝を配
線の少なくとも一部に対して自己整合的に形成すること
ができる。
In a method of manufacturing a semiconductor device according to the present invention, a wiring layer, a first insulating film, and a semiconductor substrate are etched into a pattern of a groove isolation region to form a semiconductor substrate with an element isolation element. Since the groove is formed, the groove for element isolation can be formed in a self-alignment manner with at least a part of the wiring.

【0023】また、素子分離用の溝を埋めるための第2
の絶縁膜を堆積させる際に、溝を側面からよりも速く底
面から埋めていく方法を採用するので、アスペクト比の
高い溝でも溝の側面に堆積した第2の絶縁膜同士が溝の
中央で接触する部分が形成されにくく、溝内の第2の絶
縁膜に鬆が形成されにくくて、品質の優れた絶縁膜で素
子分離用の溝を埋めることができる。
Also, a second for filling the trench for element isolation is provided.
When the insulating film is deposited, the method of filling the groove from the bottom faster than from the side is adopted. Therefore, even if the groove has a high aspect ratio, the second insulating films deposited on the side of the groove are located at the center of the groove. A contact portion is not easily formed, and a void is not easily formed in the second insulating film in the groove, so that the element isolation groove can be filled with a high-quality insulating film.

【0024】一方、溝を側面からよりも速く底面から埋
めていく方法では、間隔の狭い溝同士の間の配線層上に
は第2の絶縁膜が相対的に薄く堆積されるのに対して、
間隔の広い溝同士の間の配線層上には第2の絶縁膜が相
対的に厚く堆積される。このため、素子分離用の溝同士
の間隔の狭い領域と広い領域とが混在していると、配線
層上の第2の絶縁膜の厚さが不均一になる。
On the other hand, in the method of filling the trench from the bottom surface faster than from the side surface, the second insulating film is relatively thinly deposited on the wiring layer between the closely spaced trenches. ,
A second insulating film is relatively thickly deposited on the wiring layer between the widely spaced trenches. For this reason, if a narrow region and a wide region of the isolation trench are mixed, the thickness of the second insulating film on the wiring layer becomes uneven.

【0025】しかし、配線層と半導体基体とを同じパタ
ーンにエッチングして溝を形成するので配線層の厚さだ
け溝の深さが実質的に深く、しかも、第2の絶縁膜を堆
積させる厚さよりも厚く配線層を形成する。このため、
素子分離用の溝同士の間隔の狭い領域と広い領域とが混
在していて、間隔の広い溝同士の間の配線層上から相対
的に厚い絶縁膜を完全に除去するまでエッチバックを行
っても、間隔の狭い溝を埋める絶縁膜の表面を半導体基
体の表面よりも高くすることができる。
However, since the groove is formed by etching the wiring layer and the semiconductor substrate in the same pattern, the depth of the groove is substantially deep by the thickness of the wiring layer, and the thickness for depositing the second insulating film. A wiring layer is formed thicker than that. For this reason,
There is a mixture of narrow and wide areas between the isolation trenches, and etch back until the relatively thick insulating film is completely removed from the wiring layer between the widely spaced grooves. However, the surface of the insulating film that fills the narrow gaps can be higher than the surface of the semiconductor substrate.

【0026】請求項2に係る半導体装置の製造方法で
は、溝を側面からよりも速く底面から埋めていく方法で
堆積させる第2の絶縁膜と溝を底面及び側面から同じ速
さで埋めていく方法で堆積させる第3の絶縁膜との両方
で素子分離用の溝を埋めるので、溝を底面及び側面から
同じ速さで埋めていく方法で堆積させる第3の絶縁膜の
みで溝の全体を埋める場合に比べて、溝内の第2及び第
3の絶縁膜に鬆が形成されにくくて、品質の優れた絶縁
膜で素子分離用の溝を埋めることができる。
In the method of manufacturing a semiconductor device according to the second aspect, the second insulating film and the groove to be deposited by the method of filling the groove from the bottom faster than from the side are filled at the same speed from the bottom and the side. Since the trench for element isolation is filled with both the third insulating film deposited by the method and the entire surface of the groove only with the third insulating film deposited by the method of filling the groove from the bottom surface and the side surface at the same speed. As compared with the case where the trench is buried, voids are less likely to be formed in the second and third insulating films in the trench, and the trench for element isolation can be filled with a high quality insulating film.

