JPH11185928A - Spark plug - Google Patents

Spark plug

Info

Publication number
JPH11185928A
JPH11185928A JP35822797A JP35822797A JPH11185928A JP H11185928 A JPH11185928 A JP H11185928A JP 35822797 A JP35822797 A JP 35822797A JP 35822797 A JP35822797 A JP 35822797A JP H11185928 A JPH11185928 A JP H11185928A
Authority
JP
Japan
Prior art keywords
metal layer
thickness
ground electrode
width
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35822797A
Other languages
Japanese (ja)
Inventor
Keiji Kanou
啓二 金生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP35822797A priority Critical patent/JPH11185928A/en
Publication of JPH11185928A publication Critical patent/JPH11185928A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain dimensional change in a sectional area of a grounding electrode due to thermal stress in the case where a three-layer grounding electrode structure is provided, and prevent discharge gap change. SOLUTION: A grounding electrode 4 is covered with a first metal layer 41 that is a core material, a second metal layer 42, and a third metal layer in this order and is constituted, and a thermal expansion coefficient of the second metal layer 42 is greater than those of the first and third metal layers 41 and 43. A relationship between thickness T1 of the third metal layer 43 in width W direction of the grounding electrode 4 and thickness T2 of the second metal layer 42, and a relationship between thickness T3 of the third metal layer 43 in thickness H direction of the grounding electrode 4 and thickness T4 of the second metal layer are set to be T1>=T2 and T3>=T4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関等に使用
されるスパークプラグに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spark plug used for an internal combustion engine or the like.

【0002】[0002]

【従来の技術】この種のスパークプラグとして、特開平
4−337271号公報に記載のものが提案されてい
る。これは、接地電極(外側電極)と中心電極との放電
ギャップ(火花放電間隔、例えば約1mm))を使用条
件下において適切な値に保つために、接地電極を3層構
造としたもの、いわゆる3層接地電極構造のスパークプ
ラグである。
2. Description of the Related Art As this kind of spark plug, one disclosed in Japanese Patent Application Laid-Open No. 4-337271 has been proposed. This is a so-called ground electrode having a three-layer structure in order to keep a discharge gap (spark discharge interval, for example, about 1 mm) between the ground electrode (outer electrode) and the center electrode at an appropriate value under use conditions. This is a spark plug having a three-layer ground electrode structure.

【0003】すなわち、純ニッケル等の芯材を熱伝導性
に優れた銅等で被覆し、さらに、この被覆した銅等の回
りを、芯材である純ニッケル等と略同等の熱膨張係数
(線膨張率)を有し且つ耐熱、耐腐食性に優れたニッケ
ル合金等にて被覆している。接地電極をこのような3層
構造とした場合、最外周層のニッケル合金により耐熱お
よび耐腐食性に優れるとともに、2層目の銅によって熱
引きに優れたものとなり、放電ギャップの変化を抑える
ことができる。
That is, a core material such as pure nickel is coated with copper or the like having excellent thermal conductivity, and the area around the coated copper or the like is subjected to a thermal expansion coefficient (about the same as that of the core material pure nickel or the like). (Coefficient of linear expansion) and is coated with a nickel alloy or the like which is excellent in heat resistance and corrosion resistance. When the ground electrode has such a three-layer structure, the nickel alloy in the outermost layer is excellent in heat resistance and corrosion resistance, and the second layer of copper is excellent in heat removal, thereby suppressing a change in the discharge gap. Can be.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者が上記構成のスパークプラグを実際に内燃機関に使用
して検討した結果、例えば、内燃機関の負荷の高低に対
応するような急激な温度変化(冷熱衝撃)が生じた場
合、このときの熱応力によって接地電極が塑性変形し放
電ギャップが変化してプラグ特性に悪影響を与えるとい
う不具合が発生することがわかった。
However, as a result of the present inventor's study on actually using the spark plug having the above-described structure in an internal combustion engine, for example, a sudden temperature change corresponding to a high or low load of the internal combustion engine has been found. It has been found that when (cold thermal shock) occurs, the thermal stress at this time causes a plastic deformation of the ground electrode, changes the discharge gap, and adversely affects the plug characteristics.

【0005】つまり、上記3層接地電極構造であって
も、最内層の芯材及び最外周層のニッケル合金(インコ
ネル600(商標名)等)に比べて、2層目の銅は熱膨
張係数が大きいため、使用時に上記冷熱衝撃等による熱
応力が発生すると、銅はニッケル合金を押し広げようと
する。ニッケル合金及び銅の寸法関係によっては、銅に
よる熱応力が、ニッケル合金の強度を越えてしまい、接
地電極断面の寸法変化が生じ、放電ギャップ変化を引き
起こす。
[0005] That is, even in the three-layer ground electrode structure, the copper of the second layer has a coefficient of thermal expansion that is larger than that of the innermost layer core material and the outermost layer nickel alloy (such as Inconel 600 (trade name)). Therefore, when thermal stress due to the thermal shock or the like occurs during use, the copper tends to spread the nickel alloy. Depending on the dimensional relationship between the nickel alloy and copper, the thermal stress due to copper exceeds the strength of the nickel alloy, causing a dimensional change in the cross section of the ground electrode, causing a change in the discharge gap.

【0006】本発明は上記点に鑑みて、3層接地電極構
造を有するスパークプラグにおいて、熱応力による接地
電極断面の寸法変化を抑制して放電ギャップ変化を防止
することを目的とする。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a spark plug having a three-layer ground electrode structure, in which a dimensional change of a ground electrode cross section due to thermal stress is suppressed to prevent a discharge gap change.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成するため、3層構造の接地電極断面について、各層
の層厚さの寸法関係に着目し、冷熱衝撃(冷熱耐久)試
験を行い、最外周層のニッケル合金が薄い程、また、2
層目の銅が厚い程、接地電極断面の寸法変化が大きいこ
とを見出した。そして、接地電極の厚さ側と幅側におい
て、両層の厚さが所定関係にあれば、断面寸法の変化を
抑えることができるのではないかと考えた。
In order to achieve the above object, the present inventor focused on the dimensional relationship between the layer thicknesses of the three layers of the ground electrode cross section, and conducted a thermal shock (cooling endurance) test. As the nickel alloy in the outermost layer is thinner,
It was found that the thicker the copper layer, the greater the dimensional change in the cross section of the ground electrode. Then, it was thought that if the thicknesses of the two layers were in a predetermined relationship on the thickness side and the width side of the ground electrode, a change in the cross-sectional dimension could be suppressed.

