JPH11186107A - Aluminum electrolytic capacitor and electrolytic solution for driving it - Google Patents

Aluminum electrolytic capacitor and electrolytic solution for driving it

Info

Publication number
JPH11186107A
JPH11186107A JP36474297A JP36474297A JPH11186107A JP H11186107 A JPH11186107 A JP H11186107A JP 36474297 A JP36474297 A JP 36474297A JP 36474297 A JP36474297 A JP 36474297A JP H11186107 A JPH11186107 A JP H11186107A
Authority
JP
Japan
Prior art keywords
acid
solvent
electrolytic capacitor
electrolytic solution
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36474297A
Other languages
Japanese (ja)
Inventor
Hidemi Yamada
秀美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP36474297A priority Critical patent/JPH11186107A/en
Publication of JPH11186107A publication Critical patent/JPH11186107A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve high temperature heat resistance by using an imidazoline salt expressed by a specific formula as a solvent. SOLUTION: An imidazoline salt expressed by the formula is used as a solvent. In the formula, X is aromatic dicarboxylic acid or aliphatic dicarboxylic acid and R is an alkyl group having a carbon number of 1-3. As the aromatic dicarboxylic acid, phthalic acid, isophthalic acid or terephthalic acid is preferable. As the aliphatic dicarboxylic acid, maleic acid, citraconic acid and fumaric acid are preferable. As the electrolytic solution, aprotic solvent is preferably used as solvent. Other solvent may be mixed with the aprotic solvent. In such a case, glycol is preferable as the mixing solvent. The content of imidazoline acid expressed in the formula in the solvent is optimum in the status of saturated solution with the highest electric conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電解コンデンサ駆動用電
解液を使用したアルミニウム電解コンデンサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum electrolytic capacitor using an electrolytic solution for driving an electrolytic capacitor.

【0002】[0002]

【従来の技術】アルミニウム電解コンデンサは、エッチ
ングされたアルミニウム箔の表面に電解酸化などによっ
て酸化被膜を形成したアルミニウム陽極箔とアルミニウ
ム陰極箔とをセパレータを介して巻回したコンデンサ素
子に電解コンデンサ駆動用電解液を含浸し、これを有底
の金属ケ−ス内に入れ開口部を絶縁性の封口体で密封
し、陽極箔および陰極箔にそれぞれ固着された引出しリ
ードを、それぞれ封口体の貫通孔から外に引き出してな
る構造を有する。
2. Description of the Related Art An aluminum electrolytic capacitor is used for driving an electrolytic capacitor on a capacitor element formed by winding an aluminum anode foil and an aluminum cathode foil each having an oxide film formed on the surface of an etched aluminum foil by electrolytic oxidation or the like through a separator. The electrolytic solution is impregnated, put into a bottomed metal case, the opening is sealed with an insulating sealing member, and the lead leads fixed to the anode foil and the cathode foil are respectively inserted into the through holes of the sealing member. It has a structure that is pulled out from the outside.

【0003】アルミニウム電解コンデンサ(以下、「電
解コンデンサ」という)の駆動用電解液(以下、「電解
液」という)は、このような構造を有する電解コンデン
サの実質的に誘電体である電極箔(陽極箔)の酸化被膜
に接し、真の陰極として機能するとともに酸化被膜の修
復能力を有しており、通電中は常に酸化被膜の再生とい
う化学反応を起こして、コンデンサ特性を安定させてい
る。しかし長期間使用していたり、長期間保管した後に
使用すると酸化被膜の再生が不十分となり、コンデンサ
としての機能が低下してしまう。
An electrolytic solution for driving an aluminum electrolytic capacitor (hereinafter referred to as “electrolytic capacitor”) (hereinafter referred to as “electrolytic solution”) is a substantially dielectric electrode foil (hereinafter referred to as “electrolytic solution”) of an electrolytic capacitor having such a structure. In contact with the oxide film of the anode foil), it functions as a true cathode and has the ability to repair the oxide film. During the energization, the oxide film always undergoes a chemical reaction of regeneration, stabilizing the capacitor characteristics. However, when used for a long period of time or when used after being stored for a long period of time, regeneration of the oxide film becomes insufficient, and the function as a capacitor is reduced.