【0027】また、溝を底面及び側面から同じ速さで埋
めていく方法では、間隔の狭い溝同士の間の配線層上に
堆積させる第3の絶縁膜も、間隔の広い溝同士の間の配
線層上に堆積させる第3の絶縁膜も厚さが互いに略等し
い。このため、素子分離用の溝同士の間隔の狭い領域と
広い領域とが混在していても、配線層上の第3の絶縁膜
の厚さは均一に近く、間隔の狭い溝同士の間の配線層上
と間隔の広い溝同士の間の配線層上とにおける絶縁膜の
厚さの差は第2の絶縁膜のみに起因する。
In the method of filling the trenches at the same speed from the bottom surface and the side surfaces, the third insulating film deposited on the wiring layer between the closely spaced trenches also has a large gap between the widely spaced trenches. The third insulating films deposited on the wiring layer also have substantially the same thickness. For this reason, even if a narrow region and a wide region of the trench for element isolation are mixed, the thickness of the third insulating film on the wiring layer is nearly uniform, and the gap between the narrow trenches is small. The difference in the thickness of the insulating film between the wiring layer and the wiring layer between the widely-spaced grooves is caused only by the second insulating film.

【0028】そして、間隔の広い溝同士の間の配線層上
から絶縁膜を完全に除去するために、第2の絶縁膜を堆
積させる厚さよりも厚く配線層を形成するが、第2の絶
縁膜のみで溝を埋める場合に比べて第2の絶縁膜が薄く
てよい。従って、配線層の厚さの選択可能な範囲が広
く、間隔の広い溝同士の間の配線層上から絶縁膜を完全
に除去するためのエッチバック量の選択可能な範囲も広
くて、間隔の狭い溝を埋める絶縁膜の表面を半導体基体
の表面よりも容易に高くすることができる。
In order to completely remove the insulating film from the wiring layer between the widely spaced trenches, the wiring layer is formed thicker than the second insulating film is deposited. The second insulating film may be thinner than the case where the groove is filled only with the film. Accordingly, the selectable range of the thickness of the wiring layer is wide, and the selectable range of the etch-back amount for completely removing the insulating film from above the wiring layer between the widely-spaced grooves is also wide. The surface of the insulating film filling the narrow groove can be easily made higher than the surface of the semiconductor substrate.

【0029】[0029]

【発明の実施の形態】以下、溝絶縁分離法と選択酸化法
との両方を用いるNAND型のフラッシュEEPROM
の製造方法に適用した本願の発明の第1及び第2実施形
態を、図1〜3を参照しながら説明する。図1、2が、
第1実施形態を示している。この第1実施形態では、図
1(a)に示す様に、半導体基板11のうちで幅の広い
素子分離領域にすべき領域に選択酸化法で酸化膜12を
形成し、この酸化膜12に囲まれている半導体基板11
の表面にゲート絶縁膜13を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A NAND flash EEPROM using both a trench isolation method and a selective oxidation method will be described below.
The first and second embodiments of the invention of the present application applied to the manufacturing method will be described with reference to FIGS. 1 and 2
1 shows a first embodiment. In the first embodiment, as shown in FIG. 1A, an oxide film 12 is formed in a region of a semiconductor substrate 11 to be a wide element isolation region by a selective oxidation method. Enclosed semiconductor substrate 11
The gate insulating film 13 is formed on the surface of the substrate.

【0030】次に、図1(b)に示す様に、浮遊ゲート
を形成するための配線層14としての多結晶シリコン層
を、酸化膜12上及びゲート絶縁膜13上にCVD法で
堆積させる。配線層14の厚さは、後に形成する溝15
を埋めるために堆積させる絶縁膜16よりも厚くする。
Next, as shown in FIG. 1B, a polycrystalline silicon layer as a wiring layer 14 for forming a floating gate is deposited on the oxide film 12 and the gate insulating film 13 by a CVD method. . The thickness of the wiring layer 14 depends on the thickness of the groove 15 to be formed later.
Is thicker than the insulating film 16 deposited to fill the gap.

