JPH11185714A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11185714A
JPH11185714A JP9358412A JP35841297A JPH11185714A JP H11185714 A JPH11185714 A JP H11185714A JP 9358412 A JP9358412 A JP 9358412A JP 35841297 A JP35841297 A JP 35841297A JP H11185714 A JPH11185714 A JP H11185714A
Authority
JP
Japan
Prior art keywords
secondary battery
explosion
proof valve
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9358412A
Other languages
Japanese (ja)
Inventor
Jun Suzuki
純 鈴木
Koichi Kawamura
公一 川村
Katsuhisa Honma
克久 本間
Yoshiaki Asami
義明 阿左美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
Toshiba Development and Engineering Corp
AT Battery KK
Original Assignee
A&T Battery Corp
AT Battery KK
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Battery Corp, AT Battery KK, Toshiba Electronic Engineering Co Ltd filed Critical A&T Battery Corp
Priority to JP9358412A priority Critical patent/JPH11185714A/en
Publication of JPH11185714A publication Critical patent/JPH11185714A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery provided with a marking explosion proof valve surely broken by predetermined operation pressure and holding good strength against falling shock. SOLUTION: A nonaqueous secondary battery is provided with an armoring can 1 comprising a rectangular metal having an opening serving also as one polar terminal, a power generation element contained in the armoring can 1 and having a positive electrode and a negative electrode confronting as sandwiching a separator, nonaqueous electrolyte contained in the armoring can 1, and a sealing body fitted to the opening portion of the armoring can 1 and having the other polar terminal airtightly sealed by hermetic sealing. A marking explosion proof valve 18 comprising a slit-like thin film portion of 0.06 to 0.15 mm thick and having a straight line portion of 6 to 15 mm long is formed at some place of an armoring can 1 surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、安全弁機構を有す
る非水電解液二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery having a safety valve mechanism.

【0002】[0002]

【従来の技術】最近、携帯電話やビデオカメラ等の電子
機器や、コンピュータ等の小型化、軽量化、高性能化に
伴ない、これらの電子機器などの電源となる二次電池に
ついても軽量化、高エネルギー密度化が要求されてい
る。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and video cameras, and computers and the like have become smaller, lighter, and more sophisticated, the weight of secondary batteries serving as power sources for these electronic devices has also been reduced. , High energy density is required.

【0003】水の分解電圧以上の高電圧化が可能な非水
電解液二次電池は、従来から使用されている鉛二次電池
やニッケル−カドミウム二次電池に代わる二次電池とし
て開発が進んでおり、実用化されている。このような非
水電解液二次電池は、負極材料としてコークス、黒鉛、
有機物焼結体等のリチウムを吸蔵・放出することが可能
な炭材料を用い、正極活物質としてLiCoO2 、Li
NiO2 等のリチウムイオンを吸蔵・放出することが可
能な金属酸化物を用いたリチウムイオン二次電池が知ら
れている。
A non-aqueous electrolyte secondary battery capable of increasing the voltage above the decomposition voltage of water is being developed as a secondary battery that replaces conventionally used lead secondary batteries and nickel-cadmium secondary batteries. And has been put to practical use. Such a non-aqueous electrolyte secondary battery has coke, graphite,
Using a carbon material capable of inserting and extracting lithium such as an organic sintered body, and using LiCoO 2 , Li as a positive electrode active material
2. Description of the Related Art A lithium ion secondary battery using a metal oxide such as NiO 2 capable of inserting and extracting lithium ions is known.

【0004】しかしながら、前記非水電解液二次電池は
上述した利点を有する反面、信頼性が乏しいという問題
があった。その一つとして、外装缶内に収納された正極
および負極を有する発電要素である電極体が化学変化し
て内圧が上昇し、発火、爆発を生じることが挙げられ
る。例えば、リチウムイオン二次電池のような非水電解
液二次電池に通常以上の電流が加わる、いわゆる過充電
状態にしたり、誤使用により短絡状態になって大電流が
流れたりすると、前記電極体の中の非水電解液が分解さ
れ、ガスが発生する。ガスが前記外装缶内に充満し、外
装缶内の内圧が上昇すると、最後には電池が破裂する。
[0004] However, the above-mentioned non-aqueous electrolyte secondary battery has the above-mentioned advantages, but has a problem of poor reliability. One example is that an electrode body, which is a power generating element having a positive electrode and a negative electrode, housed in an outer can is chemically changed to increase the internal pressure, causing ignition and explosion. For example, when a current higher than normal is applied to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, the battery is put into a so-called overcharged state, or when a large current flows due to short-circuit due to misuse, the electrode body The non-aqueous electrolyte in is decomposed to generate gas. When gas fills the outer can and the internal pressure in the outer can rises, the battery eventually ruptures.

【0005】このようなことから、従来では前述した電
池の破裂を防止するために外装缶の内圧がある値を超え
た場合、発生ガスを外装缶の外に放出し、破裂を防止す
る安全弁機構が設けられている。このような安全弁機構
を備えた非水電解液二次電池としては、次のような構造
のものが知られている。
[0005] For this reason, conventionally, when the internal pressure of the outer can exceeds a certain value in order to prevent the above-described battery rupture, the generated gas is discharged to the outside of the outer can to prevent rupture. Is provided. The following structure is known as a nonaqueous electrolyte secondary battery provided with such a safety valve mechanism.

【0006】この非水電解液二次電池は、有底筒状の外
装缶と、この外装缶内に収納され、正極、セパレータお
よび負極を渦巻き状に捲回した電極体と、前記外装缶に
収容された非水電解液と、前記外装缶の上端開口部に取
着された封口体とを備えている。前記封口体には、圧力
開放用孔が開口し、かつ前記封口体の下面には例えばス
テンレスからなる薄板が前記孔を塞ぐようにレーザ溶接
により気密に取り付けられている。また、直線部の両端
にV字部を持つ形状の切り込み部は、前記薄板の上面に
形成されている。つまり、前記薄板は前記切り込み溝の
開口部側が前記外装缶の外部側に向くように前記封口体
の下面に取り付けられている。なお、前記切り込み溝は
前記薄板の下面にエッチングにより形成される。前記封
口体の圧力開放用孔および前記薄板により安全弁機構が
構成されている。
The non-aqueous electrolyte secondary battery comprises a cylindrical outer can having a bottom, an electrode body housed in the outer can and having a positive electrode, a separator, and a negative electrode spirally wound thereon; The housing includes a nonaqueous electrolyte contained therein, and a sealing body attached to an upper end opening of the outer can. A pressure release hole is opened in the sealing body, and a thin plate made of, for example, stainless steel is hermetically attached to the lower surface of the sealing body by laser welding so as to cover the hole. In addition, cut portions having V-shaped portions at both ends of the linear portion are formed on the upper surface of the thin plate. That is, the thin plate is attached to the lower surface of the sealing body such that the opening side of the cut groove faces the outside of the outer can. The cut groove is formed on the lower surface of the thin plate by etching. The pressure relief hole of the sealing body and the thin plate constitute a safety valve mechanism.