【0004】そのために電解液の酸化被膜修復能力が、
電解コンデンサ自体の特性に直接影響を及ぼすことにな
る。したがって、高性能の電解コンデンサを得るには、
優れた酸化被膜修復能力を有した電解液を用いることが
不可欠の条件とされている。
[0004] Therefore, the ability of the electrolytic solution to repair the oxide film,
This directly affects the characteristics of the electrolytic capacitor itself. Therefore, to obtain a high-performance electrolytic capacitor,
It is indispensable to use an electrolytic solution having an excellent oxide film repairing ability.

【0005】そこでその好適な電解液として、非プロト
ン溶媒を主溶媒とし、カルボン酸またはその塩を溶解し
たものがよく使用されている。特に、低圧用の電解コン
デンサにはγ−ブチロラクトンを主体とした溶媒に芳香
族カルボン酸の第4級アンモニウム塩や、第3級アミン
塩を溶質として溶解した電解液が多く使用されている。
[0005] Therefore, as the preferred electrolyte, a solution in which an aprotic solvent is used as a main solvent and a carboxylic acid or a salt thereof is dissolved is often used. In particular, an electrolytic solution in which a quaternary ammonium salt of an aromatic carboxylic acid or a tertiary amine salt is dissolved as a solute in a solvent mainly containing γ-butyrolactone is often used for a low-pressure electrolytic capacitor.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、近年電
子機器の耐環境負荷が大きくなり、例えば自動車のエン
ジンル−ムなどに配置される電解コンデンサでは、13
0℃を超える高温での耐熱性が要求されるが、従来の電
解液ではこのような高温に耐えられず、コンデンサ性能
の劣化が著しかった。
However, in recent years, the environmental load of electronic devices has increased. For example, in an electrolytic capacitor disposed in an engine room of an automobile, 13% is required.
Although heat resistance at a high temperature exceeding 0 ° C. is required, conventional electrolytic solutions cannot withstand such a high temperature, and the performance of the capacitor is significantly deteriorated.

【0007】[0007]

【課題を解決するための手段】本発明は上述した課題に
鑑みなされたもので、高温耐熱性の高いアルミニウム電
解コンデンサおよびアルミニウム電解コンデンサ駆動用
電解液を提供するものである。すなわち、本発明は下記
の構造式[1]に示すイミダゾリン塩を溶質としたこと
を特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and provides an aluminum electrolytic capacitor having high heat resistance at high temperatures and an electrolytic solution for driving the aluminum electrolytic capacitor. That is, the present invention is characterized in that an imidazoline salt represented by the following structural formula [1] is used as a solute.

【化5】 (式中、Xは芳香族ジカルボン酸または脂肪族ジカルボ
ン酸を示し、Rは炭素数1〜3のアルキル基を示す。)
Embedded image (In the formula, X represents an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid, and R represents an alkyl group having 1 to 3 carbon atoms.)

【0008】本発明に用いられる芳香族ジカルボン酸と
してはフタル酸、イソフタル酸またはテレフタル酸が好
ましいが、これに限定するものではない。
The aromatic dicarboxylic acid used in the present invention is preferably, but not limited to, phthalic acid, isophthalic acid or terephthalic acid.

【0009】また、本発明に用いられる脂肪族ジカルボ
ン酸としてはマレイン酸、シトラコン酸、フマル酸また
はマロン酸が好ましいが、これに限定するものではな
い。
The aliphatic dicarboxylic acid used in the present invention is preferably maleic acid, citraconic acid, fumaric acid or malonic acid, but is not limited thereto.

【0010】本発明の電解液は溶媒として非プロトン溶
媒を用いるのが好ましく、非プロトン溶媒としてはβ−
ブチロラクトン、γ−ブチロラクトン、γ−バレロラク
トン、δ−バレロラクトン、γ−カプロラクトン、ε−
カプロラクトン、γ−ヘプタラクトン、γ−ヒドロキシ
−n−カプリル酸ラクトン、γ−ノナラクトン、δ−デ
カラクトン、γ−ウンデカラクトンなどのラクトン類が
挙げられるが、ラクトン類にのみに限定するものではな
い。
The electrolyte of the present invention preferably uses an aprotic solvent as a solvent.
Butyrolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-
Lactones such as caprolactone, γ-heptalactone, γ-hydroxy-n-caprylic acid lactone, γ-nonalactone, δ-decalactone, and γ-undecalactone are exemplified, but not limited to lactones.