【0031】次に、形成すべき溝のパターンのレジスト
(図示せず)をマスクにして、図1(c)に示す様に、
配線層14とゲート絶縁膜13と半導体基板11とを連
続的にドライエッチングして、深さ300〜500nm
程度で幅250nm程度の溝15を半導体基板11に形
成する。なお、溝15中への絶縁膜16の埋め込みを容
易にするために、溝15を多少先細り状にして溝15の
側面を傾斜させる。
Next, using a resist (not shown) of a groove pattern to be formed as a mask, as shown in FIG.
The wiring layer 14, the gate insulating film 13, and the semiconductor substrate 11 are continuously dry-etched to a depth of 300 to 500 nm.
A groove 15 having a width of about 250 nm is formed in the semiconductor substrate 11. In order to facilitate the embedding of the insulating film 16 in the groove 15, the groove 15 is slightly tapered and the side surface of the groove 15 is inclined.

【0032】また、ドライエッチングによって溝15の
内面に生じた損傷部を除去するために、厚さ10〜30
nm程度の酸化膜(図示せず)を熱酸化で溝15の内面
に形成する。但し、後に形成するソース・ドレインの接
合におけるリーク電流を低減させるためには、できる限
り厚い酸化膜を溝15の内面に形成することが好まし
い。
Further, in order to remove a damaged portion formed on the inner surface of the groove 15 by dry etching, a thickness of 10 to 30
An oxide film (not shown) of about nm is formed on the inner surface of the groove 15 by thermal oxidation. However, in order to reduce the leak current at the source / drain junction formed later, it is preferable to form an oxide film as thick as possible on the inner surface of the groove 15.

【0033】次に、図1(d)に示す様に、バイアスE
CR−CVD法で絶縁膜16を堆積させて、溝15を絶
縁膜16で埋める。バイアスECR−CVD法では、既
述の様に、間隔の狭い溝15同士の間の配線層14上に
は堆積させた厚さよりも薄い絶縁膜16しか残らないの
に対して、間隔の広い溝15同士の間つまり選択酸化法
で形成した酸化膜12上の配線層14上には堆積させた
通りの厚さの絶縁膜16が残る。
Next, as shown in FIG.
An insulating film 16 is deposited by CR-CVD, and the groove 15 is filled with the insulating film 16. In the bias ECR-CVD method, as described above, only the insulating film 16 having a smaller thickness than the deposited thickness remains on the wiring layer 14 between the grooves 15 having a small gap, whereas An insulating film 16 of the thickness as deposited remains between the layers 15, that is, on the wiring layer 14 on the oxide film 12 formed by the selective oxidation method.

【0034】また、バイアスECR−CVD法では、既
述の様に絶縁膜16は側面から埋める速度よりも速い速
度で底面から溝15を埋めていくので、溝15を埋める
ために必要な絶縁膜16の厚さは、溝15の幅に必ずし
も依存しない。
In the bias ECR-CVD method, as described above, the insulating film 16 fills the groove 15 from the bottom surface at a higher speed than the speed of filling from the side surface. The thickness of 16 does not necessarily depend on the width of groove 15.

【0035】しかし、溝15の側面からも絶縁膜16が
ある程度は成長するので、幅の狭い溝15は側面から成
長した絶縁膜16によっても埋められる。このため、深
さ300〜500nm程度で幅250nm程度の溝15
を埋めるためには、厚さ300〜400nm程度の絶縁
膜16を堆積させればよい。
However, since the insulating film 16 grows to some extent also from the side surface of the groove 15, the narrow groove 15 is filled with the insulating film 16 grown from the side surface. Therefore, a groove 15 having a depth of about 300 to 500 nm and a width of about 250 nm is used.
May be deposited by depositing an insulating film 16 having a thickness of about 300 to 400 nm.

【0036】次に、図1(e)に示す様に、絶縁膜16
の全面をエッチバックして、配線層14上の絶縁膜16
を除去すると共に溝15内に絶縁膜16を残す。上述の
様に配線層14は絶縁膜16よりも厚いので、下記の関
係を満たすエッチバック量が必ず存在する。絶縁膜16
の厚さ<エッチバック量<配線層14の厚さ
Next, as shown in FIG.
Is etched back to form an insulating film 16 on the wiring layer 14.
And the insulating film 16 is left in the groove 15. As described above, since the wiring layer 14 is thicker than the insulating film 16, there is always an etchback amount satisfying the following relationship. Insulating film 16
Thickness <etchback amount <thickness of wiring layer 14

【0037】このため、配線層14上から絶縁膜16を
完全に除去するために、この絶縁膜16のエッチバック
時にある程度のオーバエッチングを行っても、図1
(e)に示した様に、溝15を埋める絶縁膜16の表面
を半導体基板11の表面よりも高くすることができる。
Therefore, in order to completely remove the insulating film 16 from the wiring layer 14, even if a certain degree of over-etching is performed at the time of etching back the insulating film 16, FIG.
As shown in (e), the surface of the insulating film 16 filling the groove 15 can be higher than the surface of the semiconductor substrate 11.