【0008】請求項1記載の発明は、上記知見に基づい
てなされたもので、芯材である第1の金属層(41)が
順次、第2の金属層(42)、第3の金属層(43)で
被覆されており、第2の金属層(42)の熱膨張係数が
第1及び第3の金属層(41、43)よりも大きい接地
電極(4)、すなわち、3層接地電極構造を有するスパ
ークプラグにおいて、接地電極(4)の厚さをH及び幅
をWとし、この幅W方向における第3の金属層(43)
及び第2の金属層(42)の厚さをそれぞれT1及びT
2、この厚さH方向における第3の金属層(43)及び
第2の金属層(42)の厚さをそれぞれT3及びT4と
したときに、これら各厚さT1、T2、T3、T4が、
下記の関係、T1≧T2、且つ、T3≧T4、にあるこ
とを特徴とする。
[0008] The first aspect of the present invention is based on the above findings, wherein the first metal layer (41) as the core material is sequentially formed with the second metal layer (42) and the third metal layer. A ground electrode (4) covered with (43) and having a larger coefficient of thermal expansion of the second metal layer (42) than the first and third metal layers (41, 43); In the spark plug having the structure, the ground electrode (4) has a thickness H and a width W, and the third metal layer (43) in the width W direction.
And the thickness of the second metal layer (42) are T1 and T2, respectively.
2. When the thicknesses of the third metal layer (43) and the second metal layer (42) in the thickness H direction are T3 and T4, respectively, these thicknesses T1, T2, T3, and T4 are ,
It is characterized by the following relationship, T1 ≧ T2, and T3 ≧ T4.

【0009】本発明では、上記第2及び第3の各金属層
(42、43)の厚さT1〜T4が上記関係にあること
によって、熱応力が発生しても接地電極(4)断面の寸
法変化を抑制することができる。従って、冷熱衝撃時等
の使用環境において、放電ギャップ変化を防止したスパ
ークプラグを提供することができる。さらに、接地電極
(4)の厚さH及び幅Wは、請求項2記載の関係にある
ものにでき、また、上記各金属層(41〜43)として
は、請求項3記載の各材質を用いることができる。
In the present invention, since the thicknesses T1 to T4 of the second and third metal layers (42, 43) have the above-mentioned relationship, even if thermal stress occurs, the cross section of the ground electrode (4) can be reduced. Dimensional change can be suppressed. Therefore, it is possible to provide a spark plug in which a change in discharge gap is prevented in a use environment such as a thermal shock. Furthermore, the thickness H and the width W of the ground electrode (4) can be in the relationship described in claim 2, and the respective metal layers (41-43) are made of the respective materials described in claim 3. Can be used.

【0010】なお、上記各手段の括弧内の符号は、後述
する実施形態記載の具体的手段との対応関係を示すもの
である。
[0010] The reference numerals in parentheses of the above means indicate the correspondence with the specific means described in the embodiment described later.

【0011】[0011]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。本実施形態は例えば内燃機関の点火
栓として用いられる。図1に本実施形態のスパークプラ
グの全体構成を示す半断面図である。スパークプラグ
は、円筒形状の取付金具1を有しており、この取付金具
1は、図示しないエンジンブロックに固定するための取
付ネジ部1aを備えている。取付金具1の内部には、ア
ルミナセラミック(Al2 3 )等からなる絶縁体2が
固定されており、この絶縁体2の軸孔2aに中心電極3
が固定されている。絶縁体2の先端部2bは、取付金具
1から露出するように設けられている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. This embodiment is used, for example, as an ignition plug of an internal combustion engine. FIG. 1 is a half sectional view showing the entire configuration of the spark plug of the present embodiment. The spark plug has a cylindrical mounting bracket 1, and the mounting bracket 1 includes a mounting screw portion 1a for fixing to a not-shown engine block. An insulator 2 made of alumina ceramic (Al 2 O 3 ) or the like is fixed inside the mounting bracket 1, and a center electrode 3 is provided in a shaft hole 2 a of the insulator 2.
Has been fixed. The tip 2 b of the insulator 2 is provided so as to be exposed from the mounting bracket 1.

【0012】中心電極3は、内材がCu等の熱伝導性に
優れた金属材料、外材がNi基合金等の耐熱性および耐
食性に優れた金属材料により構成された円柱体で、図1
に示すように、その先端部3aが絶縁体2の先端部2b
から露出するように設けられている。接地電極4は、取
付金具1の一端に溶接により固定され、途中で略L字に
曲げられて、溶接部分とは反対の対向部4aにおいて中
心電極3の先端部3aと放電ギャップ6を隔てて対向し
ている。なお、接地電極4の内部構造等の詳細は後述す
る。
The center electrode 3 is a cylindrical body whose inner material is made of a metal material having excellent thermal conductivity such as Cu, and whose outer material is made of a metal material having excellent heat resistance and corrosion resistance such as a Ni-based alloy.
As shown in the figure, the tip 3a is the tip 2b of the insulator 2.
It is provided so that it is exposed from. The ground electrode 4 is fixed to one end of the mounting bracket 1 by welding, is bent substantially L-shaped on the way, and is separated from the distal end portion 3a of the center electrode 3 and the discharge gap 6 at the opposite portion 4a opposite to the welded portion. Are facing each other. The details such as the internal structure of the ground electrode 4 will be described later.

【0013】そして、中心電極3の先端部3aには、例
えばIr合金材料からなる貴金属チップ51が溶接等に
より固定され、一方、接地電極4の対向部4aには例え
ばIr合金材料からなる貴金属チップ52が抵抗溶接に
より固定されている。ここで、上記の放電ギャップ6は
両チップ51、52の隙間であり、例えば約1mmであ
る。
A noble metal tip 51 made of, for example, an Ir alloy material is fixed to the tip 3a of the center electrode 3 by welding or the like, while a noble metal tip made of, for example, an Ir alloy material is attached to the facing part 4a of the ground electrode 4. 52 is fixed by resistance welding. Here, the discharge gap 6 is a gap between the chips 51 and 52, and is, for example, about 1 mm.

【0014】以下、本発明の特徴である接地電極4につ
いて、更に詳述する。図2は、図1における接地電極4
の拡大図であり、(a)は接地電極4の曲がり形状を示
すものであり、(b)は(a)においてA方向からみた
ものである。また図3において(a)は図2(b)のB
−B断面図であり、(b)は図2(a)のC−C断面図
である。なお図2および図3において貴金属チップ52
は省略してある。
Hereinafter, the ground electrode 4 which is a feature of the present invention will be described in more detail. FIG. 2 shows the ground electrode 4 in FIG.
5A is an enlarged view of FIG. 5A, showing a bent shape of the ground electrode 4, and FIG. 5B is a view of FIG. In FIG. 3, (a) corresponds to B in FIG. 2 (b).
FIG. 2B is a cross-sectional view, and FIG. 2B is a CC cross-sectional view of FIG. 2 and 3, the noble metal tip 52
Is omitted.