【0011】また、本発明においては非プロトン溶媒に
他の溶媒を混合してもよい。この場合、混合する溶媒は
グリコール類が好ましく、エチレングリコール、エチレ
ングリコールモノアルキルエーテル、エチレングリコー
ルジアルキルエ−テル、プロピレングリコール、ジエチ
レングリコール、ジエチレングリコールモノアルキルエ
ーテル、ジエチレングリコールジアルキルエーテル、ポ
リエチレングリコール、グリセリンなどが挙げられる
が、本発明で混合される溶媒はグリコール類のみに限定
するものではない。
In the present invention, another solvent may be mixed with the aprotic solvent. In this case, the solvent to be mixed is preferably glycols, and examples thereof include ethylene glycol, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, propylene glycol, diethylene glycol, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether, polyethylene glycol, and glycerin. However, the solvent mixed in the present invention is not limited to only glycols.

【0012】本発明に係る電解液において、溶媒中にお
ける構造式[1]で示すイミダゾリン塩の含有量は、種
々に選択し得るが、飽和溶液の状態が最も電気伝導度が
高く好適である。すなわち構造式[1]で示すイミダゾ
リン塩の含有量は電解液中1〜60重量%、好ましくは
10〜40重量%程度であり、60重量%を超えると溶
解しなくなる。
In the electrolytic solution according to the present invention, the content of the imidazoline salt represented by the structural formula [1] in the solvent can be variously selected, but the state of a saturated solution is most preferable because it has the highest electric conductivity. That is, the content of the imidazoline salt represented by the structural formula [1] is 1 to 60% by weight, preferably about 10 to 40% by weight in the electrolytic solution.

【0013】本発明において、ラクトン類やグリコール
類をそれぞれ単独で用いることもできるが、混合して用
いる方が高い電気伝導度が得られやすい。ラクトン類と
グリコール類の混合割合は重量比20対80から95対
5程度が採用される。
In the present invention, lactones and glycols can be used alone, however, when they are used in combination, higher electric conductivity is easily obtained. The mixing ratio of lactones and glycols is about 20:80 to 95: 5 by weight.

【0014】本発明においては、本発明に係る電解液の
火花電圧を向上させるために硼酸、リン酸、タングステ
ン酸、ヘテロポリ酸などの無機酸またはその塩やマンニ
ット、ソルビットなどの多糖類を0.1〜10重量%、
好ましくは0.1〜5重量%添加してもよい。
In the present invention, an inorganic acid such as boric acid, phosphoric acid, tungstic acid or heteropoly acid or a salt thereof or a polysaccharide such as mannitol or sorbite is used to improve the spark voltage of the electrolytic solution according to the present invention. 0.1 to 10% by weight,
Preferably, 0.1 to 5% by weight may be added.

【0015】さらに、電解コンデンサの初期の損失角の
正接(tanδ)を改善するために、本発明に係る電解
液にケトン類、ニトロ化合物またはその塩を0.1〜1
0重量%、好ましくは0.1〜5重量%を添加してもよ
い。
Furthermore, in order to improve the tangent (tan δ) of the initial loss angle of the electrolytic capacitor, a ketone, a nitro compound or a salt thereof is added to the electrolytic solution of the present invention in an amount of 0.1 to 1%.
0% by weight, preferably 0.1 to 5% by weight may be added.

【0016】本発明に係る電解液のpHは必要に応じて
所望のpH調整剤を添加することにより4〜12、好ま
しくは5〜7に調整される。また、電解液中の水分の存
在は高温下では、アルミニウム箔の腐食の原因などとな
るので、出来るだけ存在しない方が望ましいが、3重量
%程度以下であれば特に不都合は生じない。
The pH of the electrolytic solution according to the present invention is adjusted to 4 to 12, preferably 5 to 7, by adding a desired pH adjuster as required. Also, the presence of water in the electrolyte at high temperatures causes corrosion of the aluminum foil, etc., so it is desirable that it is not present as much as possible. However, if it is about 3% by weight or less, no particular inconvenience occurs.