【0038】次に、図2に示す様に、浮遊ゲートと制御
ゲートとの間の容量結合用の絶縁膜17を全面に形成
し、選択トランジスタの配線層14に達する接続孔18
を絶縁膜17に形成する。そして、制御ゲートを形成す
るための配線層21としてのシリサイド層を絶縁膜17
上にCVD法で堆積させ、制御ゲートのパターンのレジ
スト(図示せず)をマスクにして、配線層21と絶縁膜
17と配線層14とを連続的にエッチングする。
Next, as shown in FIG. 2, an insulating film 17 for capacitive coupling between the floating gate and the control gate is formed on the entire surface, and a connection hole 18 reaching the wiring layer 14 of the select transistor.
Is formed on the insulating film 17. Then, a silicide layer as a wiring layer 21 for forming a control gate is
The wiring layer 21, the insulating film 17, and the wiring layer 14 are successively etched using a resist (not shown) of a control gate pattern as a mask.

【0039】その後、配線層21や絶縁膜16や酸化膜
12等をマスクにして不純物をイオン注入して、半導体
基板11にソース・ドレイン22を形成する。そして、
配線層21やソース・ドレイン22等を覆う層間絶縁膜
23を形成し、層間絶縁膜23の表面を平坦化した後、
選択トランジスタの一方のソース・ドレイン22に達す
る接続孔24を層間絶縁膜23及びゲート絶縁膜13に
形成する。
Thereafter, impurities are ion-implanted using the wiring layer 21, the insulating film 16, the oxide film 12 and the like as a mask, thereby forming the source / drain 22 on the semiconductor substrate 11. And
After forming an interlayer insulating film 23 covering the wiring layer 21 and the source / drain 22 and flattening the surface of the interlayer insulating film 23,
A connection hole 24 reaching one source / drain 22 of the select transistor is formed in the interlayer insulating film 23 and the gate insulating film 13.

【0040】その後、接続孔24をプラグ25で埋め、
このプラグ25に接続するビット線26を金属配線層で
形成する。そして、ビット線26等をパッシベーション
膜27で覆って、選択トランジスタ31と記憶トランジ
スタ32とを有するこのフラッシュEEPROM33を
完成させる。
Thereafter, the connection hole 24 is filled with a plug 25,
The bit line 26 connected to the plug 25 is formed of a metal wiring layer. Then, the bit line 26 and the like are covered with the passivation film 27 to complete the flash EEPROM 33 having the selection transistor 31 and the storage transistor 32.

【0041】このフラッシュEEPROM33では、配
線層14が厚いので、図2(a)からも明らかな様に、
配線層14の上面のみならず側面にも絶縁膜17が形成
されている。このため、ゲート絶縁膜13による結合容
量と絶縁膜17による結合容量との和に対する絶縁膜1
7による結合容量の比率が高くて、書き込み/消去特性
が優れている。
In this flash EEPROM 33, since the wiring layer 14 is thick, as is clear from FIG.
The insulating film 17 is formed not only on the upper surface but also on the side surfaces of the wiring layer 14. For this reason, the insulating film 1 with respect to the sum of the coupling capacitance of the gate insulating film 13 and the coupling capacitance of the insulating film 17
7, the ratio of the coupling capacitance is high, and the write / erase characteristics are excellent.