【0007】このような安全弁機構を有する非水電解液
二次電池において、過電流等により前記外装缶の内圧が
上昇すると、前記切り込み溝部分が加圧されてそこから
薄板が破断されて孔が形成される。前記外装缶内に充満
されたガスは、前記孔および前記圧力開放用孔を通して
外部に放出されて爆発が未然に防止される。
In the non-aqueous electrolyte secondary battery having such a safety valve mechanism, when the internal pressure of the outer can increases due to an overcurrent or the like, the cut groove portion is pressurized, and the thin plate is broken therefrom to form a hole. It is formed. The gas filled in the outer can is released to the outside through the hole and the pressure release hole, thereby preventing explosion.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記安
全弁機構は前記封口体を前記外装缶の上端に取り付ける
ために、スペース上、大きさに限界を生じる。特に、イ
ンピーダンスの安定性を確保する構造として正極および
負極のリードタブのいずれか一方を前記封口体にハーメ
ティクにより絶縁された電極端子に接続し、かつ他方を
前記封口体の電極端子以外の領域に接続する構造にする
場合には、スペースの制約がより一層厳しくなる。この
ような限られた大きさの空間内で所定の作動圧を確保す
るためには、前記薄板の切り込み溝の深さを大きくする
(残肉厚を小さくする)必要がある。このような切り込
み溝の深さが大きい薄板を有する安全弁機構を備えた非
水電解液二次電池において、落下衝撃、特に安全弁機構
が付設された封口体に落下衝撃を直接受けると、前記薄
板の切り込み溝が破断されて開放状態になり、電池機能
を喪失したり、前記外装缶内に収容された非水電解液が
漏れ出して周辺機器を損傷するという問題を起こす。
However, the safety valve mechanism is limited in space and size because the sealing body is attached to the upper end of the outer can. In particular, as a structure for ensuring the stability of impedance, one of the lead tabs of the positive electrode and the negative electrode is connected to an electrode terminal insulated by hermetic on the sealing body, and the other is connected to a region other than the electrode terminal of the sealing body. In the case of such a structure, the space restriction becomes more severe. In order to secure a predetermined operating pressure in such a limited space, it is necessary to increase the depth of the cut groove of the thin plate (reduce the remaining thickness). In a non-aqueous electrolyte secondary battery provided with a safety valve mechanism having a thin plate having a large depth of such a cut groove, when a drop impact, particularly a drop impact is directly received on a sealing body provided with a safety valve mechanism, the thin plate The cut groove is broken to open, causing loss of battery function and leakage of the non-aqueous electrolyte contained in the outer can to damage peripheral devices.

【0009】また、前記安全弁機構は前記封口体と薄板
の2つの部品から構成されて、さらに前記薄板をレーザ
溶接により前記封口体に溶接するするために、溶接条件
等により気密不良が生じて前記非水電解液二次電池を組
立てた場合に電解液が漏れ出す不良を生じる恐れがあ
る。
Further, the safety valve mechanism is composed of two parts, the sealing body and a thin plate. Further, since the thin plate is welded to the sealing body by laser welding, poor airtightness occurs due to welding conditions and the like. When the non-aqueous electrolyte secondary battery is assembled, there is a possibility that a failure that the electrolyte leaks out may occur.

【0010】本発明は、所定の作動圧で確実に破断さ
れ、かつ落下衝撃に対しても良好な強度を保持する刻印
防爆弁を備えた非水電解液二次電池を提供しようとする
ものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery provided with an imprint explosion-proof valve that is reliably broken at a predetermined operating pressure and maintains good strength against a drop impact. is there.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明に係わる非水電解液二次電池は、一極性端子を
兼ねる開口部を有する矩形状をなす金属からなる外装缶
と、この外装缶内に収納され、セパレータを挟んで対峙
された正極および負極を有する発電要素と、前記外装缶
内に収容された非水電解液と、前記外装缶の開口部に取
着され、他極性端子がハーメテックにより気密に封止さ
れたされたを封口体と具備し、厚さが0.06〜0.1
5mmで、かつ直線部の長さが6〜15mmの溝状薄膜
部からなる刻印防爆弁は、前記外装缶表面のいずれかの
箇所に形成されていることを特徴とするものである。
In order to achieve the above object, a nonaqueous electrolyte secondary battery according to the present invention comprises a rectangular metal outer can having an opening serving also as a unipolar terminal; A power generating element having a positive electrode and a negative electrode housed in an outer can and opposed to each other with a separator interposed therebetween, a non-aqueous electrolytic solution housed in the outer can, and attached to an opening of the outer can, having another polarity The terminal was hermetically sealed by Hermetec with a sealing body, and the thickness was 0.06 to 0.1.
An imprinted explosion-proof valve comprising a grooved thin film portion having a length of 5 mm and a linear portion having a length of 6 to 15 mm is formed at any location on the surface of the outer can.

【0012】前記正極および負極のいずれか一方は、リ
ードを通して前記他極性端子に接続されていることが好
ましい。
Preferably, one of the positive electrode and the negative electrode is connected to the other polarity terminal through a lead.

【0013】前記刻印防爆弁は、前記外装缶の稜線に平
行もしくは垂直な直線形状または直線部の両端にV字部
を有する形状をなすことが好ましい。
It is preferable that the imprint explosion-proof valve has a linear shape parallel or perpendicular to the ridge line of the outer can or a shape having V-shaped portions at both ends of the linear portion.

【0014】[0014]

【発明の実施の形態】以下、本発明に係わる密閉電池を
角型密閉電池を例として図面を参照して詳細に説明す
る。ここで、角型とは外装缶を発電要素を含む面で切断
したときの形状が長方形であることを意味するが、コー
ナ部においてアールが付けられることを許容するもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a sealed battery according to the present invention will be described in detail with reference to the drawings, taking a rectangular sealed battery as an example. Here, the square shape means that the shape when the outer can is cut at the surface including the power generation element is a rectangle, but allows the corner to be rounded.

【0015】図1は、本発明に係わる非水電解液二次電
池、例えば角型リチウムイオン二次電池を示す斜視図、
図2は図1の二次電池の外観斜視図、図3は図2の二次
電池の底部断面図である。
FIG. 1 is a perspective view showing a nonaqueous electrolyte secondary battery according to the present invention, for example, a prismatic lithium ion secondary battery.
2 is an external perspective view of the secondary battery of FIG. 1, and FIG. 3 is a bottom sectional view of the secondary battery of FIG.