【0017】[0017]

【実施例】実施例として下記のような組成の実施例1、
2の電解液を作製し、また比較例として下記の比較例
1、2の電解液を作製した。
EXAMPLES Examples 1 and 2 have the following compositions.
2 was prepared, and the following comparative examples 1 and 2 were prepared as comparative examples.

【0018】 〈実施例1〉 フタル酸モノメチルイミダゾリン 20.0重量% γ−ブチロラクトン 74.5重量% エチレングリコール 5.0重量% 水 0.5重量%Example 1 Monomethylimidazoline phthalate 20.0% by weight γ-butyrolactone 74.5% by weight Ethylene glycol 5.0% by weight Water 0.5% by weight

【0019】 〈実施例2〉 マレイン酸モノエチルイミダゾリン 20.0重量% γ−ブチロラクトン 79.0重量% p−ニトロ安息香酸 0.5重量% 水 0.5重量%Example 2 Monoethylimidazoline maleate 20.0% by weight γ-butyrolactone 79.0% by weight p-Nitrobenzoic acid 0.5% by weight Water 0.5% by weight

【0020】 〈比較例1〉 フタル酸トリエチルアミン 20.0重量% γ−ブチロラクトン 74.5重量% エチレングリコール 5.0重量% 水 0.5重量%Comparative Example 1 Triethylamine phthalate 20.0% by weight γ-butyrolactone 74.5% by weight Ethylene glycol 5.0% by weight Water 0.5% by weight

【0021】 〈比較例2〉 マレイン酸テトラメチルアンモニウム 20.0重量% γ−ブチロラクトン 79.0重量% p−ニトロ安息香酸 0.5重量% 水 0.5重量%Comparative Example 2 Tetramethylammonium maleate 20.0% by weight γ-butyrolactone 79.0% by weight p-Nitrobenzoic acid 0.5% by weight Water 0.5% by weight

【0022】実施例1、2および比較例1、2の電解液
の電気伝導度(μS/cm;液温40℃にて)および火
花電圧(V;液温105℃にて)を測定した。その結果
を表1に示す。
The electric conductivity (μS / cm; at a liquid temperature of 40 ° C.) and the spark voltage (V; at a liquid temperature of 105 ° C.) of the electrolyte solutions of Examples 1 and 2 and Comparative Examples 1 and 2 were measured. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】これらの結果から、実施例1の電解液は比
較例1の電解液に、実施例2の電解液は比較例2の電解
液に比べてそれぞれ、高温下で電気伝導度に優れ、火花
電圧が格段に高いことがわかる。
From these results, the electrolytic solution of Example 1 was superior to the electrolytic solution of Comparative Example 1 and the electrolytic solution of Example 2 was superior to the electrolytic solution of Comparative Example 2 in electric conductivity at a high temperature. It can be seen that the spark voltage is much higher.

【0025】次に、実施例1、2の電解液と比較例1、
2の電解液を用いて定格25V330μF(製品サイ
ズ;直径8mm、軸長20mm)の電解コンデンサを各
々25個作製し、135℃の温度下で負荷試験を200
0時間実施し、負荷試験前後におけるコンデンサ性能
(初期静電容量C(μF)、静電容量変化率△C/C
(%)、tanδ、漏れ電流LC(μA/1min))
を測定した。その平均値を表2に示す。また負荷試験後
の外観の変化を表3に示す。
Next, the electrolytes of Examples 1 and 2 and Comparative Example 1,
25 electrolytic capacitors rated at 25 V and 330 μF (product size; diameter: 8 mm, shaft length: 20 mm) were manufactured using the electrolyte solution No. 2 and subjected to a load test at a temperature of 135 ° C. for 200 times.
0 hours, the performance of the capacitor before and after the load test (initial capacitance C (μF), capacitance change rate ΔC / C
(%), Tan δ, leakage current LC (μA / 1 min))
Was measured. Table 2 shows the average value. Table 3 shows changes in appearance after the load test.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】また、実施例1、2の電解液と比較例1、
2の電解液を用いて定格35V1000μF(製品サイ
ズ;直径35mm、軸長35mm)の電解コンデンサを
各々25個作製し、温度150℃で負荷試験を1000
時間実施し、負荷試験前後における電解コンデンサの性
能(初期静電容量C(μF)、静電容量変化率△C/C
(%)、tanδ、漏れ電流LC(μA/1min))
を測定した。その結果を表4に示す。また負荷試験後の
外観の変化を表5に示す。
The electrolytes of Examples 1 and 2 and Comparative Example 1
25 electrolytic capacitors rated at 35 V and 1000 μF (product size; diameter: 35 mm, shaft length: 35 mm) were manufactured using the electrolyte solution No. 2 and subjected to a load test at a temperature of 150 ° C. by 1000.
And the performance of the electrolytic capacitor before and after the load test (initial capacitance C (μF), capacitance change rate ΔC / C
(%), Tan δ, leakage current LC (μA / 1 min))
Was measured. Table 4 shows the results. Table 5 shows the change in appearance after the load test.