【0042】図3が、第2実施形態を示している。この
第2実施形態でも、図3(a)〜(c)に示す様に、溝
15を形成するまでは、図1、2に示した第1実施形態
と実質的に同様の工程を実行する。この第2実施形態で
は、その後、図3(d)に示す様に、バイアスECR−
CVD法で厚さ200〜300nmの絶縁膜34を堆積
させて、溝15の途中までを絶縁膜34で埋める。な
お、配線層14はこの絶縁膜34よりも厚く形成してお
く。
FIG. 3 shows a second embodiment. Also in the second embodiment, as shown in FIGS. 3A to 3C, steps similar to those of the first embodiment shown in FIGS. . In the second embodiment, thereafter, as shown in FIG.
An insulating film 34 having a thickness of 200 to 300 nm is deposited by a CVD method, and the insulating film 34 is buried halfway of the groove 15. Note that the wiring layer 14 is formed thicker than the insulating film 34.

【0043】次に、図3(e)に示す様に、減圧CVD
法等のコンフォーマルなCVD法で厚さ200〜400
nmの絶縁膜35を堆積させる。この時、既に溝15の
途中までを絶縁膜34で埋めてあるので、溝15が深く
ても鬆の発生を抑制しつつ絶縁膜35で溝15の残りを
埋めることができる。
Next, as shown in FIG.
200-400 thickness by conformal CVD such as CVD
An insulating film 35 of nm is deposited. At this time, since the insulating film 34 has already buried a part of the groove 15, the remaining part of the groove 15 can be buried with the insulating film 35 while suppressing generation of voids even if the groove 15 is deep.

【0044】次に、図3(f)に示す様に、絶縁膜3
5、34の全面をエッチバックして、配線層14上の絶
縁膜35、34を除去すると共に溝15内に絶縁膜3
5、34を残す。上述の様に配線層14は絶縁膜34よ
りも厚いので、下記の関係を満たすエッチバック量が必
ず存在する。
Next, as shown in FIG.
5 and 34 are etched back to remove the insulating films 35 and 34 on the wiring layer 14 and to form the insulating film 3 in the grooves 15.
Leave 5, 34. Since the wiring layer 14 is thicker than the insulating film 34 as described above, there is always an etchback amount that satisfies the following relationship.

【0045】絶縁膜34の厚さ+絶縁膜35の厚さ<エ
ッチバック量<配線層14の厚さ+絶縁膜35の厚さ この関係を変形すると、次の関係になる。絶縁膜34の
厚さ<エッチバック量−絶縁膜35の厚さ<配線層14
の厚さ
The thickness of the insulating film 34 + the thickness of the insulating film 35 <the amount of etchback <the thickness of the wiring layer 14 + the thickness of the insulating film 35 When this relationship is modified, the following relationship is obtained. Thickness of insulating film 34 <etchback amount−thickness of insulating film 35 <wiring layer 14
Thickness

【0046】このため、配線層14上から絶縁膜35、
34を完全に除去するために、この絶縁膜35、34の
エッチバック時にある程度のオーバエッチングを行って
も、図3(f)に示した様に、溝15を埋める絶縁膜3
5、34の表面を半導体基板11の表面よりも高くする
ことができる。
For this reason, the insulating film 35,
Even if a certain degree of over-etching is performed at the time of etching back the insulating films 35 and 34 to completely remove the insulating film 34, the insulating film 3 filling the groove 15 as shown in FIG.
The surfaces of 5 and 34 can be made higher than the surface of the semiconductor substrate 11.

【0047】しかも、図1、2に示した第1実施形態で
は絶縁膜16で溝15の全体を埋めるが、この第2実施
形態では絶縁膜34で溝15の途中までしか埋めないの
で、絶縁膜34は絶縁膜16よりも薄くてよい。このた
め、上記の関係から、配線層14の厚さの選択可能な範
囲が広く、エッチバック量の選択可能な範囲も広い。こ
の後は、図示されてはいないが、上述の第1実施形態に
おける図2の工程と実質的に同様の工程を実行して、フ
ラッシュEEPROMを完成させる。
Moreover, in the first embodiment shown in FIGS. 1 and 2, the entire groove 15 is filled with the insulating film 16, but in the second embodiment, the insulating film 34 is filled only halfway through the groove 15. The film 34 may be thinner than the insulating film 16. Therefore, from the above relationship, the selectable range of the thickness of the wiring layer 14 is wide, and the selectable range of the etchback amount is also wide. Thereafter, although not shown, substantially the same steps as those of FIG. 2 in the above-described first embodiment are executed to complete the flash EEPROM.

