JP2016081633A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2016081633A
JP2016081633A JP2014209861A JP2014209861A JP2016081633A JP 2016081633 A JP2016081633 A JP 2016081633A JP 2014209861 A JP2014209861 A JP 2014209861A JP 2014209861 A JP2014209861 A JP 2014209861A JP 2016081633 A JP2016081633 A JP 2016081633A
Authority
JP
Japan
Prior art keywords
base end
ground electrode
spark plug
layer portion
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014209861A
Other languages
Japanese (ja)
Other versions
JP6180393B2 (en
Inventor
智行 五十嵐
Tomoyuki Igarashi
智行 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014209861A priority Critical patent/JP6180393B2/en
Publication of JP2016081633A publication Critical patent/JP2016081633A/en
Application granted granted Critical
Publication of JP6180393B2 publication Critical patent/JP6180393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To secure enough welding strength between a ground electrode and a main metal fitting.SOLUTION: A spark plug comprises a ground electrode which is joint to a tip end of a main metal fitting, and includes a rod-like base end and a bent part arranged at a tip end side of the base end and bent toward the center electrode side, in which the base end includes an outside layer and an inside layer having a thermal conductivity higher than that of the outside layer. The base end of the ground electrode includes an outer layer and an inner layer having a thermal conductivity higher than that of the outer layer. The sectional center of the inside layer of the ground electrode is biased from the sectional center of the base end toward the width direction of the base end.SELECTED DRAWING: Figure 3

Description

本発明は、スパークプラグに関する。   The present invention relates to a spark plug.

一般に、スパークプラグは、その先端側に中心電極と接地電極とを有している。中心電極は、絶縁体の軸孔に保持された状態で、絶縁体の先端から突出している。一方、接地電極は、主体金具の先端部に抵抗溶接等により溶接されている。   In general, a spark plug has a center electrode and a ground electrode on the tip side. The center electrode protrudes from the tip of the insulator while being held in the shaft hole of the insulator. On the other hand, the ground electrode is welded to the tip of the metal shell by resistance welding or the like.

スパークプラグの一種として、接地電極の熱引き性能を向上させるために、接地電極の中に熱伝導率の高い材料(例えばCu)で形成された伝熱部を設けたタイプが存在する(特許文献1,2)。伝熱部は熱伝導率が高いので、接地電極の熱引き性能が向上し、接地電極の先端の火花放電により生じた熱を、効率的に主体金具に逃がすことが可能となる。そのため、接地電極における伝熱部の占有率が高くなる程、熱を効率的に主体金具に逃がすことができる。   As a kind of spark plug, there is a type in which a heat transfer portion formed of a material having high thermal conductivity (for example, Cu) is provided in the ground electrode in order to improve the heat extraction performance of the ground electrode (Patent Literature). 1, 2). Since the heat transfer section has high thermal conductivity, the heat extraction performance of the ground electrode is improved, and the heat generated by the spark discharge at the tip of the ground electrode can be efficiently released to the metal shell. Therefore, as the occupation ratio of the heat transfer portion in the ground electrode increases, heat can be efficiently released to the metal shell.

特開2011−181523号公報JP 2011-181523 A 特開平11−185928号公報Japanese Patent Laid-Open No. 11-185928

しかし、伝熱部は熱伝導率の高い材料で構成されているので主体金具に溶接されず、伝熱部の外側にある外層が主体金具に溶接される。従って、接地電極と主体金具の溶接強度は、伝熱部の無いタイプの接地電極に比べて低下する。一方、スパークプラグは急激な温度変化(冷熱衝撃)が発生する環境下で使用されるので、接地電極には大きな熱応力が発生する。このため、内部に伝熱部を有する接地電極では、接地電極と主体金具の溶接強度が不十分となり、熱応力等の応力により破損する可能性があるという課題があった。この課題は特に、接地電極における伝熱部の占有率が高くなる程に生じる可能性が高くなる。   However, since the heat transfer part is made of a material having high thermal conductivity, it is not welded to the metal shell, and the outer layer outside the heat transfer part is welded to the metal shell. Accordingly, the welding strength between the ground electrode and the metal shell is lower than that of a ground electrode having no heat transfer portion. On the other hand, since the spark plug is used in an environment where a rapid temperature change (cold thermal shock) occurs, a large thermal stress is generated in the ground electrode. For this reason, in the ground electrode which has a heat-transfer part inside, the weld strength of a ground electrode and a metal fitting becomes inadequate, and there existed a subject that it might be damaged by stress, such as thermal stress. This problem is particularly likely to occur as the occupation ratio of the heat transfer portion in the ground electrode increases.