【0016】金属からなる有底矩形筒状をなす外装缶1
は、例えば正極端子を兼ね、底部内面に絶縁フィルム2
が配置されている。発電要素である電極体3は、前記外
装缶1内に収納されている。前記電極体3は、負極4と
セパレータ5と正極6とを前記正極6が最外周に位置す
るように渦巻状に捲回した後、扁平状にプレス成形する
ことにより作製したものである。中心付近にリード取出
穴を有する例えば合成樹脂からなるスペーサ7は、前記
外装缶1内の前記電極体3上に配置されている。
Outer can 1 in the form of a bottomed rectangular tube made of metal
Is, for example, also serving as a positive electrode terminal, and an insulating film 2 on the bottom inner surface.
Is arranged. The electrode body 3 as a power generation element is housed in the outer can 1. The electrode body 3 is manufactured by spirally winding the negative electrode 4, the separator 5, and the positive electrode 6 such that the positive electrode 6 is located at the outermost periphery, and then press-forming the flat shape. A spacer 7 made of, for example, a synthetic resin and having a lead extraction hole near the center is disposed on the electrode body 3 in the outer can 1.

【0017】金属製蓋体8は、前記外装缶1の上端開口
部に例えばレーザ溶接により気密に接合されている。前
記蓋体8の中心付近には、負極端子の取出し穴9が開口
されている。負極端子10は、前記蓋体8の穴9にガラ
ス製または樹脂製の絶縁材11を介してハーメティクシ
ールされている。前記負極端子10の下端面には、リー
ド12が接続され、かつこのリード12の他端は前記電
極体3の負極4に接続されている。
The metal lid 8 is hermetically joined to the upper end opening of the outer can 1 by, for example, laser welding. In the vicinity of the center of the lid 8, a hole 9 for taking out a negative electrode terminal is opened. The negative electrode terminal 10 is hermetically sealed in the hole 9 of the lid 8 via an insulating material 11 made of glass or resin. A lead 12 is connected to the lower end surface of the negative electrode terminal 10, and the other end of the lead 12 is connected to the negative electrode 4 of the electrode body 3.

【0018】上部側絶縁紙13は、前記蓋体8の外表面
全体に被覆されている。スリット14を有する下部側絶
縁紙15は、前記外装缶1の底面に配置されている。二
つ折りされたPTC素子16は、一方の面が前記外装缶
1の底面と前記下部側絶縁紙15の間に介装され、かつ
他方の面が前記スリット14を通して前記絶縁紙15の
外側に延出されている。外装チューブ17は、前記外装
缶1の側面から上下面の絶縁紙13、15の周辺まで延
出するように配置され、前記上部側絶縁紙13および下
部側絶縁紙15を前記外装缶1に固定している。このよ
うな外装チューブ17の配置により、外部に延出された
前記PTC(Positive Thermal Coefficient )素子
16の他方の面が前記下部側絶縁紙15の底面に向けて
折り曲げられる。
The upper insulating paper 13 covers the entire outer surface of the lid 8. The lower insulating paper 15 having the slit 14 is disposed on the bottom surface of the outer can 1. The folded PTC element 16 has one surface interposed between the bottom surface of the outer can 1 and the lower insulating paper 15, and the other surface extending outside the insulating paper 15 through the slit 14. Has been issued. The outer tube 17 is arranged so as to extend from the side surface of the outer can 1 to the periphery of the insulating papers 13 and 15 on the upper and lower surfaces, and fixes the upper insulating paper 13 and the lower insulating paper 15 to the outer can 1. doing. Due to such an arrangement of the outer tube 17, the other surface of the PTC (Positive Thermal Coefficient) element 16 extended to the outside is bent toward the bottom surface of the lower insulating paper 15.

【0019】厚さが0.06〜0.15mmで、かつ直
線部の長さが6〜15mmの溝状薄膜部、例えば直線部
の両端にV字部を有する形状をなす溝状薄膜部からなる
刻印防爆弁18は、図2および図3に示すように例えば
前記外装缶1の底部にその外装缶1の稜線に対して平行
に形成されている。
A groove-shaped thin film portion having a thickness of 0.06 to 0.15 mm and a linear portion having a length of 6 to 15 mm, for example, a groove-shaped thin film portion having V-shaped portions at both ends of the linear portion. As shown in FIGS. 2 and 3, the engraved explosion-proof valve 18 is formed, for example, at the bottom of the outer can 1 in parallel to the ridge line of the outer can 1.

【0020】前記外装缶は、例えばアルミニウム、ステ
ンレスまたは鉄から作られる。
The outer can is made of, for example, aluminum, stainless steel or iron.

【0021】前記負極は、例えばリチウムイオン二次電
池の場合、リチウムイオンが出し入れされる炭素質物
質、例えばグラファイト、ニードルコークス、メソフェ
ーズピッチ系カーボン繊維、有機高分子の焼成体を含む
ペーストをアルミニウム薄板のような集電体の両面に保
持させた構造を有する。
In the case of a lithium ion secondary battery, for example, a paste containing a carbonaceous material into or out of which lithium ions can be introduced and removed, such as graphite, needle coke, mesophase pitch-based carbon fiber, and a sintered body of an organic polymer, is used as the negative electrode. It has a structure held on both sides of a current collector as described above.

【0022】前記正極は、例えばリチウムイオン二次電
池の場合、リチウムニッケル酸化物、LiCoO2 、L
iNiO2 、LiMn2 4 のようなリチウムやコバル
トを含む複合酸化物のような活物質を含むペーストを銅
薄板のような集電体の両面に保持させた構造を有する。
For example, in the case of a lithium ion secondary battery, the positive electrode is made of lithium nickel oxide, LiCoO 2 , L
It has a structure in which a paste containing an active material such as a complex oxide containing lithium or cobalt such as iNiO 2 or LiMn 2 O 4 is held on both surfaces of a current collector such as a thin copper plate.

【0023】前記セパレータとしては、例えばリチウム
イオン二次電池の場合、ポリプロレンのような合成樹脂
からなる多孔性フィルムが用いられる。
For example, in the case of a lithium ion secondary battery, a porous film made of a synthetic resin such as polypropylene is used as the separator.

【0024】前記電解液としては、例えばリチウムイオ
ン二次電池の場合、過塩素酸リチウム、ホウフッ化リチ
ウム、六フッ化リチウム、六フッ化燐リチウム、六フッ
化砒素リチウム、トリフルオロメタンスルホン酸リチウ
ム等の電解質をエチレンカーボネート、プロピレンカー
ボネート、ブチレンカーボネート、γ−ブチロラクト
ン、スルホラン、アセトニトリル、1,2−ジメトキシ
エタン、1,3−ジメチキシプロパン、ジメチルエーテ
ル、テトラヒドロフラン、2=メチルテトラヒドロフラ
ン、炭酸ジメチル、炭酸ジエチル、エチルメチルカーボ
ネートのような有機溶媒で溶解したもの等が用いられ
る。
As the electrolyte, for example, in the case of a lithium ion secondary battery, lithium perchlorate, lithium borofluoride, lithium hexafluoride, lithium hexafluoride, lithium arsenide hexafluoride, lithium trifluoromethanesulfonate, etc. The electrolyte of ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethyloxypropane, dimethyl ether, tetrahydrofuran, 2 = methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate, Those dissolved in an organic solvent such as ethyl methyl carbonate are used.