【0015】接地電極4は、図2(a)に示すように、
全長L1(例えば10mm)、断面偏平(Wが例えば
2.8mm、Hが例えば1.6mm)の柱が、略L字に
曲げられた形状を成している。なお、接地電極4におけ
る上記断面の厚さH及び幅Wは図2(b)に示す部分の
寸法をいうものであり、このことは周知である。また、
両寸法関係はプラグの接地電極として実用範囲である
0.5≦H≦2、且つ、H≦W≦3Hとしている。以
下、寸法関係において、接地電極4の幅Wの方向を幅方
向、厚さHの方向を厚さ方向という。
The ground electrode 4 is, as shown in FIG.
A column having an overall length L1 (for example, 10 mm) and a flat cross section (W is, for example, 2.8 mm, H is, for example, 1.6 mm) is formed into a substantially L-shaped shape. The thickness H and the width W of the cross section of the ground electrode 4 refer to the dimensions of the portion shown in FIG. 2B, and this is well known. Also,
The relationship between the two dimensions is 0.5 ≦ H ≦ 2 and H ≦ W ≦ 3H, which are practical ranges for the ground electrode of the plug. Hereinafter, in the dimensional relationship, the direction of the width W of the ground electrode 4 is referred to as the width direction, and the direction of the thickness H is referred to as the thickness direction.

【0016】そして、図3に示すように、接地電極4の
中心に配された断面偏平の棒材である第1の金属層(芯
材)41と、第1の金属層41を被覆する断面偏平のパ
イプ状の第2の金属層42と、さらに、最外周層として
第2の金属層42を被覆する断面偏平のパイプ状の第3
の金属層43との3層構造を構成している。ここで、第
1の金属層41は、耐熱性に優れ又熱伝導性に比較的優
れた金属(本実施形態では、純ニッケル)からなる。な
お、純ニッケル(Ni)は、熱膨張係数(線膨張率)が
約1.33(10-5/deg)、熱伝導度が約68(k
cal/m・h・deg)である。
Then, as shown in FIG. 3, a first metal layer (core material) 41, which is a bar having a flat cross section, disposed at the center of the ground electrode 4, and a cross section covering the first metal layer 41. A flat pipe-shaped second metal layer 42 and a third flat pipe-shaped third metal layer 42 covering the second metal layer 42 as the outermost layer.
And a three-layer structure with the metal layer 43 of FIG. Here, the first metal layer 41 is made of a metal (pure nickel in the present embodiment) having excellent heat resistance and relatively excellent thermal conductivity. Pure nickel (Ni) has a coefficient of thermal expansion (linear expansion coefficient) of about 1.33 (10 −5 / deg) and a thermal conductivity of about 68 (k).
cal / m · h · deg).

【0017】第2の金属層42は、図3(b)に示す幅
方向の厚さT2及び厚さ方向の厚さT4が例えば約0.
2mm〜0.4mmであり、熱伝導性に優れた金属(本
実施形態では、銅)からなる。なお、銅(Cu)は、熱
膨張係数が約1.7(10-5/deg)、熱伝導度が約
340(kcal/m・h・deg)である。第3の金
属層43は、図3(b)に示す幅方向の厚さT1及び厚
さ方向の厚さT3が例えば約0.2mm〜0.4mmで
あり、耐熱性および耐腐食性に優れた金属、例えば、N
i−Mn−Si合金、インコネル600(商標名)等の
ニッケルを主成分とするニッケル基合金(本実施形態で
はインコネル600)からなる。なお、インコネル60
0は、熱膨張係数が約1.3(10-5/deg)、熱伝
導度が約25(kcal/m・h・deg)である。
The second metal layer 42 has a thickness T2 in the width direction and a thickness T4 in the thickness direction shown in FIG.
It is 2 mm to 0.4 mm, and is made of a metal having excellent thermal conductivity (in the present embodiment, copper). Note that copper (Cu) has a thermal expansion coefficient of about 1.7 (10 −5 / deg) and a thermal conductivity of about 340 (kcal / m · h · deg). The third metal layer 43 has a thickness T1 in the width direction and a thickness T3 in the thickness direction shown in FIG. 3B of, for example, about 0.2 mm to 0.4 mm, and is excellent in heat resistance and corrosion resistance. Metal, for example, N
It is made of a nickel-based alloy containing nickel as a main component (Inconel 600 in this embodiment), such as an i-Mn-Si alloy or Inconel 600 (trade name). Inconel 60
0 has a coefficient of thermal expansion of about 1.3 (10 -5 / deg) and a thermal conductivity of about 25 (kcal / m · h · deg).

【0018】ここで、上記各厚さT1〜T4の寸法関係
は、冷熱衝撃時等の使用環境(例えば、室温と約950
℃の高温とが繰り返すような環境)において、接地電極
4に熱応力が発生しても、接地電極4断面の寸法(W、
H)に変化が起こらないようにするため、T1≧T2、
且つ、T3≧T4、の関係としている。このような寸法
関係とした根拠については後述する。
Here, the dimensional relationship between the thicknesses T1 to T4 depends on the use environment (for example, room temperature and about 950
In an environment where high temperatures of ℃ repeat, even if thermal stress occurs in the ground electrode 4, the cross-sectional dimensions of the ground electrode 4 (W,
In order to prevent a change in H), T1 ≧ T2,
In addition, the relationship is T3 ≧ T4. The basis for such a dimensional relationship will be described later.

【0019】また、第1の金属層41のうち接地電極4
の対向部4a側の先端部分(図3(a)中のL2)は、
第2の金属層42は無く、直接第3の金属層43にて被
覆された2層構造となっている。本実施形態において、
この部分だけ2層構造としているのは、この部分は内燃
機関の燃焼によって特に高温となる部分であり、もし第
2の金属層42である銅があると、この銅が溶けて隙間
を発生してしまうためである。ちなみに、図3(a)に
おいて、L2は例えば0.2〜2mm、L3は例えば1
〜4mmとしている。
The ground electrode 4 of the first metal layer 41
The front end portion (L2 in FIG. 3A) of the facing portion 4a side is
There is no second metal layer 42 and a two-layer structure directly covered with the third metal layer 43 is provided. In this embodiment,
This part has a two-layer structure because this part is particularly high in temperature due to the combustion of the internal combustion engine. If there is copper as the second metal layer 42, this copper melts and a gap is generated. This is because Incidentally, in FIG. 3A, L2 is, for example, 0.2 to 2 mm, and L3 is, for example, 1 to 2.
44 mm.