【0048】なお、以上の第1及び第2実施形態は溝絶
縁分離法と選択酸化法との両方を用いるNAND型のフ
ラッシュEEPROMの製造方法に本願の発明を適用し
たものであるが、選択酸化法を用いていなくても、素子
形成領域自体に幅の狭い領域と広い領域とが混在してい
るために素子分離用の溝同士の間隔の狭い領域と広い領
域とが混在している半導体装置の製造方法にも本願の発
明を適用することができる。
In the first and second embodiments, the present invention is applied to a method of manufacturing a NAND flash EEPROM using both the trench isolation method and the selective oxidation method. Even if the method is not used, a semiconductor device in which a narrow region and a wide region are mixed in an element forming region itself, so that a narrow region and a wide region of an interval between element isolation grooves are mixed. The invention of the present application can also be applied to the manufacturing method of (1).

【0049】また、NAND型のフラッシュEEPRO
Mのみならず、NOR型のフラッシュEEPROMや、
フラッシュEEPROM以外の不揮発性半導体記憶装置
や、不揮発性半導体記憶装置以外の半導体装置の製造方
法にも本願の発明を適用することができる。
Also, a NAND flash EEPROM is used.
Not only M but also NOR type flash EEPROM,
The invention of the present application can be applied to a nonvolatile semiconductor memory device other than the flash EEPROM and a method of manufacturing a semiconductor device other than the nonvolatile semiconductor memory device.

【0050】[0050]

【発明の効果】請求項1に係る半導体装置の製造方法で
は、素子分離用の溝を配線の少なくとも一部に対して自
己整合的に形成することができるので、集積度の高い半
導体装置を製造することができる。また、品質の優れた
絶縁膜で素子分離用の溝を埋めることができるので、特
性の優れた半導体装置を製造することができる。
According to the method of manufacturing a semiconductor device according to the first aspect of the present invention, a trench for element isolation can be formed in a self-alignment manner with at least a part of a wiring, thereby manufacturing a semiconductor device with a high degree of integration. can do. Further, since the trench for element isolation can be filled with a high quality insulating film, a semiconductor device having excellent characteristics can be manufactured.

【0051】また、素子分離用の溝同士の間隔の狭い領
域と広い領域とが混在していて、間隔の広い溝同士の間
の配線層上から相対的に厚い絶縁膜を完全に除去するま
でエッチバックを行っても、間隔の狭い溝を埋める絶縁
膜の表面を半導体基体の表面よりも高くすることができ
るので、素子形成領域の角部における電界の集中が抑制
されて、信頼性の高い半導体装置を製造することができ
る。
In addition, a narrow region and a wide region of the isolation trench are mixed, and the relatively thick insulating film is completely removed from the wiring layer between the widely spaced trenches. Even when the etch back is performed, the surface of the insulating film that fills the narrow grooves can be made higher than the surface of the semiconductor substrate, so that the concentration of the electric field at the corners of the element formation region is suppressed, and high reliability is achieved. A semiconductor device can be manufactured.

【0052】請求項2に係る半導体装置の製造方法で
は、品質の優れた絶縁膜で素子分離用の溝を埋めること
ができるので、特性の優れた半導体装置を製造すること
ができる。また、素子分離用の溝同士の間隔の狭い領域
と広い領域とが混在していても、間隔の狭い溝を埋める
絶縁膜の表面を半導体基体の表面よりも容易に高くする
ことができるので、素子形成領域の角部における電界の
集中が抑制されて信頼性の高い半導体装置を容易に製造
することができる。
In the method of manufacturing a semiconductor device according to the second aspect, since the trench for element isolation can be filled with an insulating film having excellent quality, a semiconductor device having excellent characteristics can be manufactured. Further, even if a narrow region and a wide region of the element isolation grooves are mixed, the surface of the insulating film filling the narrow grooves can be easily made higher than the surface of the semiconductor substrate. The concentration of the electric field at the corners of the element formation region is suppressed, and a highly reliable semiconductor device can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の発明の第1実施形態を順次に示す側断面
図である。
FIG. 1 is a side sectional view sequentially showing a first embodiment of the present invention.

【図2】第1実施形態で製造した半導体装置を示してお
り、(a)は(c)のA−A線に沿う位置における側断
面図、(b)は(c)のB−B線に沿う位置における側
断面図、(c)は平面図である。
FIGS. 2A and 2B show the semiconductor device manufactured in the first embodiment, wherein FIG. 2A is a side sectional view taken along a line AA in FIG. 2C, and FIG. 2B is a line BB in FIG. (C) is a plan view at a position along the line.