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】この結果から、実施例1、2の電解コンデ
ンサは比較例1,2の電解コンデンサに比べて、長時間
の負荷試験後においても静電容量変化率(△C/C)が
少なく、tanδおよび漏れ電流LCの変化も少ないこ
とがわかる。また外観において比較例1,2では負荷試
験後に著しいケ−ス膨れが生じたのに対して、実施例
1、2では異常はなかった。これは基本的にイミダゾリ
ン環の熱的安定性によるものと思われる。このように本
発明の電解液および電解コンデンサは耐熱性能が著しく
優れていることがわかる。
From these results, the electrolytic capacitors of Examples 1 and 2 have a smaller capacitance change rate (ΔC / C) even after a long-time load test than the electrolytic capacitors of Comparative Examples 1 and 2. It can be seen that changes in tan δ and leakage current LC are also small. In Comparative Examples 1 and 2, remarkable case swelling occurred after the load test, while Examples 1 and 2 showed no abnormality. This seems to be basically due to the thermal stability of the imidazoline ring. Thus, it can be seen that the electrolytic solution and the electrolytic capacitor of the present invention have remarkably excellent heat resistance.

【0032】[0032]

【発明の効果】本発明によれば、構造式[1]に示すイ
ミダゾリン塩を溶質としたことにより、電気伝導度に優
れ、火花電圧が高く、静電容量の経時変化が少なく、高
温耐熱性に優れたアルミニウム電解コンデンサ駆動用電
解液およびアルミニウム電解コンデンサを得ることがで
きる。
According to the present invention, since the imidazoline salt represented by the structural formula [1] is used as a solute, it has excellent electric conductivity, high spark voltage, little change in capacitance with time, and high temperature heat resistance. An electrolytic solution for driving an aluminum electrolytic capacitor and an aluminum electrolytic capacitor having excellent characteristics can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】下記の構造式[1]に示すイミダゾリン塩
を溶質としたことを特徴とするアルミニウム電解コンデ
ンサ駆動用電解液。 【化1】 (式中、Xは芳香族ジカルボン酸を示し、Rは炭素数1
〜3のアルキル基を示す。)
1. An electrolytic solution for driving an aluminum electrolytic capacitor, comprising an imidazoline salt represented by the following structural formula [1] as a solute. Embedded image (Wherein, X represents an aromatic dicarboxylic acid, and R represents 1 carbon atom)
And represents an alkyl group of 1 to 3. )
【請求項2】下記の構造式[1]に示すイミダゾリン塩
を溶質としたことを特徴とするアルミニウム電解コンデ
ンサ駆動用電解液。 【化2】 (式中、Xは脂肪族ジカルボン酸を示し、Rは炭素数1
〜3のアルキル基を示す。)
2. An electrolytic solution for driving an aluminum electrolytic capacitor, comprising an imidazoline salt represented by the following structural formula [1] as a solute. Embedded image (Wherein, X represents an aliphatic dicarboxylic acid, and R represents 1 carbon atom)
And represents an alkyl group of 1 to 3. )
【請求項3】溶媒として非プロトン溶媒を用いたことを
特徴とする請求項1または2に記載のアルミニウム電解
コンデンサ駆動用電解液。
3. The electrolytic solution for driving an aluminum electrolytic capacitor according to claim 1, wherein an aprotic solvent is used as the solvent.
【請求項4】下記の構造式[1]に示すイミダゾリン塩
を溶質としたアルミニウム電解コンデンサ駆動用電解液
を使用することを特徴とするアルミニウム電解コンデン
サ。 【化3】 (式中、Xは芳香族ジカルボン酸を示し、Rは炭素数1
〜3のアルキル基を示す。)
4. An aluminum electrolytic capacitor characterized by using an electrolytic solution for driving an aluminum electrolytic capacitor using an imidazoline salt represented by the following structural formula [1] as a solute. Embedded image (Wherein, X represents an aromatic dicarboxylic acid, and R represents 1 carbon atom)
And represents an alkyl group of 1 to 3. )
【請求項5】下記の構造式[1]に示すイミダゾリン塩
を溶質としたアルミニウム電解コンデンサ駆動用電解液
を使用することを特徴とするアルミニウム電解コンデン
サ。 【化4】 (式中、Xは脂肪族ジカルボン酸を示し、Rは炭素数1
〜3のアルキル基を示す。)
5. An aluminum electrolytic capacitor using an electrolytic solution for driving an aluminum electrolytic capacitor using an imidazoline salt represented by the following structural formula [1] as a solute. Embedded image (Wherein, X represents an aliphatic dicarboxylic acid, and R represents 1 carbon atom)