本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。   The present invention has been made to solve the above-described problems, and can be realized as the following forms.

(1)本発明の一形態によれば、主体金具の先端に接合された接地電極であって、棒状の基端部と、前記基端部の先端側に設けられ、中心電極側に曲げられた曲げ部とを有する接地電極を備え、前記基端部が、外層部と、前記外層部の内部に配置された前記外層部よりも熱伝導率の高い内層部とを有するスパークプラグが提供される。このスパークプラグは、前記スパークプラグの軸線方向に垂直な前記基端部の断面が、前記主体金具の径方向に沿った厚みと、前記径方向に垂直な方向に沿った幅とを有し、前記内層部の断面中心が、前記基端部の断面中心から前記基端部の幅方向に偏心していることを特徴とする。
このスパークプラグによれば、内層部の断面中心が基端部の断面中心から基端部の幅方向に偏心しているので、主体金具への基端部の溶接位置の位置ズレに関する余裕を十分に確保しつつ、接地電極の溶接強度を高めることができる。
(1) According to one aspect of the present invention, the ground electrode is joined to the distal end of the metal shell, provided at the distal end side of the rod-like base end portion and the base end portion, and bent toward the center electrode side. There is provided a spark plug having a ground electrode having a bent portion, the base end portion having an outer layer portion, and an inner layer portion having a higher thermal conductivity than the outer layer portion disposed inside the outer layer portion. The The spark plug has a cross section of the base end perpendicular to the axial direction of the spark plug, a thickness along the radial direction of the metal shell, and a width along a direction perpendicular to the radial direction, The cross-sectional center of the inner layer portion is eccentric from the cross-sectional center of the base end portion in the width direction of the base end portion.
According to this spark plug, since the cross-sectional center of the inner layer part is eccentric from the cross-sectional center of the base end part in the width direction of the base end part, there is a sufficient margin for the displacement of the welding position of the base end part to the metal shell. The welding strength of the ground electrode can be increased while ensuring.

(2)上記スパークプラグにおいて、前記内層部の断面中心の偏心量は、前記基端部の幅の2%以上であるものとしてもよい。
このスパークプラグによれば、主体金具への基端部の溶接位置の位置ズレに関する余裕を十分に確保しつつ、接地電極の溶接強度を十分に高めることができる。
(2) In the spark plug, the amount of eccentricity at the center of the cross section of the inner layer portion may be 2% or more of the width of the base end portion.
According to this spark plug, it is possible to sufficiently increase the welding strength of the ground electrode while ensuring a sufficient margin regarding the displacement of the welding position of the base end portion to the metal shell.

(3)上記スパークプラグにおいて、前記内層部の断面中心の偏心量は、前記基端部の幅の10%以下であるものとしてもよい。
このスパークプラグによれば、内層部を過度に偏心させること無しに接地電極の溶接強度を十分に高めることができる。
(3) In the spark plug, the amount of eccentricity of the cross-sectional center of the inner layer portion may be 10% or less of the width of the base end portion.
According to this spark plug, the welding strength of the ground electrode can be sufficiently increased without excessively decentering the inner layer portion.

なお、本発明は、種々の態様で実現することが可能である。例えば、スパークプラグの製造方法等の形態で実現することができる。   Note that the present invention can be realized in various modes. For example, it is realizable with forms, such as a manufacturing method of a spark plug.

一実施形態としてのスパークプラグを示す正面図。The front view which shows the spark plug as one Embodiment. スパークプラグの先端部における主体金具と接地電極の断面を示す説明図。Explanatory drawing which shows the cross section of the metal shell and the ground electrode in the front-end | tip part of a spark plug. 接地電極の基端部の3−3断面を示す模式図。The schematic diagram which shows the 3-3 cross section of the base end part of a ground electrode. 内層部の偏心量と溶接強度との関係を示す説明図。Explanatory drawing which shows the relationship between the eccentric amount of an inner layer part, and welding strength. 内層部の偏心量と溶接強度との関係を示す説明図。Explanatory drawing which shows the relationship between the eccentric amount of an inner layer part, and welding strength.