【0025】前記蓋体は、0.8mm以上、より好まし
く0.9〜1.5mmの厚さを有することが好ましい。
前記蓋体の厚さを0.8mm未満にすると、強度が低下
して前記外装缶1内に収納された電極体3を十分に保護
することが困難になる。
It is preferable that the lid has a thickness of 0.8 mm or more, more preferably 0.9 to 1.5 mm.
If the thickness of the lid is less than 0.8 mm, the strength is reduced and it becomes difficult to sufficiently protect the electrode body 3 housed in the outer can 1.

【0026】前記刻印防爆弁を構成する溝状薄膜部は、
例えば金型パンチでプレス加工することにより形成され
る。この溝状薄膜部は、前述した図2に示す形状および
形成位置に限定されない。例えば溝状薄膜部の形状およ
び形成位置を図4(a)〜(e)に示すようにしてもよ
い。すなわち、図4(a)に示す溝状薄膜部18は、直
線形状をなし、外装缶1の底部に形成されている。図4
(b)に示す溝状薄膜部18は、直線形状をなし、外装
缶1の側面にその稜線に対して平行になるように形成さ
れている。図4(c)に示す溝状薄膜部18は、直線形
状をなし、外装缶1の側面にその稜線に対して垂直にな
るように形成されている。図4(d)に示す溝状薄膜部
18は、直線部の両端にV字部を有する形状をなし、外
装缶1の側面にその稜線に対して平行になるように形成
されている。図4(e)に示す溝状薄膜部18は、直線
部の両端にV字部を有する形状をなし、外装缶1の側面
にその稜線に対して垂直になるように形成されている。
The grooved thin film portion constituting the stamp explosion-proof valve is
For example, it is formed by press working with a mold punch. This groove-shaped thin film portion is not limited to the shape and the formation position shown in FIG. For example, the shape and formation position of the groove-shaped thin film portion may be as shown in FIGS. That is, the groove-shaped thin film portion 18 shown in FIG. 4A has a linear shape and is formed at the bottom of the outer can 1. FIG.
The groove-shaped thin film portion 18 shown in (b) has a linear shape and is formed on the side surface of the outer can 1 so as to be parallel to the ridge line. The groove-shaped thin film portion 18 shown in FIG. 4C has a linear shape and is formed on the side surface of the outer can 1 so as to be perpendicular to the ridge line. The groove-shaped thin film portion 18 shown in FIG. 4D has a shape having V-shaped portions at both ends of the linear portion, and is formed on the side surface of the outer can 1 so as to be parallel to the ridge line. The groove-shaped thin film portion 18 shown in FIG. 4E has a shape having V-shaped portions at both ends of the straight portion, and is formed on the side surface of the outer can 1 so as to be perpendicular to the ridge line.

【0027】前記刻印防爆弁を構成する溝状薄膜部の厚
さおよび直線部の長さを規定したのは、次のような理由
によるものである。
The reason why the thickness of the groove-shaped thin film portion and the length of the linear portion constituting the imprint explosion-proof valve are specified is as follows.

【0028】前記溝状薄膜部の厚さを0.06mm未満
にすると、電池の落下等による衝撃で防爆弁が開放して
中の電解液が漏れ出す恐れがある。一方、前記溝状薄膜
部の厚さが0.15mmを超えると外装缶内の内圧上昇
が生じても防爆弁が作動しなくなる恐れがある。より好
ましい前記溝状薄膜部の厚さは、0.075〜0.08
5mmである。
If the thickness of the groove-shaped thin film portion is less than 0.06 mm, there is a possibility that the explosion-proof valve is opened and the electrolyte contained therein leaks due to an impact due to a drop of the battery or the like. On the other hand, if the thickness of the groove-shaped thin film portion exceeds 0.15 mm, the explosion-proof valve may not operate even if the internal pressure in the outer can increases. More preferably, the thickness of the groove-shaped thin film portion is 0.075 to 0.08.
5 mm.

【0029】前記溝状薄膜部の長さを6mm未満にする
と、外装缶内の内圧上昇が生じても防爆弁が作動しなく
なる恐れがある。一方、前記溝状薄膜部の長さが15m
mを超えると、電池の落下等による衝撃で防爆弁が開放
して中の電解液が漏れ出す恐れがある。より好ましい前
記溝状薄膜部の長さは、8〜10mmである。
If the length of the grooved thin film portion is less than 6 mm, the explosion-proof valve may not operate even if the internal pressure in the outer can increases. On the other hand, the length of the groove-shaped thin film portion is 15 m.
If it exceeds m, the explosion-proof valve may be opened by an impact due to a drop of the battery or the like, and the electrolyte therein may leak. More preferably, the length of the groove-shaped thin film portion is 8 to 10 mm.

【0030】以上説明した本発明に係わる非水電解二次
電池は、厚さが0.06〜0.15mmで、かつ直線部
の長さが6〜15mmの溝状薄膜部からなる刻印防爆弁
を外装缶表面のいずれかの箇所に形成した構造を有す
る。前記形状の刻印防爆弁を外装缶に形成することによ
って、従来の封口体に安全弁機構を取り付けた二次電池
に比べて大きな面積の作動領域を確保できる。このた
め、外装缶内のガス発生による内圧上昇において前記外
装缶が変形すると、前記刻印防爆弁が破断して発生ガス
を外部に逃散させることができる。その結果、電池の破
裂を未然に防ぐことができる。
The non-aqueous electrolytic secondary battery according to the present invention described above has a stamped explosion-proof valve comprising a grooved thin film portion having a thickness of 0.06 to 0.15 mm and a linear portion having a length of 6 to 15 mm. Is formed at any place on the surface of the outer can. By forming the engraved explosion-proof valve having the above-described shape on the outer can, an operation area having a larger area can be secured as compared with a secondary battery in which a safety valve mechanism is attached to a conventional sealing body. Therefore, when the outer can is deformed due to an increase in internal pressure due to gas generation in the outer can, the engraved explosion-proof valve is broken and the generated gas can escape to the outside. As a result, rupture of the battery can be prevented.

【0031】例えば、刻印防爆弁を外装缶の最小面積の
箇所に配置した場合には外装缶の内圧異常時に受ける面
責が最小であるため、前記防爆弁は缶の内側に変形する
形態で前記防爆弁が破断される。この場合、外装缶内の
内容物が外に飛び出すのを抑制して高い安全性を確保す
ることができる。一方、刻印防爆弁を外装缶の最大面積
の箇所に配置した場合には内圧を受ける面責が最大であ
るため、変形が生じ易くなり、所定の作動圧を得るため
の残存肉厚を大きくできる。その結果、加工性および耐
落下性を向上することができる。
For example, when the engraved explosion-proof valve is arranged at the location of the minimum area of the outer can, the surface responsibilities received when the inner pressure of the outer can is abnormal are minimized, so that the explosion-proof valve is deformed inside the can. Explosion-proof valve is broken. In this case, it is possible to prevent the contents in the outer can from jumping out, thereby ensuring high safety. On the other hand, when the engraved explosion-proof valve is arranged at the location of the maximum area of the outer can, the surface responsibilities for receiving the internal pressure are maximum, so that the deformation easily occurs and the remaining wall thickness for obtaining a predetermined operating pressure can be increased. . As a result, workability and drop resistance can be improved.