【0020】なお、上記の接地電極4における各金属層
41〜43の形状寸法値は一例であり、本実施形態はこ
れら寸法値に限定されるものではない。また、各金属層
41〜43の材質も、上記に限定されるものではない。
但し、第1と第3の金属層は略同じ熱膨張係数(線膨張
率)であり、第2の金属層は熱引きに優れたものである
ことが好ましい。
The shapes and dimensions of the metal layers 41 to 43 in the ground electrode 4 are merely examples, and the present embodiment is not limited to these dimensions. Further, the material of each of the metal layers 41 to 43 is not limited to the above.
However, it is preferable that the first and third metal layers have substantially the same coefficient of thermal expansion (linear expansion coefficient), and the second metal layer has excellent heat dissipation.

【0021】次に、本実施形態のスパークプラグの製造
方法について述べるが、主として本発明の特徴である接
地電極4について述べることとし、他の部分の製造工程
については、周知であるため説明を省略する。図4およ
び図5は接地電極4の製造工程を示す説明図である。ま
た、以下の工程中の各寸法値は、上記した各金属層41
〜43の一例の形状寸法に基づくものである。
Next, a method of manufacturing the spark plug of the present embodiment will be described. The ground electrode 4 which is a feature of the present invention will be mainly described, and the other manufacturing steps are well known and will not be described. I do. FIG. 4 and FIG. 5 are explanatory views showing the manufacturing process of the ground electrode 4. Further, each dimension value in the following steps is the same as that of each metal layer 41 described above.
Based on an example of the shape and dimensions of 4343.

【0022】まず、図4(a)に示すように、所定の外
径(例えばφ2.15mm)の純ニッケル製のニッケル
線60を芯材として、このニッケル線60を所定の外径
t1(例えばφ3mm)の銅パイプ61(例えば肉厚
0.4mm)で囲む。そして、このニッケル線60を囲
んだ銅パイプ61をダイス80にて押し出してスウェー
ジング又は引き抜き等を行い、その外径を前記のt1
(例えば3mm)から、このt1よりも小さいt2(例
えば2.35mm)とする(線材密着工程)。
First, as shown in FIG. 4A, a nickel wire 60 made of pure nickel having a predetermined outer diameter (for example, φ2.15 mm) is used as a core material, and the nickel wire 60 is connected to a predetermined outer diameter t1 (for example, It is surrounded by a copper pipe 61 (for example, 0.4 mm in thickness) of φ3 mm. Then, the copper pipe 61 surrounding the nickel wire 60 is extruded with a die 80 to perform swaging or drawing, and the outer diameter of the copper pipe 61 is set to t1.
(For example, 3 mm), it is set to t2 (for example, 2.35 mm) smaller than this t1 (wire sticking step).

【0023】スウェージング又は引き抜き等をしたニッ
ケル線60を囲んだ銅パイプ61を、例えば長さ3.0
mmでカットして、図4(b)に示すニッケル−銅の線
材62を形成する(線材カット工程)。ここで、図4
(c)に示すように、予め切削(冷間鍛造でもよい)に
より加工されたインコネル600(商標名)よりなるカ
ップ63を作成しておく。このカップ63は、一端が開
口部63a、他端が閉塞した底部63bを有し、円筒形
のカップ部63cの内径t3が上記線材62の外径t2
よりやや大きく(例えば、φ2.4mm)、カップ部6
3cの深さd3は、上記線材62の長さより長く例えば
5mmとしている。なお、カップ部63cの底面は、凹
形状としている。
A copper pipe 61 surrounding a nickel wire 60 that has been swaged or drawn, for example, has a length of 3.0 mm.
4 mm to form a nickel-copper wire 62 shown in FIG. 4B (wire cutting step). Here, FIG.
As shown in (c), a cup 63 made of Inconel 600 (trade name) previously processed by cutting (or cold forging) may be prepared. The cup 63 has an opening 63a at one end and a bottom 63b at the other end, and the inner diameter t3 of the cylindrical cup 63c is the outer diameter t2 of the wire 62.
Slightly larger (for example, φ2.4 mm), the cup portion 6
The depth d3 of 3c is longer than the length of the wire 62, for example, 5 mm. Note that the bottom surface of the cup portion 63c has a concave shape.

【0024】このカップ63のカップ部63cに、上記
線材62を入れ、図4(d)に示すように、パンチ81
にて定圧プレス(600kg)を行い、線材62とカッ
プ63とを密着させる。こうして第1の金属層として純
ニッケル、第2の金属層として銅、第3の金属層として
インコネル600からなる3層構造の複合体64が形成
される(複合体形成工程)。
The above-mentioned wire rod 62 is put into the cup portion 63c of the cup 63, and as shown in FIG.
A constant pressure press (600 kg) is performed to bring the wire 62 and the cup 63 into close contact. Thus, a composite 64 having a three-layer structure including pure nickel as the first metal layer, copper as the second metal layer, and Inconel 600 as the third metal layer is formed (composite forming step).

【0025】なお、この複合体64の外径t4は上記カ
ップ63の外径と同じで例えばφ3.5mmである。ま
た、上記定圧プレスの際にカップ部63c底面の凹形状
によって、第1の金属層が第2の金属層からはみ出し
て、上記した第2の金属層の無い2層構造が形成され
る。続いて、複合体64を高温炉に入れ、例えば100
0℃まで昇温し、1000℃(±80℃)で所定時間
(例えば3時間)、真空雰囲気で熱処理を行う(拡散層
形成工程)。それによって、各金属層の界面に拡散層が
形成され、各金属層の接合が強固なものとできる。
The outer diameter t4 of the composite 64 is the same as the outer diameter of the cup 63, for example, 3.5 mm. In addition, the first metal layer protrudes from the second metal layer due to the concave shape of the bottom of the cup portion 63c at the time of the constant-pressure pressing, and the above-described two-layer structure without the second metal layer is formed. Subsequently, the composite 64 is placed in a high-temperature furnace,
The temperature is raised to 0 ° C., and heat treatment is performed at 1000 ° C. (± 80 ° C.) for a predetermined time (for example, 3 hours) in a vacuum atmosphere (diffusion layer forming step). As a result, a diffusion layer is formed at the interface between the metal layers, and the bonding between the metal layers can be strengthened.

【0026】その後、図4(e)に示すように、複合体
64をダイス82に入れ、プレスして、複合体64の開
口部(カップ63の開口部63aと同じ)64aをかし
める。そして、図5(a)に示すように、押し出し成形
(冷間鍛造加工)を行い、複合体64を外径t4(例え
ば3.5mm)の円筒体から、端部に鍔部65aを有す
る断面四角形(例えば1.6mm×2.8mm)の角柱
体65とする(角柱体形成工程)。
Thereafter, as shown in FIG. 4E, the composite 64 is put into a die 82 and pressed to caulk an opening 64a (same as the opening 63a of the cup 63) of the composite 64. Then, as shown in FIG. 5A, extrusion molding (cold forging) is performed, and the composite 64 is formed from a cylindrical body having an outer diameter t4 (for example, 3.5 mm) and a cross section having a flange 65a at an end. A rectangular (for example, 1.6 mm × 2.8 mm) prism 65 is formed (a prism forming step).