図1は、本発明の一実施形態としてのスパークプラグ100を示す正面図である。図1において、スパークプラグ100の発火部が存在する下側をスパークプラグ100の先端側と定義し、上側を後端側と定義して説明する。このスパークプラグ100は、絶縁体10と、中心電極20と、接地電極30と、端子金具40と、主体金具50とを備えている。絶縁体10は、軸線Oに沿って延びる軸孔を有している。なお、軸線Oを「中心軸」とも呼ぶ。中心電極20は、軸線Oに沿って延びる棒状の電極であり、絶縁体10の軸孔内に挿入された状態で保持されている。接地電極30は、一端が主体金具50の先端52に固定され、他端が中心電極20と対向する電極である。端子金具40は、電力の供給を受けるための端子であり、中心電極20に電気的に接続されている。主体金具50は、絶縁体10の周囲を覆う筒状の部材であり、絶縁体10を内部に固定している。主体金具50の外周には、ねじ部54が形成されている。ねじ部54は、ねじ山が形成された部位であり、スパークプラグ100をエンジンヘッドに取付ける際にエンジンヘッドのねじ孔に螺合する。   FIG. 1 is a front view showing a spark plug 100 as an embodiment of the present invention. In FIG. 1, the lower side where the ignition part of the spark plug 100 exists is defined as the front end side of the spark plug 100, and the upper side is defined as the rear end side. The spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode 30, a terminal fitting 40, and a metal shell 50. The insulator 10 has an axial hole extending along the axis O. The axis O is also referred to as “center axis”. The center electrode 20 is a rod-shaped electrode extending along the axis O, and is held in a state of being inserted into the shaft hole of the insulator 10. The ground electrode 30 is an electrode having one end fixed to the tip 52 of the metal shell 50 and the other end facing the center electrode 20. The terminal fitting 40 is a terminal for receiving power supply, and is electrically connected to the center electrode 20. The metal shell 50 is a cylindrical member that covers the periphery of the insulator 10, and fixes the insulator 10 inside. A screw portion 54 is formed on the outer periphery of the metal shell 50. The screw part 54 is a part where a screw thread is formed, and is screwed into a screw hole of the engine head when the spark plug 100 is attached to the engine head.

図2は、スパークプラグ100の先端部における主体金具50と接地電極30の断面を示している。接地電極30は、主体金具50の先端52に接合された棒状の基端部30aと、基端部30aの先端側に設けられ、中心電極20側に曲げられた曲げ部30bと、曲げ部30bの更に先端側に設けられた先端部30cとを有する。また、接地電極30は、外層部30outと、外層部30outの内部に配置された内層部30inとを有する。内層部30inは、外層部30outよりも熱伝導率の高い金属材料で形成されている。外層部30outは、例えばニッケル基合金(インコネル600,インコネル601等)で形成される。また、内層部30inは、例えば、銅(Cu)やニッケル(Ni)などで形成される。この内層部30inは、接地電極30の先端部30cで発生する熱を主体金具50に逃がすための伝熱部としての機能を有する。このため、内層部30inは、基端部30aの主体金具50との界面から始まり、先端部30cが軸線Oと交わる位置の近傍まで延びている。   FIG. 2 shows a cross section of the metal shell 50 and the ground electrode 30 at the tip of the spark plug 100. The ground electrode 30 has a rod-like base end portion 30a joined to the tip end 52 of the metal shell 50, a bent portion 30b provided on the tip end side of the base end portion 30a and bent toward the center electrode 20 side, and a bent portion 30b. And a tip portion 30c provided on the tip side. The ground electrode 30 has an outer layer portion 30out and an inner layer portion 30in disposed inside the outer layer portion 30out. The inner layer portion 30in is formed of a metal material having a higher thermal conductivity than the outer layer portion 30out. The outer layer portion 30out is formed of, for example, a nickel-based alloy (Inconel 600, Inconel 601 or the like). The inner layer portion 30in is formed of, for example, copper (Cu) or nickel (Ni). The inner layer portion 30 in has a function as a heat transfer portion for releasing heat generated at the tip portion 30 c of the ground electrode 30 to the metal shell 50. For this reason, the inner layer portion 30in starts from the interface between the base end portion 30a and the metal shell 50, and extends to the vicinity of the position where the distal end portion 30c intersects the axis O.