【図3】本願の発明の第2実施形態を順次に示す側断面
図である。
FIG. 3 is a side sectional view sequentially showing a second embodiment of the present invention.

【図4】バイアスECR−CVD法における堆積速度及
びエッチング速度を示すグラフである。
FIG. 4 is a graph showing a deposition rate and an etching rate in a bias ECR-CVD method.

【図5】本願の発明の一従来例を順次に示す側断面図で
ある。
FIG. 5 is a side sectional view sequentially showing one conventional example of the invention of the present application.

【図6】一従来例とは別の方法を順次に示す側断面図で
ある。
FIG. 6 is a side sectional view sequentially showing another method different from one conventional example.

【符号の説明】[Explanation of symbols]

11…半導体基板(半導体基体)、13…ゲート絶縁膜
(第1の絶縁膜)、14…配線層、15…溝、16…絶
縁膜(第2の絶縁膜)、33…フラッシュEEPROM
(半導体装置)、34…絶縁膜(第2の絶縁膜)、35
…絶縁膜(第3の絶縁膜)
11 semiconductor substrate (semiconductor substrate), 13 gate insulating film (first insulating film), 14 wiring layer, 15 groove, 16 insulating film (second insulating film), 33 flash EEPROM
(Semiconductor device), 34 ... insulating film (second insulating film), 35
... Insulating film (third insulating film)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 29/788 H01L 29/78 371 29/792 // H01L 21/316 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 29/788 H01L 29/78 371 29/792 // H01L 21/316

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基体上に第1の絶縁膜と配線層と
を順次に形成する工程と、 前記配線層と前記第1の絶縁膜と前記半導体基体とを溝
分離領域のパターンにエッチングして前記半導体基体に
素子分離用の溝を形成する工程と、 前記溝を側面からよりも速く底面から埋めていく方法で
前記溝内及び前記配線層上に第2の絶縁膜を堆積させて
前記溝を前記第2の絶縁膜で埋める工程と、 前記第2の絶縁膜をエッチバックして前記配線層上の前
記第2の絶縁膜を除去すると共に前記溝内に前記第2の
絶縁膜を残す工程とを具備する半導体装置の製造方法に
おいて、 前記第2の絶縁膜を堆積させる厚さよりも厚く前記配線
層を形成することを特徴とする半導体装置の製造方法。
A step of sequentially forming a first insulating film and a wiring layer on a semiconductor substrate; and etching the wiring layer, the first insulating film and the semiconductor substrate into a pattern of a trench isolation region. Forming a trench for element isolation in the semiconductor substrate by depositing a second insulating film in the trench and on the wiring layer by a method of filling the trench from the bottom faster than from the side surface, Filling the groove with the second insulating film; and etching back the second insulating film to remove the second insulating film on the wiring layer and to place the second insulating film in the groove. A method of manufacturing a semiconductor device, comprising: a step of leaving the wiring layer thicker than a thickness on which the second insulating film is deposited.
【請求項2】 前記溝を側面からよりも速く底面から埋
めていく方法で前記溝内及び前記配線層上に前記第2の
絶縁膜を堆積させて前記溝の途中まで前記第2の絶縁膜
で埋める工程と、 前記溝を底面及び側面から同じ速さで埋めていく方法で
前記第2の絶縁膜上に第3の絶縁膜を堆積させて前記溝
の残りを前記第3の絶縁膜で埋める工程とを具備し、 前記第2の絶縁膜を堆積させる厚さよりも厚く前記配線
層を形成することを特徴とする請求項1記載の半導体装
置の製造方法。
2. The method according to claim 1, further comprising: depositing the second insulating film in the groove and on the wiring layer by a method of filling the groove from the bottom surface faster than from the side surface, and forming the second insulating film halfway through the groove. Filling a third insulating film on the second insulating film by a method of filling the groove from the bottom and side surfaces at the same speed, and resting the groove with the third insulating film. 2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of: filling the wiring layer so as to be thicker than a thickness on which the second insulating film is deposited.
JP9364912A 1997-12-19 1997-12-19 Manufacture of semiconductor device Pending JPH11186379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9364912A JPH11186379A (en) 1997-12-19 1997-12-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9364912A JPH11186379A (en) 1997-12-19 1997-12-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH11186379A true JPH11186379A (en) 1999-07-09