【0027】この角柱体65を850℃、30分で焼鈍
した後、図5(b)に示すように、取付金具1に抵抗溶
接する(溶接工程)。そして、図5(c)に示すよう
に、鍔部65aをカットする(顎部カット工程)。続い
て、絶縁体2および貴金属チップ51(図示せず)の設
けられた中心電極3を、取付金具1に組み付けるととも
に、角柱体65に貴金属チップ52(図示せず)を溶接
する。そして、図5(d)に示すように、角柱体65を
略L字に変形させ放電ギャップ6を形成し(放電ギャッ
プ形成工程)、接地電極4を形成する。こうしてスパー
クプラグが完成する。
After annealing the prism 65 at 850 ° C. for 30 minutes, it is resistance-welded to the fitting 1 as shown in FIG. 5B (welding process). Then, as shown in FIG. 5C, the flange 65a is cut (a jaw cutting step). Subsequently, the center electrode 3 provided with the insulator 2 and the noble metal tip 51 (not shown) is assembled to the mounting bracket 1, and the noble metal tip 52 (not shown) is welded to the prism 65. Then, as shown in FIG. 5D, the prism 65 is deformed into an approximately L shape to form the discharge gap 6 (discharge gap forming step), and the ground electrode 4 is formed. Thus, the spark plug is completed.

【0028】なお、第2及び第3の金属層42、43の
厚さT1〜T4については、上記の各製造工程におい
て、銅パイプ61、カップ63の肉厚を調整したり、押
し出しを行う際の型や圧力を調整する等により、所望の
厚さT1〜T4を得ることができる。次に、上記の第2
及び第3の金属層における各厚さT1〜T4の寸法関係
の根拠を述べる。この寸法関係は、以下に述べる冷熱衝
撃試験に基づくものである。冷熱衝撃試験は、幅W及び
厚さHの各寸法が0.5≦H≦2、且つ、H≦W≦3H
の寸法範囲の接地電極4について、各厚さT1〜T4を
種々変えたサンプルを用いた。そして、各サンプルにつ
いて、室温1分、950℃1分の1000サイクルの冷
熱衝撃を行い、試験前後の厚さHと幅Wの寸法変化を調
べた。
The thicknesses T1 to T4 of the second and third metal layers 42 and 43 are determined when the thickness of the copper pipe 61 and the cup 63 is adjusted or extruded in each of the above manufacturing steps. The desired thicknesses T1 to T4 can be obtained by adjusting the mold type and pressure. Next, the second
The basis of the dimensional relationship between the thicknesses T1 to T4 in the third metal layer will be described. This dimensional relationship is based on the thermal shock test described below. In the thermal shock test, each dimension of the width W and the thickness H was 0.5 ≦ H ≦ 2 and H ≦ W ≦ 3H
With respect to the ground electrode 4 having the dimension range described above, samples having various thicknesses T1 to T4 were used. Each sample was subjected to 1000 cycles of thermal shock at 950 ° C. for 1 minute at room temperature for 1 minute, and dimensional changes in thickness H and width W before and after the test were examined.

【0029】上記冷熱衝撃試験の一例として、厚さH=
1.6mm、幅W=2.8mmの接地電極4についての
結果を、図6及び図7に示す。図6は、第3の金属層4
3の厚さT1及び第2の金属層42の厚さT2と、接地
電極4の幅Wの寸法増加量(幅寸法増加量)との関係を
示すものである。横軸をT2(mm)、縦軸を幅寸法増
加量(mm)とし、T1=0.2mm(図中、黒丸)、
0.3mm(図中、黒三角)、0.4mm(図中、黒四
角)の各場合を示す。
As an example of the above thermal shock test, the thickness H =
The results for the ground electrode 4 having a width of 1.6 mm and a width W of 2.8 mm are shown in FIGS. FIG. 6 shows the third metal layer 4.
3 shows the relationship between the thickness T1 of the third metal layer 3 and the thickness T2 of the second metal layer 42 and the dimension increase (width dimension increase) of the width W of the ground electrode 4. The horizontal axis is T2 (mm), the vertical axis is the width dimension increase (mm), T1 = 0.2 mm (black circle in the figure),
Each case of 0.3 mm (black triangle in the figure) and 0.4 mm (black square in the figure) is shown.

【0030】図6において、例えば、T1=0.3mm
(図中、黒三角)の時、T2が0.2mm〜0.3mm
の範囲では幅寸法増加量が0であるのに対し、T2が
0.3mmよりも大きいと幅寸法増加量が0〜0.09
mm程度となる。すなわち、図6の結果から、幅Wの寸
法変化は、T1≧T2では起こらず、T1<T2では起
こりやすいといえる。
In FIG. 6, for example, T1 = 0.3 mm
(In the figure, black triangle), T2 is 0.2mm ~ 0.3mm
In the range, the width dimension increase is 0, whereas when T2 is larger than 0.3 mm, the width dimension increase is 0 to 0.09.
mm. That is, from the results in FIG. 6, it can be said that the dimensional change of the width W does not occur when T1 ≧ T2, but tends to occur when T1 <T2.

【0031】また、図7は、第3の金属層43の厚さT
3及び第2の金属層42の厚さT4と、接地電極4の厚
さHの寸法増加量(厚さ寸法増加量)との関係を示すも
のである。横軸をT4(mm)、縦軸を厚さ寸法増加量
(mm)とし、T3=0.2mm(図中、黒丸)、0.
3mm(図中、黒三角)、0.4mm(図中、黒四角)
の各場合を示す。
FIG. 7 shows the thickness T of the third metal layer 43.
The relationship between the thickness T4 of the third and second metal layers 42 and the dimension increase (thickness dimension increase) of the thickness H of the ground electrode 4 is shown. The horizontal axis is T4 (mm), the vertical axis is the thickness dimension increase (mm), and T3 = 0.2 mm (black circle in the figure).
3mm (black triangle in the figure), 0.4mm (black square in the figure)
Each case is shown.