図3(A)は、図2の接地電極30の基端部30aにおける3−3断面(軸線Oの方向に垂直な断面)の一例を示す模式図である。なお、ここでは接地電極30の基端部30aと主体金具50との当接面から先端側に1mmの位置での断面を3−3断面とした。内層部30inは、その全周が外層部30outの中に包含されている。図3(A)に示す各種の符号の意味は以下の通りである。なお、本願でいう断面中心とは、断面形状の幾何学的な重心を意味し、これは、3−3断面の断面画像をCADにてトレースすることで算出している。
(1)Tout,Wout:外層部30outの厚み及び幅
(2)Tin,Win:内層部30inの厚み及び幅
(3)Cout:外層部30outの断面中心(断面形状の幾何学的な重心)
(4)Cin:内層部30inの断面中心(断面形状の幾何学的な重心)
(5)δC:外層部30outの断面中心Coutを基準とした内層部30inの断面中心Cinの偏心量
(6)X,Y:基端部30aの幅方向及び厚み方向
3A is a schematic diagram illustrating an example of a 3-3 cross section (a cross section perpendicular to the direction of the axis O) at the base end portion 30a of the ground electrode 30 of FIG. Here, the cross section at a position of 1 mm from the contact surface between the base end portion 30a of the ground electrode 30 and the metal shell 50 to the front end side is a 3-3 cross section. The inner layer portion 30in is entirely included in the outer layer portion 30out. The meanings of the various codes shown in FIG. 3A are as follows. In addition, the cross-sectional center as used in this application means the geometric gravity center of a cross-sectional shape, and this is computed by tracing the cross-sectional image of a 3-3 cross section by CAD.
(1) Tout, Wout: thickness and width of the outer layer portion 30out (2) Tin, Win: thickness and width of the inner layer portion 30in (3) Cout: cross-sectional center of the outer layer portion 30out (geometric center of gravity of the cross-sectional shape)
(4) Cin: center of cross section of inner layer portion 30in (geometric center of gravity of cross section)
(5) δC: Eccentricity of the cross-sectional center Cin of the inner layer part 30in with reference to the cross-sectional center Cout of the outer layer part 30out (6) X, Y: width direction and thickness direction of the base end part 30a

なお、基端部30aの厚み方向Yは、主体金具50の径方向(軸線Oから外側に向かう方向)であり、基端部30aの幅方向Xはこれに垂直な方向である。また、外層部30outの厚みTout及び幅Woutは、基端部30aの厚み及び幅と同じである。   The thickness direction Y of the base end portion 30a is the radial direction of the metal shell 50 (the direction from the axis O toward the outside), and the width direction X of the base end portion 30a is a direction perpendicular thereto. Further, the thickness Tout and the width Wout of the outer layer portion 30out are the same as the thickness and width of the base end portion 30a.

図3(A)から理解できるように、内層部30inの断面中心Cinと、外層部30outの断面中心Coutとは、基端部30aの厚み方向Yの位置はほぼ同じであるが、幅方向Xにずれている。換言すれば、内層部30inは、外層部30outから偏心している。前述したように、内層部30inはCuなどの熱伝導率の高い部材で形成されているので、主体金具50に溶接されず、外層部30outのみが主体金具50に溶接される。図3(A)に示すように、内層部30inを外層部30outから右側に偏心させると、外層部30outが主体金具50に溶接される大面積の接合部分が基端部30aの左側に形成される。後述するように、このように内層部30inを偏心させた状態で溶接強度を算出すると、偏心により生成された大面積の接合部分が基端部30aと主体金具50との溶接強度を高めることが確認された。   As can be understood from FIG. 3A, the cross-sectional center Cin of the inner layer portion 30in and the cross-sectional center Cout of the outer layer portion 30out are substantially the same in the thickness direction Y of the base end portion 30a, but the width direction X It is shifted to. In other words, the inner layer portion 30in is eccentric from the outer layer portion 30out. As described above, since the inner layer portion 30in is formed of a member having high thermal conductivity such as Cu, it is not welded to the metal shell 50, but only the outer layer portion 30out is welded to the metal shell 50. As shown in FIG. 3A, when the inner layer portion 30in is decentered from the outer layer portion 30out to the right side, a large-area joining portion where the outer layer portion 30out is welded to the metal shell 50 is formed on the left side of the base end portion 30a. The As will be described later, when the welding strength is calculated in the state where the inner layer portion 30in is eccentric as described above, the large-area joint portion generated by the eccentricity increases the welding strength between the base end portion 30a and the metal shell 50. confirmed.

なお、内層部30inの断面形状は、基端部30aの断面形状に相似であることが好ましい。このような断面形状を採用すれば、内層部30inと外層部30outの界面に冷熱衝撃(急激な温度変化)による応力集中が起こる可能性を低減できるので、接地電極30の強度を高めることが可能である。   Note that the cross-sectional shape of the inner layer portion 30in is preferably similar to the cross-sectional shape of the proximal end portion 30a. By adopting such a cross-sectional shape, it is possible to reduce the possibility of stress concentration due to thermal shock (rapid temperature change) at the interface between the inner layer portion 30in and the outer layer portion 30out, so that the strength of the ground electrode 30 can be increased. It is.