【0032】また、正負極の両者をリードタブを通して
封口体に接続する構造において、本発明の防爆弁構造は
スペース的に厳しいキャップ体へのラプチャー配置に効
果的である。
Further, in a structure in which both the positive and negative electrodes are connected to the sealing body through the lead tab, the explosion-proof valve structure of the present invention is effective for arranging the rupture on the cap body which is strict in space.

【0033】さらに、前記刻印防爆弁を構成する溝状薄
膜部は厚さが比較的厚く、かつ落下衝撃が受けにくい外
装缶の箇所に形成されることから、従来の安全弁機構に
比べて優れた耐落下衝撃性を有する。
Further, since the groove-shaped thin film portion constituting the engraved explosion-proof valve is relatively thick and is formed at the location of the outer can which is hardly subjected to a drop impact, it is superior to the conventional safety valve mechanism. Has drop impact resistance.

【0034】さらに、前記刻印防爆弁は従来の安全弁機
構のような構成部品を封口体に気密に溶接する必要がな
いため、信頼の高い気密構造を有する非水電解二次電池
を実現できる。
Further, since the stamp explosion-proof valve does not need to hermetically weld components such as a conventional safety valve mechanism to the sealing body, a non-aqueous electrolytic secondary battery having a highly reliable airtight structure can be realized.

【0035】[0035]

【実施例】以下、本発明の実施例を前述した図1〜図3
に示すよう角型密閉電池を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will now be described with reference to FIGS.
This will be described in detail with reference to a square sealed battery as shown in FIG.

【0036】(実施例1) <正極の作製>まず、炭酸リチウムおよび炭酸コバルト
をLi/Coのモル比が1になるように混合し、空気中
で900℃、5時間焼成してLiCoO2 を合成した
後、自動乳鉢で粉砕してLiCoO2 粉末(正極活物
質)を調製した。
Example 1 <Preparation of Positive Electrode> First, lithium carbonate and cobalt carbonate were mixed so that the molar ratio of Li / Co became 1, and calcined in air at 900 ° C. for 5 hours to produce LiCoO 2 . After the synthesis, the powder was pulverized with an automatic mortar to prepare LiCoO 2 powder (positive electrode active material).

【0037】次いで、前記LiCoO2 粉末95重量部
および炭酸リチウム5重量部を混合し、この混合物91
重量部,導電材としてのグラファイト粉末6重量部およ
び結着材としてのポリフッ化ビニリデン樹脂6重量部を
混合して正極合剤を調製した。つづいて、この正極合剤
をN−メチル−2−ピロリドンに分散させてスラリーを
とした。このスラリーを正極集電体である帯状のアルミ
ニウム箔の両面に塗付した後、乾燥させ、さらにロール
プレス機で圧縮成形することにより正極を作製した。
Next, 95 parts by weight of the LiCoO 2 powder and 5 parts by weight of lithium carbonate were mixed.
By weight, 6 parts by weight of graphite powder as a conductive material and 6 parts by weight of polyvinylidene fluoride resin as a binder were mixed to prepare a positive electrode mixture. Subsequently, this positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry. This slurry was applied to both sides of a belt-shaped aluminum foil as a positive electrode current collector, dried, and then compression-molded with a roll press to produce a positive electrode.

【0038】<負極の作製>まず、出発物質として石油
ピッチを用い、これに酸素を含む官能基を10〜20%
導入(酸素架橋)した後、不活性ガス中、1000℃で
焼成してガラス状炭素に近似した性質を有する難黒鉛炭
素材料を得た。この難黒鉛炭素材料90重量部および結
着材としてのポリフッ化ビニリデン樹脂10重量部を混
合して負極合剤を調製した。
<Preparation of Negative Electrode> First, petroleum pitch was used as a starting material, and oxygen-containing functional groups were added in an amount of 10 to 20%.
After the introduction (oxygen crosslinking), the mixture was calcined at 1000 ° C. in an inert gas to obtain a non-graphite carbon material having properties similar to glassy carbon. 90 parts by weight of this non-graphite carbon material and 10 parts by weight of polyvinylidene fluoride resin as a binder were mixed to prepare a negative electrode mixture.

【0039】次いで、前記負極合剤をN−メチル−2−
ピロリドンに分散させてスラリーをとした。このスラリ
ーを負極集電体である帯状の銅箔の両面に塗付した後、
乾燥させ、さらにロールプレス機で圧縮成形することに
より負極を作製した。
Next, the negative electrode mixture was mixed with N-methyl-2-
The slurry was dispersed in pyrrolidone to form a slurry. After applying this slurry to both sides of a strip-shaped copper foil as a negative electrode current collector,
After drying and compression molding with a roll press, a negative electrode was produced.

【0040】次いで、前記正極、厚さ25μmの微孔性
ポリプロピレンフィルムからなるセパレータおよび前記
負極をこの順序で重ね、渦巻き状に捲回して円筒状物と
した。つづいて、この円筒状物を10kg/cm2 の圧
力で圧縮して偏平状電極体(発電要素)を作製した。ひ
きつづき、図2に示すように底面に直線部の両端にV字
部を有する形状をなす溝状薄膜部からなる刻印防爆弁を
有する外装缶内に前記偏平状電極体を挿入し、六フッ化
燐リチウムの電解質をエチレンカーボネートとメチルエ
チルカーボネートで溶解した非水電解液を注入した後、
前記外装缶の開口部に封口体をレーザ溶接することによ
り前述した図1〜図3に示す構造の非水電解液二次電池
(リチウムイオン二次電池)を組立てた。なお、前記防
爆弁は残肉厚さが0.08mm、直線部の長さが8mm
の溝状薄膜部からなる。
Next, the positive electrode, the separator made of a microporous polypropylene film having a thickness of 25 μm, and the negative electrode were stacked in this order and spirally wound to form a cylindrical body. Subsequently, the cylindrical material was compressed at a pressure of 10 kg / cm 2 to produce a flat electrode body (power generation element). Subsequently, as shown in FIG. 2, the flat electrode body was inserted into an outer can having an engraved explosion-proof valve formed of a groove-like thin film portion having a V-shaped portion at both ends of a straight portion on the bottom surface, and hexafluoride. After injecting a non-aqueous electrolyte solution of lithium phosphate electrolyte dissolved in ethylene carbonate and methyl ethyl carbonate,
A nonaqueous electrolyte secondary battery (lithium ion secondary battery) having the structure shown in FIGS. 1 to 3 was assembled by laser welding a sealing body to the opening of the outer can. The explosion-proof valve has a remaining wall thickness of 0.08 mm and a length of a straight portion of 8 mm.
Of the groove-shaped thin film portion.