【0032】図7において、例えば、T3=0.3mm
(図中、黒三角)の時、T4が0.2mm〜0.3mm
の範囲では厚さ寸法増加量が0であるのに対し、T4が
0.3mmよりも大きいと厚さ寸法増加量が0〜0.0
5mm程度となる。すなわち、図7の結果から、厚さH
の寸法変化は、T3≧T4では起こらず、T3<T4で
は起こりやすいといえる。
In FIG. 7, for example, T3 = 0.3 mm
(In the figure, black triangle), T4 is 0.2mm ~ 0.3mm
In the range, the thickness dimension increase amount is 0, while when T4 is larger than 0.3 mm, the thickness dimension increase amount is 0 to 0.0
It is about 5 mm. That is, from the result of FIG.
Does not occur when T3 ≧ T4, but tends to occur when T3 <T4.

【0033】このように、図6及び図7の結果から、幅
方向及び厚さ方向において、第3の金属層43の厚さT
1、T3が、第2の金属層42の厚さT2、T4よりも
厚ければ、熱応力発生時に第2の金属層42が押し広げ
ようとする力に、第3の金属層43が十分対抗できると
考えられる。さらに、上記冷熱衝撃試験において、幅寸
法増加量及び厚さ寸法増加量と、ギャップ変化量(冷熱
衝撃試験前後の放電ギャップ6の変化量)との関係を調
べたところ、図8及び図9に示す結果が得られた。図8
は幅寸法増加量(横軸)とギャップ変化量(縦軸、単位
mm)との関係を示し、図9は厚さ寸法増加量(横軸)
とギャップ変化量(縦軸、単位mm)との関係を示す。
As described above, from the results of FIGS. 6 and 7, the thickness T of the third metal layer 43 in the width direction and the thickness direction is obtained.
If T1 and T3 are thicker than the thicknesses T2 and T4 of the second metal layer 42, the third metal layer 43 is sufficient for the force of the second metal layer 42 to expand when thermal stress occurs. It is thought that we can compete. Further, in the thermal shock test, the relationship between the width dimension increase and the thickness dimension increase and the gap change (change in the discharge gap 6 before and after the thermal shock test) was examined. The results shown were obtained. FIG.
Shows the relationship between the width dimension increase (horizontal axis) and the gap change (vertical axis, unit mm), and FIG. 9 shows the thickness dimension increase (horizontal axis).
And the gap change amount (vertical axis, unit mm) is shown.

【0034】図8及び図9から、ギャップ変化量を0と
するには、必ずしも幅W及び厚さHの寸法増加が0であ
る必要はないが、幅W及び厚さHの寸法増加の発生は、
ギャップ変化に至る兆候つまり予備軍的なものであると
推定される。従って、本発明者は、冷熱衝撃時等急激な
温度変化による接地電極4断面の寸法(W、H)変化を
防止するため、第2及び第3の金属層における各厚さT
1〜T4の寸法関係をT1≧T2、且つ、T3≧T4と
した。そして、この寸法関係とすれば、確実にギャップ
変化量を0とできる。
From FIG. 8 and FIG. 9, it is not always necessary that the dimension increase of the width W and the thickness H be 0 in order to make the gap change amount 0, but the dimension increase of the width W and the thickness H occurs. Is
It is presumed to be a sign of a gap change, that is, a reserve army. Therefore, the present inventor has set the thicknesses T and T of the second and third metal layers in order to prevent a change in the dimensions (W, H) of the cross section of the ground electrode 4 due to a rapid temperature change such as a thermal shock.
The dimensional relationships of 1 to T4 are T1 ≧ T2 and T3 ≧ T4. With this dimensional relationship, the gap change amount can be reliably reduced to zero.

【0035】以上、本実施形態について述べてきたが、
本実施形態によれば、第2及び第3の金属層における各
厚さT1〜T4の寸法関係をT1≧T2、且つ、T3≧
T4としているので、熱応力が発生しても接地電極4断
面の寸法(W、H)変化を抑制することができる。従っ
て、冷熱衝撃時等の使用環境において、放電ギャップ6
の変化を防止したスパークプラグを提供することができ
る。
While the embodiment has been described above,
According to the present embodiment, the dimensional relationship between the thicknesses T1 to T4 in the second and third metal layers is expressed as T1 ≧ T2 and T3 ≧
Since T4 is set, a change in the dimensions (W, H) of the cross section of the ground electrode 4 can be suppressed even when thermal stress occurs. Therefore, in a use environment such as a thermal shock, the discharge gap 6
Can be provided.

【0036】(他の実施形態)ここで、上記図3(b)
における接地電極4の断面形状は図10(a)〜(c)
に示す様なものでもよい。図10は、つまり、第3の金
属層43及び第2の金属層42について、幅W方向及び
厚さH方向の厚さは一定の厚さでなくてもよい。その場
合、各層の幅方向における厚さ、及び厚さ方向における
厚さは、それぞれ最小値をとるものとする。
(Other Embodiment) Here, FIG.
The cross-sectional shapes of the ground electrode 4 in FIGS.
Such as shown in FIG. FIG. 10 shows that the thicknesses of the third metal layer 43 and the second metal layer 42 in the width W direction and the thickness H direction need not be constant. In that case, the thickness of each layer in the width direction and the thickness in the thickness direction assume a minimum value.

【0037】なお、図10(a)の断面形状は、例えば
図の上下方向から同時に圧力を加えることによって作製
でき、図10(b)の断面形状は、例えば図の左右方向
から同時に圧力を加えることによって作製でき、図10
(c)の断面形状は、例えば図の上下左右方向から同時
に圧力を加えることによって作製できる。
The cross-sectional shape of FIG. 10A can be produced, for example, by simultaneously applying pressure from above and below in the figure, and the cross-sectional shape of FIG. FIG.
The cross-sectional shape of (c) can be produced, for example, by simultaneously applying pressure from the top, bottom, left, and right directions in the figure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るスパークプラグの全体
構成を示す半断面図である。
FIG. 1 is a half sectional view showing an overall configuration of a spark plug according to an embodiment of the present invention.

【図2】図1のスパークプラグにおける接地電極形状を
示す構成図であり、(a)は接地電極の曲がり形状を示
すものであり、(b)は(a)のA矢視図である。
FIGS. 2A and 2B are configuration diagrams showing a shape of a ground electrode in the spark plug of FIG. 1, wherein FIG. 2A shows a bent shape of the ground electrode, and FIG.

【図3】(a)は図2(b)のB−B断面図であり、
(b)は図2(a)のC−C断面図である。
FIG. 3A is a sectional view taken along line BB of FIG. 2B;
FIG. 2B is a cross-sectional view taken along the line CC of FIG.

【図4】上記実施形態における製造工程のうち線材密着
工程から複合体形成工程までを示す説明図である。
FIG. 4 is an explanatory diagram showing a process from a wire sticking process to a composite forming process in the manufacturing process in the embodiment.