And represents an alkyl group of 1 to 3. )
【請求項6】溶媒として非プロトン溶媒を用いたアルミ
ニウム電解コンデンサ駆動用電解液を使用することを特
徴とする請求項4または5に記載のアルミニウム電解コ
ンデンサ。
6. The aluminum electrolytic capacitor according to claim 4, wherein an electrolytic solution for driving an aluminum electrolytic capacitor using an aprotic solvent as a solvent is used.
JP36474297A 1997-12-22 1997-12-22 Aluminum electrolytic capacitor and electrolytic solution for driving it Pending JPH11186107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36474297A JPH11186107A (en) 1997-12-22 1997-12-22 Aluminum electrolytic capacitor and electrolytic solution for driving it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36474297A JPH11186107A (en) 1997-12-22 1997-12-22 Aluminum electrolytic capacitor and electrolytic solution for driving it

Publications (1)

Publication Number Publication Date
JPH11186107A true JPH11186107A (en) 1999-07-09

Family

ID=18482560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36474297A Pending JPH11186107A (en) 1997-12-22 1997-12-22 Aluminum electrolytic capacitor and electrolytic solution for driving it

Country Status (1)

Country Link
JP (1) JPH11186107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165262A (en) * 2002-11-11 2004-06-10 Nippon Chemicon Corp Electrolyte for electrolytic capacitor and electrolytic capacitor using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165262A (en) * 2002-11-11 2004-06-10 Nippon Chemicon Corp Electrolyte for electrolytic capacitor and electrolytic capacitor using it

Similar Documents

Publication Publication Date Title
JP4900456B2 (en) Aluminum electrolytic capacitor
US4885115A (en) Liquid electrolyte for use in electrolytic capacitor
US4915861A (en) Liquid electrolyte for use in electrolytic capacitor
JP4548553B2 (en) Aluminum electrolytic capacitor
JPH11186107A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JPH11186108A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JP3729588B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP4123311B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3869526B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3729587B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3869525B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP2906206B2 (en) Aluminum electrolytic capacitor and electrolyte for driving aluminum electrolytic capacitor
JP2000164470A (en) Aluminium electrolytic capacitor and electrolytte for aluminium electrolytic capacitor drive
JP2906011B2 (en) Aluminum electrolytic capacitor and electrolyte for driving aluminum electrolytic capacitor
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP3191818B2 (en) Polymer solid electrolyte for driving electrolytic capacitors
JPH10233343A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JPH09148196A (en) Aluminium electrolytic capacitor and electrolyte for the aluminium electrolytic capacitor drive use
JP2672125B2 (en) Electrolyte for electrolytic capacitors
JPH1012499A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JPH10233344A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JP2774525B2 (en) Electrolyte for electrolytic capacitors
JPH0810663B2 (en) Electrolytic solution for electrolytic capacitors
JPH0351285B2 (en)
JP2672128B2 (en) Electrolyte for electrolytic capacitors