【0041】(比較例1)残肉厚さが0.05mm、直
線部の長さが8mmの溝状薄膜部からなる刻印防爆弁を
底部に形成した外装缶を用いた以外、実施例1と同様な
リチウムイオン二次電池を組立てた。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that an outer can having an engraved explosion-proof valve formed of a grooved thin film portion having a residual thickness of 0.05 mm and a linear portion having a length of 8 mm at the bottom was used. A similar lithium ion secondary battery was assembled.

【0042】(比較例2)残肉厚さが0.20mm、直
線部の長さが8mmの溝状薄膜部からなる刻印防爆弁を
底部に形成した外装缶を用いた以外、実施例1と同様な
リチウムイオン二次電池を組立てた。
(Comparative Example 2) The same procedure as in Example 1 was carried out except that an outer can having an engraved explosion-proof valve formed of a groove-like thin film portion having a residual wall thickness of 0.20 mm and a linear portion having a length of 8 mm at the bottom was used. A similar lithium ion secondary battery was assembled.

【0043】(比較例3)残肉厚さが0.08mm、直
線部の長さが5mmの溝状薄膜部からなる刻印防爆弁を
底部に形成した外装缶を用いた以外、実施例1と同様な
リチウムイオン二次電池を組立てた。
(Comparative Example 3) The same procedure as in Example 1 was carried out except that an outer can having an engraved explosion-proof valve formed of a groove-like thin film portion having a remaining thickness of 0.08 mm and a linear portion having a length of 5 mm at the bottom was used. A similar lithium ion secondary battery was assembled.

【0044】(比較例4)残肉厚さが0.08mm、直
線部の長さが20mmの溝状薄膜部からなる刻印防爆弁
を底部に形成した外装缶を用いた以外、実施例1と同様
なリチウムイオン二次電池を組立てた。
(Comparative Example 4) The same procedure as in Example 1 was carried out except that an outer can having an engraved explosion-proof valve formed of a groove-shaped thin film portion having a residual thickness of 0.08 mm and a linear portion having a length of 20 mm at the bottom was used. A similar lithium ion secondary battery was assembled.

【0045】得られた実施例1および比較例1〜4の二
次電池を20個用意し、これら二次電池について電流
2.0Aに設定し、電源電圧を15Vにし防爆弁が必ず
作動する条件で過充電を行い、防爆弁が作動した二次電
池および破裂を生じた二次電池の発生数を調べた。その
結果を下記表1に示す。
The obtained secondary batteries of Example 1 and Comparative Examples 1 to 4 were prepared, and the current was set to 2.0 A, the power supply voltage was set to 15 V, and the condition that the explosion-proof valve was always operated was prepared. The battery was overcharged, and the number of secondary batteries in which the explosion-proof valve was activated and the number of ruptured secondary batteries were examined. The results are shown in Table 1 below.

【0046】また、得られた実施例1および比較例1〜
4の二次電池を100個用意し、これら二次電池につい
て電流1.0A、電圧4.4V、3時間の条件で充電
し、250℃に設定したホットプレート上に載せ、防爆
弁が作動した二次電池および破裂を生じた二次電池の発
生数を調べた。その結果を下記表2に示す。
The obtained Example 1 and Comparative Examples 1 to
100 secondary batteries of No. 4 were prepared, these secondary batteries were charged under the conditions of a current of 1.0 A, a voltage of 4.4 V, and 3 hours, placed on a hot plate set at 250 ° C., and an explosion-proof valve was operated. The number of secondary batteries and the number of ruptured secondary batteries were examined. The results are shown in Table 2 below.

【0047】さらに、得られた実施例1および比較例1
〜4の二次電池を100個用意し、これら二次電池につ
いて電流1.0A、電圧4.4V、3時間の条件で充電
し、この充電状態の電池を1.5mの高さから樫の木上
に防爆弁が形成された底面が直接あたるようにそれぞれ
10回落下させた。このような落下試験後における前記
防爆弁の開放による非水電解液の漏洩状況を調べた。そ
の結果を下記表3に示す。
Further, the obtained Example 1 and Comparative Example 1
To 100 secondary batteries were prepared, and the secondary batteries were charged under the conditions of a current of 1.0 A, a voltage of 4.4 V, and three hours. Each was dropped 10 times so that the bottom surface on which the explosion-proof valve was formed directly hit the tree. After such a drop test, the state of leakage of the nonaqueous electrolyte due to the opening of the explosion-proof valve was examined. The results are shown in Table 3 below.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】前記表1〜表3から明らかなように残肉厚
さが0.06〜0.15mm、直線部の長さが6〜15
mmの溝状薄膜部からなる防爆弁を有する外装缶を備え
た実施例1の二次電池は、過充電および異常発熱時にお
いて防爆弁が良好に作動し、かつ落下試験において防爆
弁の破断を生じない極めて信頼性の高いものであること
がわかる。
As is clear from Tables 1 to 3, the remaining thickness is 0.06 to 0.15 mm and the length of the straight portion is 6 to 15 mm.
The secondary battery of Example 1 provided with an outer can having an explosion-proof valve consisting of a groove-shaped thin film portion of 0.2 mm, the explosion-proof valve operated well during overcharge and abnormal heat generation, and the explosion-proof valve was broken in a drop test. It turns out that it is extremely reliable and does not occur.

【0052】これに対し、残肉厚さが前記範囲より小さ
い防爆弁を有する外装缶を備えた比較例1の二次電池は
過充電および異常発熱時において防爆弁が良好に作動す
るものの、落下試験において防爆弁の破断が起きて電解
液の漏洩を生じる。
On the other hand, the secondary battery of Comparative Example 1 provided with an outer can having an explosion-proof valve having a remaining wall thickness smaller than the above range operates well during overcharge and abnormal heat generation, In the test, the explosion-proof valve breaks, causing electrolyte leakage.

【0053】残肉厚さが前記範囲より大きい防爆弁を有
する外装缶を備えた比較例2の二次電池は、落下試験に
おいて防爆弁の破断が起きないものの、過充電および異
常発熱時において防爆弁が良好に作動しない。
The secondary battery of Comparative Example 2 provided with an outer can having an explosion-proof valve having a remaining wall thickness larger than the above range does not break the explosion-proof valve in a drop test, but does not explode during overcharge and abnormal heat generation. Valve does not work well.

【0054】直線部の長さが前記範囲より小さい防爆弁
を有する外装缶を備えた比較例3の二次電池は、落下試
験において防爆弁の破断が起きないものの、過充電およ
び異常発熱時において防爆弁が良好に作動しない。
The secondary battery of Comparative Example 3 provided with an outer can having an explosion-proof valve having a length of the linear portion smaller than the above-mentioned range did not break the explosion-proof valve in the drop test, but did not undergo overcharge and abnormal heat generation. Explosion-proof valve does not work well.