【図5】上記製造工程のうち角柱体形成工程から放電ギ
ャップ形成工程までを示す説明図である。
FIG. 5 is an explanatory diagram illustrating a process from a prismatic body forming step to a discharge gap forming step in the manufacturing steps.

【図6】上記実施形態における厚さT1及び厚さT2
と、幅Wの寸法増加量との関係を示すグラフである。
FIG. 6 shows a thickness T1 and a thickness T2 in the embodiment.
6 is a graph showing a relationship between the width and the amount of increase in the width W.

【図7】上記実施形態における厚さT3及び厚さT4
と、厚さHの寸法増加量との関係を示すグラフである。
FIG. 7 shows a thickness T3 and a thickness T4 in the embodiment.
4 is a graph showing a relationship between the thickness H and a dimension increase amount.

【図8】上記実施形態における幅Wの寸法増加量と、ギ
ャップ変化量との関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a dimension increase amount of a width W and a gap change amount in the embodiment.

【図9】上記実施形態における厚さHの寸法増加量と、
ギャップ変化量との関係を示すグラフである。
FIG. 9 shows a dimension increase amount of a thickness H in the embodiment,
9 is a graph showing a relationship with a gap change amount.

【図10】本発明の他の実施形態に係る接地電極を示す
断面図である。
FIG. 10 is a cross-sectional view illustrating a ground electrode according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…取付金具、2…絶縁体、3…中心電極、3a…中心
電極の先端部、4…接地電極、4a…対向部、6…放電
ギャップ、41…第1の金属層、42…第2の金属層、
43…第3の金属層。
DESCRIPTION OF SYMBOLS 1 ... Mounting bracket, 2 ... Insulator, 3 ... Center electrode, 3a ... Center electrode tip part, 4 ... Ground electrode, 4a ... Opposing part, 6 ... Discharge gap, 41 ... First metal layer, 42 ... Second Metal layer,
43 ... third metal layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中心電極(3)と、 前記中心電極(3)の先端部(3a)を露出させた状態
で前記中心電極(3)の周囲を覆う絶縁体(2)と、 前記絶縁体(2)の周囲に配設され前記絶縁体(2)を
保持する取付金具(1)と、 前記取付金具(1)に固定され、前記中心電極(3)の
前記先端部(3a)に、放電ギャップ(6)を隔てて対
向する対向部(4a)を有する接地電極(4)とを備え
るスパークプラグにおいて、 前記接地電極(4)は、芯材である第1の金属層(4
1)、該第1の金属層(41)を被覆する第2の金属層
(42)、該第2の金属層(42)を被覆する第3の金
属層(43)の3層構造を有しており、 前記第2の金属層(42)は、その熱膨張係数が前記第
1及び第3の金属層(41、43)よりも大きいもので
あり、 接地電極(4)の厚さをH及び幅をWとし、前記幅W方
向における前記第3の金属層(43)及び前記第2の金
属層(42)の厚さをそれぞれT1及びT2、前記厚さ
H方向における前記第3の金属層(43)及び前記第2
の金属層(42)の厚さをそれぞれT3及びT4とした
ときに、これら各厚さT1、T2、T3、T4が、 T1≧T2、且つ、T3≧T4、の関係にあることを特
徴とするスパークプラグ。
1. An insulator (2) that covers a periphery of the center electrode (3) in a state where a tip (3a) of the center electrode (3) is exposed. A mounting member (1) disposed around (2) to hold the insulator (2); and a fixing member (1) fixed to the mounting member (1), and attached to the tip (3a) of the center electrode (3). A ground electrode (4) having a facing portion (4a) facing the battery via a discharge gap (6), wherein the ground electrode (4) is a first metal layer (4) as a core material.
1) having a three-layer structure of a second metal layer (42) covering the first metal layer (41), and a third metal layer (43) covering the second metal layer (42). The second metal layer (42) has a larger coefficient of thermal expansion than the first and third metal layers (41, 43), and the thickness of the ground electrode (4) is reduced. H and width are W, the thicknesses of the third metal layer (43) and the second metal layer (42) in the width W direction are T1 and T2, respectively, and the third metal layer (43) in the thickness H direction is A metal layer (43) and the second
When the thickness of the metal layer (42) is T3 and T4, respectively, these thicknesses T1, T2, T3, and T4 are in a relationship of T1 ≧ T2 and T3 ≧ T4. Spark plug.
【請求項2】 前記幅W及び前記厚さHが、 0.5mm≦H≦2mm、且つ、H≦W≦3H、の関係
にあることを特徴とするスパークプラグ。
2. A spark plug according to claim 1, wherein said width W and said thickness H are in a relationship of 0.5 mm ≦ H ≦ 2 mm and H ≦ W ≦ 3H.
【請求項3】 前記第1の金属層(41)は純ニッケル
からなり、前記第2の金属層(42)は銅からなり、前
記第3の金属層(43)はニッケル基合金からなること
を特徴とする請求項1または2に記載のスパークプラ
グ。
3. The first metal layer (41) is made of pure nickel, the second metal layer (42) is made of copper, and the third metal layer (43) is made of a nickel-based alloy. The spark plug according to claim 1 or 2, wherein:
JP35822797A 1997-12-25 1997-12-25 Spark plug Pending JPH11185928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35822797A JPH11185928A (en) 1997-12-25 1997-12-25 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35822797A JPH11185928A (en) 1997-12-25 1997-12-25 Spark plug

Publications (1)

Publication Number Publication Date
JPH11185928A true JPH11185928A (en) 1999-07-09

Family

ID=18458203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35822797A Pending JPH11185928A (en) 1997-12-25 1997-12-25 Spark plug

Country Status (1)

Country Link
JP (1) JPH11185928A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155546A (en) * 1999-11-29 2001-06-08 Ngk Spark Plug Co Ltd Insulator for spark plug and spark plug having the same
US6603244B2 (en) 2001-02-28 2003-08-05 Ngk Spark Plug Co., Ltd. Spark plug and method of producing spark plug
JP2007265843A (en) * 2006-03-29 2007-10-11 Ngk Spark Plug Co Ltd Method of manufacturing spark plug for internal combustion engine
EP1949513A2 (en) 2005-11-08 2008-07-30 Federal-Mogul Corporation Spark plug having precious metal pad attached to ground electrode and method of making same
WO2009038001A1 (en) * 2007-09-17 2009-03-26 Ngk Spark Plug Co., Ltd. Spark plug
WO2009084575A1 (en) * 2007-12-28 2009-07-09 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
EP2161802A2 (en) 2008-09-02 2010-03-10 Ngk Spark Plug Co., Ltd Spark plug
JP2010062160A (en) * 2007-09-13 2010-03-18 Ngk Spark Plug Co Ltd Spark plug
CN102138260A (en) * 2008-09-02 2011-07-27 日本特殊陶业株式会社 Spark plug
US8013504B2 (en) 2007-11-20 2011-09-06 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine and method for producing the spark plug
WO2012060035A1 (en) 2010-11-04 2012-05-10 日本特殊陶業株式会社 Spark plug
JP2012099496A (en) * 2012-01-05 2012-05-24 Ngk Spark Plug Co Ltd Spark plug
JP5272076B2 (en) * 2010-10-26 2013-08-28 日本特殊陶業株式会社 Spark plug
US8531094B2 (en) 2007-09-13 2013-09-10 Ngk Spark Plug Co., Ltd. Spark plug having self-cleaning of carbon deposits
JP2016081633A (en) * 2014-10-14 2016-05-16 日本特殊陶業株式会社 Spark plug
JP2020061261A (en) * 2018-10-09 2020-04-16 株式会社デンソー Spark plug