なお、内層部30inを偏心させる方向としては、基端部30aの幅方向Xでは無く、厚み方向Yを選択することも考え得る。しかしながら、基端部30aの厚み方向Yに関しては、溶接時の位置決めの余裕が小さい。この理由は、基端部30aの厚み方向Yは主体金具50の径方向に相当しており、主体金具50の径方向の厚みと基端部30aの厚みToutはほぼ同じ大きさに設定されているからである。すなわち、接地電極30の溶接位置がその厚み方向Yにずれると、接地電極30と主体金具50との間の接合部分が主体金具50の径方向にずれることになるので、溶接強度が過度に小さくなる可能性がある。一方、基端部30aの幅方向X(接地電極30の幅方向)には主体金具50の先端52が円環状に続いているので、基端部30aの幅方向Xに関して溶接位置が多少ずれたとしても溶接強度に対する影響は比較的小さい。本願の発明者は、これらの点を考慮して、内層部30inを偏心させる方向として基端部30aの厚み方向Yでは無く、基端部30aの幅方向Xを選択したものである。すなわち、内層部30inを基端部30aの幅方向Xに偏心させることによって、主体金具50への基端部30aの溶接位置の位置ズレに関する余裕を十分に確保しつつ、接地電極30の溶接強度を高めることができる。但し、内層部30inを、基端部30aの幅方向Xのみでなく、基端部30aの厚み方向Yにも多少偏心させるようにしてもよい。   Note that it is also conceivable to select the thickness direction Y instead of the width direction X of the base end portion 30a as the direction in which the inner layer portion 30in is eccentric. However, regarding the thickness direction Y of the base end portion 30a, the positioning margin during welding is small. The reason is that the thickness direction Y of the base end portion 30a corresponds to the radial direction of the metallic shell 50, and the radial thickness of the metallic shell 50 and the thickness Tout of the proximal end portion 30a are set to substantially the same size. Because. That is, when the welding position of the ground electrode 30 is shifted in the thickness direction Y, the joint portion between the ground electrode 30 and the metal shell 50 is shifted in the radial direction of the metal shell 50, so that the welding strength is excessively small. There is a possibility. On the other hand, since the distal end 52 of the metal shell 50 continues in an annular shape in the width direction X of the base end portion 30a (the width direction of the ground electrode 30), the welding position is slightly shifted with respect to the width direction X of the base end portion 30a. Even so, the effect on welding strength is relatively small. In consideration of these points, the inventor of the present application selects not the thickness direction Y of the base end part 30a but the width direction X of the base end part 30a as the direction in which the inner layer part 30in is decentered. That is, by decentering the inner layer part 30in in the width direction X of the base end part 30a, the welding strength of the ground electrode 30 is ensured while ensuring a sufficient margin for the displacement of the welding position of the base end part 30a to the metal shell 50. Can be increased. However, the inner layer portion 30in may be slightly decentered not only in the width direction X of the base end portion 30a but also in the thickness direction Y of the base end portion 30a.

図3(B)は、図2の接地電極30の基端部30aにおける3−3断面(軸線Oの方向に垂直な断面)の他の例を示す模式図である。この例では、内層部30inは、伝熱部30htと、伝熱部30htの更に内部に形成された芯部30coとの2層構造を有している。従って、基端部30aの断面の全体は、3層構造を有している。伝熱部30htは、Cu等の高熱伝導率の金属部材で形成されている。芯部30coは、外層部30outと伝熱部30htの中間的な熱伝導率の金属部材(例えばNi)で形成されている。図3(B)で使用されている符号は、図3(A)と同じ定義で使用されている。なお、図3(B)において、内層部30inの断面中心Cinは、伝熱部30htと芯部30coの和を取った領域の中心である。なお、内層部30inが伝熱部30htと芯部30coを含む場合には、両者の断面中心が一致することが好ましいが、両者の断面中心が多少ずれていても良い。   FIG. 3B is a schematic diagram illustrating another example of a 3-3 cross section (a cross section perpendicular to the direction of the axis O) at the base end portion 30a of the ground electrode 30 of FIG. In this example, the inner layer part 30in has a two-layer structure of a heat transfer part 30ht and a core part 30co formed further inside the heat transfer part 30ht. Accordingly, the entire cross section of the base end portion 30a has a three-layer structure. The heat transfer part 30ht is formed of a metal member having a high thermal conductivity such as Cu. The core part 30co is formed of a metal member (for example, Ni) having an intermediate thermal conductivity between the outer layer part 30out and the heat transfer part 30ht. The reference numerals used in FIG. 3B are used in the same definition as in FIG. In FIG. 3B, the cross-sectional center Cin of the inner layer part 30in is the center of the area obtained by summing the heat transfer part 30ht and the core part 30co. In addition, when the inner layer part 30in includes the heat transfer part 30ht and the core part 30co, it is preferable that the cross-sectional centers of both coincide with each other, but the cross-sectional centers of both may be slightly shifted.