Family

ID=18482971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9364912A Pending JPH11186379A (en) 1997-12-19 1997-12-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH11186379A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557978B1 (en) * 1999-08-26 2006-03-07 주식회사 하이닉스반도체 Fabricating method of semiconductor device
JP2006286720A (en) * 2005-03-31 2006-10-19 Toshiba Corp Semiconductor device and its manufacturing method
JP2008124517A (en) * 2008-02-15 2008-05-29 Toshiba Corp Nonvolatile semiconductor storage device, and method of manufacturing the same
US7538380B2 (en) 2000-09-26 2009-05-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
US7948038B2 (en) 2004-05-18 2011-05-24 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and process of manufacturing the same
US8421143B2 (en) 2000-09-26 2013-04-16 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
CN108110008A (en) * 2016-11-25 2018-06-01 旺宏电子股份有限公司 The manufacturing method of semiconductor element and its manufacturing method and memory

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557978B1 (en) * 1999-08-26 2006-03-07 주식회사 하이닉스반도체 Fabricating method of semiconductor device
US8421143B2 (en) 2000-09-26 2013-04-16 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
US7538380B2 (en) 2000-09-26 2009-05-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
US7573092B2 (en) 2000-09-26 2009-08-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
US7939406B2 (en) 2000-09-26 2011-05-10 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
US8405139B2 (en) 2000-09-26 2013-03-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
US9059300B2 (en) 2000-09-26 2015-06-16 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having element isolating region of trench type
US7948038B2 (en) 2004-05-18 2011-05-24 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and process of manufacturing the same
US8217468B2 (en) 2004-05-18 2012-07-10 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and process of manufacturing the same
US8536657B2 (en) 2004-05-18 2013-09-17 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and process of manufacturing the same
US8679916B2 (en) 2004-05-18 2014-03-25 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and process of manufacturing the same
JP2006286720A (en) * 2005-03-31 2006-10-19 Toshiba Corp Semiconductor device and its manufacturing method
JP2008124517A (en) * 2008-02-15 2008-05-29 Toshiba Corp Nonvolatile semiconductor storage device, and method of manufacturing the same
CN108110008A (en) * 2016-11-25 2018-06-01 旺宏电子股份有限公司 The manufacturing method of semiconductor element and its manufacturing method and memory

Similar Documents

Publication Publication Date Title
KR100473733B1 (en) Semiconductor device and method for manufacturing the same
US8294236B2 (en) Semiconductor device having dual-STI and manufacturing method thereof
US7033909B2 (en) Method of forming trench isolations
US7511331B2 (en) Semiconductor device having side wall spacers
US6620681B1 (en) Semiconductor device having desired gate profile and method of making the same
US5308786A (en) Trench isolation for both large and small areas by means of silicon nodules after metal etching
JP3157357B2 (en) Semiconductor device
JPH1126728A (en) Semiconductor device and manufacture thereof
JP3246447B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JP2004228421A (en) Nonvolatile semiconductor storage and manufacturing method thereof
US20020048897A1 (en) Method of forming a self-aligned shallow trench isolation
US6218265B1 (en) Process for fabricating a semiconductor non-volatile memory device with shallow trench isolation (STI)
JPH09283751A (en) Semiconductor device and its manufacture
US6372606B1 (en) Method of forming isolation trenches in a semiconductor device
JPH11186379A (en) Manufacture of semiconductor device
JP2850833B2 (en) Method for manufacturing semiconductor device
KR100366614B1 (en) Method for forming a T-shaped trench isolation
US6180463B1 (en) Method for fabricating a multi-level mask ROM
JPH11330431A (en) Manufacture for nonvolatile semiconductor memory device
JP3764177B2 (en) Semiconductor memory device and manufacturing method thereof
US6613631B2 (en) Method of forming a non-volatile semiconductor memory device with a tunnel barrier film defined by side walls
JP2671529B2 (en) Semiconductor integrated circuit
KR100800467B1 (en) Method for manufacturing split gate flash memory device
JPH10256402A (en) Semiconductor memory and manufacture thereof
KR0147629B1 (en) Isolation method for semiconductor device