【0055】直線部の長さが前記範囲より大きい防爆弁
を有する外装缶を備えた比較例4の二次電池は、落下試
験において防爆弁の破断が起きないものの、過充電およ
び異常発熱時において防爆弁が良好に作動しない。
The secondary battery of Comparative Example 4 provided with an outer can having an explosion-proof valve having a linear portion having a length larger than the above range did not break the explosion-proof valve in the drop test, but did not exhibit any overcharge and abnormal heat generation. Explosion-proof valve does not work well.

【0056】なお、前記実施例では角形の非水電解液二
次電池を例にして説明したが、これに限定されるもので
はない。例えば、発電要素を捲回型の代わりに平板状に
積層した構成にしてもよい。
In the above embodiment, the prismatic non-aqueous electrolyte secondary battery has been described as an example, but the present invention is not limited to this. For example, a configuration in which power generating elements are stacked in a flat plate shape instead of a wound type may be employed.

【0057】[0057]

【発明の効果】以上詳述したように、本発明によれば所
定の作動圧で確実に破断され、かつ落下衝撃に対しても
良好な強度を保持した刻印防爆弁を備えた非水電解液二
次電池を提供できる。
As described above in detail, according to the present invention, a non-aqueous electrolyte provided with a stamped explosion-proof valve which is reliably broken at a predetermined operating pressure and has good strength against a drop impact. A secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる非水電解液二次電池の一例であ
る角型リチウムイオン二次電池を示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing a prismatic lithium ion secondary battery as an example of a nonaqueous electrolyte secondary battery according to the present invention.

【図2】図1の二次電池の外観斜視図。FIG. 2 is an external perspective view of the secondary battery of FIG.

【図3】図2の二次電池の底部断面図。FIG. 3 is a bottom sectional view of the secondary battery in FIG. 2;

【図4】本発明に係わる非水電解液二次電池の他の形態
を示す外観斜視図。
FIG. 4 is an external perspective view showing another embodiment of the nonaqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…外装缶、 3…電極体、 4…負極、 5…セパレータ、 6…正極 8…蓋体、 18…刻印防爆弁。 DESCRIPTION OF SYMBOLS 1 ... Outer can, 3 ... Electrode body, 4 ... Negative electrode, 5 ... Separator, 6 ... Positive electrode 8 ... Lid, 18 ... Stamped explosion-proof valve.

フロントページの続き (72)発明者 本間 克久 神奈川県川崎市幸区堀川町72番地 株式会 社エイ・ティーバッテリー内 (72)発明者 阿左美 義明 神奈川県川崎市幸区堀川町72番地 株式会 社エイ・ティーバッテリー内Continuing on the front page (72) Inventor Katsuhisa Homma 72, Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside A / T Battery Co., Ltd.・ In the tea battery

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一極性端子を兼ねる開口部を有する矩形
状をなす金属からなる外装缶と、この外装缶内に収納さ
れ、セパレータを挟んで対峙された正極および負極を有
する発電要素と、前記外装缶内に収容された非水電解液
と、前記外装缶の開口部に取着され、他極性端子がハー
メテックにより気密に封止されたされたを封口体と具備
し、 厚さが0.06〜0.15mmで、かつ直線部の長さが
6〜15mmの溝状薄膜部からなる刻印防爆弁は、前記
外装缶表面のいずれかの箇所に形成されていることを特
徴とする非水電解液二次電池。
An outer case made of a metal having a rectangular shape having an opening serving also as a unipolar terminal, a power generating element housed in the outer case and having a positive electrode and a negative electrode opposed to each other with a separator interposed therebetween; A non-aqueous electrolyte contained in the outer can and a sealing body attached to the opening of the outer can and hermetically sealed with the other polarity terminal hermetically, and having a thickness of 0. A stamped explosion-proof valve comprising a groove-shaped thin film portion having a length of 6 to 0.15 mm and a linear portion of 6 to 15 mm is formed at any position on the surface of the outer can. Electrolyte secondary battery.
【請求項2】 前記正極および負極のいずれか一方は、
リードを通して前記他極性端子に接続されていることを
特徴とする請求項1記載の非水電解液二次電池。
2. One of the positive electrode and the negative electrode,
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is connected to the other polarity terminal through a lead.
【請求項3】 前記刻印防爆弁は、前記外装缶の稜線に
平行もしくは垂直な直線形状または直線部の両端にV字
部を有する形状をなすことを特徴とする請求項1記載の
非水電解液二次電池。
3. The non-aqueous electrolysis device according to claim 1, wherein the engraved explosion-proof valve has a linear shape parallel or perpendicular to a ridgeline of the outer can or a shape having V-shaped portions at both ends of the linear portion. Liquid secondary battery.
【請求項4】 前記刻印防爆弁は、前記外装缶の最小面
積の部分に形成されることを特徴とする請求項1〜3い
ずれか記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the imprint explosion-proof valve is formed in a portion having a minimum area of the outer can.
【請求項5】 前記刻印防爆弁は、前記外装缶の最大面
積の部分に形成されることを特徴とする請求項1〜3い
ずれか記載の非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the engraved explosion-proof valve is formed in a portion having a maximum area of the outer can.
JP9358412A 1997-12-25 1997-12-25 Nonaqueous electrolyte secondary battery Pending JPH11185714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358412A JPH11185714A (en) 1997-12-25 1997-12-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358412A JPH11185714A (en) 1997-12-25 1997-12-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11185714A true JPH11185714A (en) 1999-07-09

Family

ID=18459166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358412A Pending JPH11185714A (en) 1997-12-25 1997-12-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11185714A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085000A (en) * 1999-09-14 2001-03-30 At Battery:Kk Thin battery and manufacturing method therefor
WO2001045185A1 (en) * 1999-12-17 2001-06-21 Mitsubishi Denki Kabushiki Kaisha Battery and portable device
WO2001061770A1 (en) * 2000-02-18 2001-08-23 Matsushita Electric Industrial Co., Ltd. Safety mechanism for rectangular battery and method of manufacturing the same
JP2002134073A (en) * 2000-10-27 2002-05-10 Toshiba Battery Co Ltd Flattened non-aqueous electrolytic secondary battery
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
WO2003007401A1 (en) * 2001-07-09 2003-01-23 Hitachi Maxell, Ltd. Battery
JP2005129524A (en) * 2003-10-20 2005-05-19 Samsung Sdi Co Ltd Lithium ion secondary battery
WO2005055342A2 (en) * 2003-01-03 2005-06-16 The Gillette Company Alkaline cell with flat housing
WO2005124894A1 (en) * 2004-06-08 2005-12-29 The Gillette Company Alkaline cell with flat housing
US7094494B2 (en) 2003-01-03 2006-08-22 The Gillette Company Alkaline cell with flat housing
US7435395B2 (en) 2003-01-03 2008-10-14 The Gillette Company Alkaline cell with flat housing and nickel oxyhydroxide cathode
CN100433408C (en) * 2003-09-30 2008-11-12 日立麦克赛尔株式会社 Sealed rectangular battery
CN100466336C (en) * 2003-11-26 2009-03-04 吉莱特公司 Alkaline cell with flat housing
EP2133934A1 (en) 2008-06-09 2009-12-16 Samsung SDI Co., Ltd. Secondary battery
US7754373B2 (en) 2005-10-31 2010-07-13 Hitachi Maxell, Ltd. Sealed prismatic battery
JP2010165590A (en) * 2009-01-16 2010-07-29 Toshiba Shomei Precision Kk Sealing body, battery case body, and sealed battery
CN102420294A (en) * 2011-12-02 2012-04-18 苏州冠硕新能源有限公司 Lithium battery
CN102420299A (en) * 2011-12-02 2012-04-18 苏州冠硕新能源有限公司 Lithium battery
JP2013077509A (en) * 2011-09-30 2013-04-25 Fujitsu Frontech Ltd Battery pack and portable type terminal
JP2013098027A (en) * 2011-11-01 2013-05-20 Hitachi Maxell Ltd Lithium secondary battery
JP2013149370A (en) * 2012-01-17 2013-08-01 Hitachi Maxell Ltd Lithium secondary battery
JP2013149451A (en) * 2012-01-19 2013-08-01 Hitachi Maxell Ltd Lithium secondary battery