図2及び図3に示すような多層構造の接地電極30は、例えば特開2011−181523号公報に記載された製造方法に従って製造することが可能である。   The ground electrode 30 having a multilayer structure as shown in FIGS. 2 and 3 can be manufactured according to a manufacturing method described in, for example, Japanese Patent Application Laid-Open No. 2011-181523.

図4は、複数のサンプルS01〜S08に関して、内層部30inの偏心量δCと溶接強度との関係を示す説明図である。ここでは、接地電極30の基端部30aの断面形状として、図3(A)に示した2層構造を採用し、サンプルの寸法は以下の通りとした。
(1)外層部30outの厚みTout=1.1mm、幅Wout=2.2mm
(2)内層部30inの厚みTin=0.5mm,幅Win=1.6mm
(3)接地電極30の全体の長さは8mm、内層部30inの長さは5mmとした。
FIG. 4 is an explanatory diagram showing the relationship between the amount of eccentricity δC of the inner layer portion 30in and the welding strength for a plurality of samples S01 to S08. Here, the two-layer structure shown in FIG. 3A is adopted as the cross-sectional shape of the base end portion 30a of the ground electrode 30, and the sample dimensions are as follows.
(1) Outer layer portion 30out thickness Tout = 1.1 mm, width Wout = 2.2 mm
(2) Inner layer 30in thickness Tin = 0.5mm, width Win = 1.6mm
(3) The entire length of the ground electrode 30 was 8 mm, and the length of the inner layer portion 30 in was 5 mm.

なお、接地電極30の形状としては、曲り部30bの無い直線状の部材を想定した。また、接地電極30と主体金具50の界面において、外層部30outのみが溶接されるものとし、溶接後の断面形状も図3(A)に従うものと仮定した。溶接強度は、接地電極30を1mm/分の速度で軸線O(図1)の方向に沿って引っ張ったときの引張強さであり、接地電極30と主体金具50の溶接部分を有限要素法で解析することによって算出した値である。   In addition, as the shape of the ground electrode 30, a linear member without the bent portion 30b was assumed. Further, it is assumed that only the outer layer portion 30out is welded at the interface between the ground electrode 30 and the metal shell 50, and the cross-sectional shape after welding is also in accordance with FIG. The welding strength is the tensile strength when the ground electrode 30 is pulled along the direction of the axis O (FIG. 1) at a speed of 1 mm / min. The welded portion of the ground electrode 30 and the metal shell 50 is joined by the finite element method. This is a value calculated by analysis.

図4(A)のグラフには、図4(B)の各サンプルS01〜S08の偏心量δC[%]と、溶接強度との関係が示されている。偏心量δC[%]は、偏心量の絶対値(Cin−Cout)を基端部30aの幅Woutで除した値である(図3(A)参照)。このグラフから理解できるように、内層部30inを偏心させることによって、偏心の無い場合に比べて溶接強度が上昇する。この理由は、偏心により生成された大面積の接合部分が基端部30aと主体金具50との溶接強度を高めるからであると推定される。また、内層部30inの偏心量δCを2%以上とすれば溶接強度を十分に高めることが可能である。   The graph in FIG. 4A shows the relationship between the eccentricity δC [%] of each sample S01 to S08 in FIG. 4B and the welding strength. The eccentric amount δC [%] is a value obtained by dividing the absolute value (Cin−Cout) of the eccentric amount by the width Wout of the base end portion 30a (see FIG. 3A). As can be understood from this graph, by decentering the inner layer portion 30in, the welding strength increases as compared with the case where there is no decentering. The reason for this is presumed to be that the large-area joint portion generated by the eccentricity increases the welding strength between the base end portion 30a and the metal shell 50. Further, if the amount of eccentricity δC of the inner layer portion 30 in is 2% or more, the welding strength can be sufficiently increased.