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155546A (en) * 1999-11-29 2001-06-08 Ngk Spark Plug Co Ltd Insulator for spark plug and spark plug having the same
JP4530380B2 (en) * 1999-11-29 2010-08-25 日本特殊陶業株式会社 Spark plug insulator and spark plug including the same
US6603244B2 (en) 2001-02-28 2003-08-05 Ngk Spark Plug Co., Ltd. Spark plug and method of producing spark plug
EP1949513A2 (en) 2005-11-08 2008-07-30 Federal-Mogul Corporation Spark plug having precious metal pad attached to ground electrode and method of making same
JP2007265843A (en) * 2006-03-29 2007-10-11 Ngk Spark Plug Co Ltd Method of manufacturing spark plug for internal combustion engine
JP2010062160A (en) * 2007-09-13 2010-03-18 Ngk Spark Plug Co Ltd Spark plug
US8531094B2 (en) 2007-09-13 2013-09-10 Ngk Spark Plug Co., Ltd. Spark plug having self-cleaning of carbon deposits
WO2009038001A1 (en) * 2007-09-17 2009-03-26 Ngk Spark Plug Co., Ltd. Spark plug
KR101010123B1 (en) 2007-09-17 2011-01-24 니혼도꾸슈도교 가부시키가이샤 Spark plug
US8217561B2 (en) 2007-09-17 2012-07-10 Ngk Spark Plug Co., Ltd. Spark plug having laminated ground electrode
US8013504B2 (en) 2007-11-20 2011-09-06 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine and method for producing the spark plug
WO2009084575A1 (en) * 2007-12-28 2009-07-09 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
US8640666B2 (en) 2007-12-28 2014-02-04 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
JP2010086951A (en) * 2008-09-02 2010-04-15 Ngk Spark Plug Co Ltd Spark plug
EP2161802A3 (en) * 2008-09-02 2010-11-03 Ngk Spark Plug Co., Ltd Spark plug
US8102105B2 (en) 2008-09-02 2012-01-24 Ngk Spark Plug Co., Ltd. Spark plug
JP2011181523A (en) * 2008-09-02 2011-09-15 Ngk Spark Plug Co Ltd Spark plug
CN102138260A (en) * 2008-09-02 2011-07-27 日本特殊陶业株式会社 Spark plug
US8253311B2 (en) 2008-09-02 2012-08-28 Ngk Spark Plug Co., Ltd Spark plug
EP2161802A2 (en) 2008-09-02 2010-03-10 Ngk Spark Plug Co., Ltd Spark plug
US8866370B2 (en) 2010-10-26 2014-10-21 Ngk Spark Plug Co., Ltd. Spark plug
US8664842B2 (en) 2010-10-26 2014-03-04 Ngk Spark Plug Co., Ltd. Spark plug
JP5272076B2 (en) * 2010-10-26 2013-08-28 日本特殊陶業株式会社 Spark plug
CN104104014A (en) * 2010-11-04 2014-10-15 日本特殊陶业株式会社 Spark plug
CN103190043A (en) * 2010-11-04 2013-07-03 日本特殊陶业株式会社 Spark plug
JP2012099403A (en) * 2010-11-04 2012-05-24 Ngk Spark Plug Co Ltd Spark plug
WO2012060035A1 (en) 2010-11-04 2012-05-10 日本特殊陶業株式会社 Spark plug
US8884503B2 (en) 2010-11-04 2014-11-11 Ngk Spark Plug Co., Ltd. Spark plug
KR101532493B1 (en) * 2010-11-04 2015-06-29 니혼도꾸슈도교 가부시키가이샤 Spark plug
US9270087B2 (en) 2010-11-04 2016-02-23 Ngk Spark Plug Co., Ltd. Spark plug with improved ground electrode joined to metal shell
JP2012099496A (en) * 2012-01-05 2012-05-24 Ngk Spark Plug Co Ltd Spark plug
JP2016081633A (en) * 2014-10-14 2016-05-16 日本特殊陶業株式会社 Spark plug
JP2020061261A (en) * 2018-10-09 2020-04-16 株式会社デンソー Spark plug

Similar Documents

Publication Publication Date Title
JPH11185928A (en) Spark plug
JP4419327B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
EP1376791B1 (en) Spark plug and method for manufacturing the spark plug
EP0474351B1 (en) An outer electrode for spark plug and a method of manufacturing thereof
EP3306762B1 (en) Sparkplug
US6759795B2 (en) Spark plug
EP2028736B1 (en) Spark plug for internal combustion engine
EP1168542B1 (en) Spark plug for internal combustion engine
JPH11111426A (en) Spark plug and its manufacture
JPH09303137A (en) Structure of electrode of high temperature substance to be heated
JPH0737678A (en) Manufacture of electrode for spark plug
JP7157000B2 (en) Spark plug
JP3071236B2 (en) Method of manufacturing composite outer electrode for spark plug
JPH0343982A (en) Manufacture of central electrode of ignition plug
JP2001284013A (en) Grounded electrode and spark plug to use this spark plug and its manufacturing method
JP3128254B2 (en) Method of manufacturing composite electrode for spark plug
JPH04118882A (en) Ground electrode for ignition plug and its manufacture
CN113748577B (en) Spark plug electrode and method of manufacturing the same
JP2001155840A (en) Method of manufacturing spark plug
JPH0492383A (en) Manufacture of center electrode of spark plug
JP3295730B2 (en) Spark plug
JP3140065B2 (en) Manufacturing method of center electrode for spark plug
JPH02152182A (en) Manufacture of central electrode for spark plug
JPH07103478A (en) Glow plug
JPH10106715A (en) Manufacture of spark plug electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A131 Notification of reasons for refusal

Effective date: 20061114

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Effective date: 20070830

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070905

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071207