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085000A (en) * 1999-09-14 2001-03-30 At Battery:Kk Thin battery and manufacturing method therefor
WO2001045185A1 (en) * 1999-12-17 2001-06-21 Mitsubishi Denki Kabushiki Kaisha Battery and portable device
US6805992B1 (en) 1999-12-17 2004-10-19 Mitsubishi Denki Kabushiki Kaisha Battery and portable device
WO2001061770A1 (en) * 2000-02-18 2001-08-23 Matsushita Electric Industrial Co., Ltd. Safety mechanism for rectangular battery and method of manufacturing the same
EP1258931A4 (en) * 2000-02-18 2006-10-25 Matsushita Electric Ind Co Ltd Safety mechanism for rectangular battery and method of manufacturing the same
EP1258931A1 (en) * 2000-02-18 2002-11-20 Matsushita Electric Industrial Co., Ltd. Safety mechanism for rectangular battery and method of manufacturing the same
US6964690B2 (en) 2000-02-18 2005-11-15 Matsushita Electric Industrial Co., Ltd. Safety mechanism for rectangular battery and method of manufacturing the same
JP2002134073A (en) * 2000-10-27 2002-05-10 Toshiba Battery Co Ltd Flattened non-aqueous electrolytic secondary battery
JP2002319436A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Nonaqueous electrolyte cell
WO2003007401A1 (en) * 2001-07-09 2003-01-23 Hitachi Maxell, Ltd. Battery
US7524578B2 (en) 2001-07-09 2009-04-28 Hitachi Maxell, Ltd. Battery comprising a flange formed at a peripheral edge and a protection circuit attached to the flange
WO2005055342A2 (en) * 2003-01-03 2005-06-16 The Gillette Company Alkaline cell with flat housing
WO2005055342A3 (en) * 2003-01-03 2006-05-26 Gillette Co Alkaline cell with flat housing
US7094494B2 (en) 2003-01-03 2006-08-22 The Gillette Company Alkaline cell with flat housing
US7294429B2 (en) 2003-01-03 2007-11-13 The Gillette Company Alkaline cell with flat housing
US7435395B2 (en) 2003-01-03 2008-10-14 The Gillette Company Alkaline cell with flat housing and nickel oxyhydroxide cathode
US7491464B2 (en) 2003-01-03 2009-02-17 The Gillette Company Alkaline cell with flat housing
US7732090B2 (en) 2003-09-30 2010-06-08 Hitachi Maxell, Ltd. Sealed rectangular battery
CN100433408C (en) * 2003-09-30 2008-11-12 日立麦克赛尔株式会社 Sealed rectangular battery
JP2005129524A (en) * 2003-10-20 2005-05-19 Samsung Sdi Co Ltd Lithium ion secondary battery
CN100466336C (en) * 2003-11-26 2009-03-04 吉莱特公司 Alkaline cell with flat housing
WO2005124894A1 (en) * 2004-06-08 2005-12-29 The Gillette Company Alkaline cell with flat housing
US7754373B2 (en) 2005-10-31 2010-07-13 Hitachi Maxell, Ltd. Sealed prismatic battery
US8147998B2 (en) 2008-06-09 2012-04-03 Samsung Sdi Co., Ltd. Secondary battery with rupture groove
JP2009295576A (en) * 2008-06-09 2009-12-17 Samsung Sdi Co Ltd Lithium secondary cell
EP2133934A1 (en) 2008-06-09 2009-12-16 Samsung SDI Co., Ltd. Secondary battery
JP2010165590A (en) * 2009-01-16 2010-07-29 Toshiba Shomei Precision Kk Sealing body, battery case body, and sealed battery
JP2013077509A (en) * 2011-09-30 2013-04-25 Fujitsu Frontech Ltd Battery pack and portable type terminal
JP2013098027A (en) * 2011-11-01 2013-05-20 Hitachi Maxell Ltd Lithium secondary battery
CN102420294A (en) * 2011-12-02 2012-04-18 苏州冠硕新能源有限公司 Lithium battery
CN102420299A (en) * 2011-12-02 2012-04-18 苏州冠硕新能源有限公司 Lithium battery
JP2013149370A (en) * 2012-01-17 2013-08-01 Hitachi Maxell Ltd Lithium secondary battery
JP2013149451A (en) * 2012-01-19 2013-08-01 Hitachi Maxell Ltd Lithium secondary battery

Similar Documents

Publication Publication Date Title
JPH11185714A (en) Nonaqueous electrolyte secondary battery
US6045939A (en) Lithium secondary battery having thermal switch
JP4563264B2 (en) Lithium secondary battery
JP3683181B2 (en) Lithium secondary battery
JP2000285892A (en) Nonaqueous electrolyte secondary battery
JPH07254402A (en) Sealed battery
CN117977126A (en) Secondary battery
KR100942906B1 (en) Electrochemical device ensuring a good safety
KR100321946B1 (en) Nonaqueous Electrolyte Battery
JPH11154500A (en) Nonaqueous electrolyte secondary battery
KR101310486B1 (en) Seal tape and secondary battery comprising the same
US20240154280A1 (en) Cylindrical non-aqueous electrolyte secondary battery
KR100788592B1 (en) Secondary battery
JP3713361B2 (en) Square non-aqueous electrolyte battery and method for manufacturing the same
JP4420484B2 (en) Sealed battery
JPH06187959A (en) Nonaqueous electrolyte battery
JP2000277063A (en) Sealed battery
JP3272937B2 (en) Non-aqueous electrolyte secondary battery
JPH06203827A (en) Nonaqueous electrolyte battery
JPH09245759A (en) Non-aqueous electrolyte secondary battery
JP3310708B2 (en) Non-aqueous electrolyte battery
JPH1145701A (en) Sealed nonaqueous electrolytic battery
KR100522681B1 (en) Sealed battery
KR101058313B1 (en) Electrochemical device showing excellent safety
US20240162584A1 (en) Sealed battery, and battery pack using same