図5は、図4とは寸法が異なる複数のサンプルS11〜S18に関して、内層部30inの偏心量δCと溶接強度との関係を示す説明図である。ここでは、接地電極30の基端部30aの断面形状として、図3(A)に示した2層構造を採用し、サンプルの寸法は以下の通りとした。
(1)外層部30outの厚みTout=1.3mm、幅Wout=2.7mm
(2)内層部30inの厚みTin=0.5mm,幅Win=1.9mm
(3)接地電極30の全体の長さは8mm、内層部30inの長さは5mmとした。
FIG. 5 is an explanatory diagram showing the relationship between the eccentricity δC of the inner layer portion 30in and the welding strength for a plurality of samples S11 to S18 having dimensions different from those in FIG. Here, the two-layer structure shown in FIG. 3A is adopted as the cross-sectional shape of the base end portion 30a of the ground electrode 30, and the sample dimensions are as follows.
(1) Outer layer portion 30out thickness Tout = 1.3 mm, width Wout = 2.7 mm
(2) Inner layer portion 30in thickness Tin = 0.5mm, width Win = 1.9mm
(3) The entire length of the ground electrode 30 was 8 mm, and the length of the inner layer portion 30 in was 5 mm.

図5(A)のグラフでは、図4(A)のグラフと同様の傾向があることが理解できる。すなわち、内層部30inを偏心させることによって、偏心の無い場合に比べて溶接強度が上昇する。また、内層部30inの偏心量δCを2%以上とすれば溶接強度を十分に高めることが可能である。   It can be understood that the graph of FIG. 5A has the same tendency as the graph of FIG. That is, by decentering the inner layer portion 30in, the welding strength is increased as compared with the case where there is no decentering. Further, if the amount of eccentricity δC of the inner layer portion 30 in is 2% or more, the welding strength can be sufficiently increased.

なお、図4(A),図5(A)のいずれも場合にも、内層部30inの偏心量δCは10%を越えてもよいが、偏心量δCが10%を越えて増加すると溶接強度の増加率はやや低下する。一方、偏心量δCが10%を越えて増加すると、偏心により外層部30outの肉厚が薄くなる部分(図3(A)の右端部分)の肉厚が更に減少するので、製造バラツキにより内層部30inが外部に露出する可能性がある。この意味からは、内層部30inの偏心量δCは、10%以下とすることが好ましい。   4A and 5A, the eccentricity δC of the inner layer portion 30in may exceed 10%. However, if the eccentricity δC exceeds 10%, the welding strength is increased. The rate of increase is somewhat lower. On the other hand, if the amount of eccentricity δC exceeds 10%, the thickness of the portion where the thickness of the outer layer portion 30out becomes thinner due to the eccentricity (the right end portion in FIG. 3A) further decreases, so that the inner layer portion There is a possibility that 30 inches are exposed to the outside. In this sense, it is preferable that the amount of eccentricity δC of the inner layer portion 30 in be 10% or less.

・変形例
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
Modification Examples The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the scope of the invention.

・変形例1:
スパークプラグとしては、図1に示したもの以外の種々の構成を有するスパークプラグを本発明に適用することが可能である。特に、端子金具や絶縁体の具体的な形状については、様々な変形が可能である。
・ Modification 1:
As the spark plug, spark plugs having various configurations other than those shown in FIG. 1 can be applied to the present invention. In particular, various modifications can be made to the specific shapes of the terminal fitting and the insulator.

・変形例2:
上述した実施形態では、接地電極30の基端部30aの断面形状を矩形であるものとしたが、その四隅をまるめた略矩形形状としても良い。また、矩形や略矩形以外の他の断面形状を採用してもよい。
Modification 2
In the embodiment described above, the cross-sectional shape of the base end portion 30a of the ground electrode 30 is rectangular, but it may be a substantially rectangular shape with rounded corners. Moreover, you may employ | adopt other cross-sectional shapes other than a rectangle or a substantially rectangular shape.

10…絶縁体
20…中心電極
30…接地電極
30a…基端部
30b…曲げ部
30c…先端部
30co…芯部
30ht…伝熱部
30in…内層部
30out…外層部
40…端子金具
50…主体金具
52…先端
54…ねじ部
100…スパークプラグ
DESCRIPTION OF SYMBOLS 10 ... Insulator 20 ... Center electrode 30 ... Ground electrode 30a ... Base end part 30b ... Bending part 30c ... Tip part 30co ... Core part 30ht ... Heat-transfer part 30in ... Inner layer part 30out ... Outer layer part 40 ... Terminal metal fitting 50 ... Main metal fitting 52 ... Tip 54 ... Screw part 100 ... Spark plug

Claims (3)

主体金具の先端に接合された接地電極であって、棒状の基端部と、前記基端部の先端側に設けられ、中心電極側に曲げられた曲げ部とを有する接地電極を備え、前記基端部が、外層部と、前記外層部の内部に配置された前記外層部よりも熱伝導率の高い内層部とを有するスパークプラグであって、
前記スパークプラグの軸線方向に垂直な前記基端部の断面が、前記主体金具の径方向に沿った厚みと、前記径方向に垂直な方向に沿った幅とを有し、前記内層部の断面中心が、前記基端部の断面中心から前記基端部の幅方向に偏心していることを特徴とするスパークプラグ。
A ground electrode joined to the distal end of the metal shell, comprising a ground electrode having a rod-like base end portion and a bent portion provided on the distal end side of the base end portion and bent toward the center electrode side, A spark plug having a base end portion having an outer layer portion and an inner layer portion having a higher thermal conductivity than the outer layer portion disposed inside the outer layer portion,
The cross section of the base end portion perpendicular to the axial direction of the spark plug has a thickness along the radial direction of the metal shell and a width along the direction perpendicular to the radial direction, and a cross section of the inner layer portion The spark plug is characterized in that a center is decentered in a width direction of the base end portion from a cross-sectional center of the base end portion.
請求項1に記載のスパークプラグにおいて、
前記内層部の断面中心の偏心量は、前記基端部の幅の2%以上であることを特徴とするスパークプラグ。
The spark plug according to claim 1, wherein
The spark plug according to claim 1, wherein an eccentric amount of a cross-sectional center of the inner layer portion is 2% or more of a width of the base end portion.
請求項2に記載のスパークプラグにおいて、
前記内層部の断面中心の偏心量は、前記基端部の幅の10%以下であることを特徴とするスパークプラグ。
The spark plug according to claim 2,
The spark plug characterized in that the amount of eccentricity at the cross-sectional center of the inner layer portion is 10% or less of the width of the base end portion.
JP2014209861A 2014-10-14 2014-10-14 Spark plug Active JP6180393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209861A JP6180393B2 (en) 2014-10-14 2014-10-14 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209861A JP6180393B2 (en) 2014-10-14 2014-10-14 Spark plug

Publications (2)

Publication Number Publication Date
JP2016081633A true JP2016081633A (en) 2016-05-16
JP6180393B2 JP6180393B2 (en) 2017-08-16

Family

ID=55956414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209861A Active JP6180393B2 (en) 2014-10-14 2014-10-14 Spark plug

Country Status (1)

Country Link
JP (1) JP6180393B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185928A (en) * 1997-12-25 1999-07-09 Denso Corp Spark plug
JP2011181523A (en) * 2008-09-02 2011-09-15 Ngk Spark Plug Co Ltd Spark plug
JP2012099403A (en) * 2010-11-04 2012-05-24 Ngk Spark Plug Co Ltd Spark plug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185928A (en) * 1997-12-25 1999-07-09 Denso Corp Spark plug
JP2011181523A (en) * 2008-09-02 2011-09-15 Ngk Spark Plug Co Ltd Spark plug
JP2012099403A (en) * 2010-11-04 2012-05-24 Ngk Spark Plug Co Ltd Spark plug

Also Published As

Publication number Publication date
JP6180393B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5414896B2 (en) Spark plug
JP4730747B2 (en) Spark plug and manufacturing method thereof
JP4261573B2 (en) Spark plug
JP2007522617A5 (en)
JP2008270189A (en) Manufacturing method of spark plug, and spark plug
JP2010086951A (en) Spark plug
JP6016721B2 (en) Spark plug
JP5165751B2 (en) Spark plug
JP6005175B2 (en) Ceramic heater type glow plug and manufacturing method thereof
JP6180393B2 (en) Spark plug
EP3130794A1 (en) Glow plug assembly having double terminal
JP6245716B2 (en) Manufacturing method of ceramic heater type glow plug and ceramic heater type glow plug
JP2010212245A5 (en)
JPWO2008108161A1 (en) Glow plug and manufacturing method thereof
JP2005135783A (en) Spark plug
JP5564593B2 (en) Spark plug and spark plug manufacturing method
CN114287091B (en) Spark plug ground electrode configuration
JP2007265843A (en) Method of manufacturing spark plug for internal combustion engine
CN107005031A (en) For the method for the sparking-plug electrode for manufacturing the fuse with the igniting face that is stretched over
CN113748577B (en) Spark plug electrode and method of manufacturing the same
JP2017049132A (en) Temperature sensor
JP5589716B2 (en) Manufacturing method of spark plug
JP6152469B2 (en) Ceramic heater type glow plug
JP2007080833A5 (en)
JP4217589B2 (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170718

R150 Certificate of patent or registration of utility model

Ref document number: 6180393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250