JPH11183803A - Confocal microscope device - Google Patents

Confocal microscope device

Info

Publication number
JPH11183803A
JPH11183803A JP9352698A JP35269897A JPH11183803A JP H11183803 A JPH11183803 A JP H11183803A JP 9352698 A JP9352698 A JP 9352698A JP 35269897 A JP35269897 A JP 35269897A JP H11183803 A JPH11183803 A JP H11183803A
Authority
JP
Japan
Prior art keywords
sample
image
light
slice image
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9352698A
Other languages
Japanese (ja)
Other versions
JP3783813B2 (en
Inventor
Shinya Otsuki
真也 大槻
Takeo Tanaami
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP35269897A priority Critical patent/JP3783813B2/en
Publication of JPH11183803A publication Critical patent/JPH11183803A/en
Application granted granted Critical
Publication of JP3783813B2 publication Critical patent/JP3783813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PROBLEM TO BE SOLVED: To process images with a dynamic range above the dynamic range of an AD converter by varying the quantity of measurement light or the signal level of a slice image according to the quantity of reflected light from a sample, weighting the variation quantity, and searching for the slice image. SOLUTION: The photographic signal of a camera 6 has its level controlled by an AGC circuit 21 and is inputted as an NTSC signal to the AD converter 22. When the sample 4 has a steep slope or a small peak, the gain is increased by passing the signal through an AGC circuit 21 to send the NTSC signal which is raised in signal level to the AD converter 22. Gain values of the AGC circuit 21 by frames are sent to the AD converter 23. A CPU 24 while weighting a slice image of the NTSC signal by a gain makes a picture search and displays the image on a CRT 12 through a frame memory 11. The use of the AGC circuit 21 expands the dynamic range and even if the quantity of the reflected light from the sample 4 is small, the picture search can securely be made.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は共焦点顕微鏡装置に
関し、特に複数の共焦点スライス画像を再構築して三次
元立体画像を得る共焦点顕微鏡装置におけるスライス画
像取得時のダイナミックレンジ拡大のための改善に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a confocal microscope apparatus, and more particularly to a confocal microscope apparatus for reconstructing a plurality of confocal slice images to obtain a three-dimensional stereoscopic image for expanding a dynamic range when acquiring a slice image. It is about improvement.

【0002】[0002]

【従来の技術】近年、加工技術の向上と共にミクロな三
次元形状の計測への要求が高まっている。またバイオテ
クノロジーの分野でも分子のもつ三次元構造が注目され
てきた。これらに応えるものとして、干渉顕微鏡や共焦
点顕微鏡等がある。
2. Description of the Related Art In recent years, there has been an increasing demand for measurement of a micro three-dimensional shape with the improvement of processing techniques. In the field of biotechnology, attention has been paid to the three-dimensional structure of molecules. There are interference microscopes, confocal microscopes, and the like that respond to these.

【0003】ここでは共焦点顕微鏡をとり上げる。図4
は従来の共焦点顕微鏡装置の一例を示す構成図である。
共焦点スキャナ2を介して出射される光源1のレーザ光
は顕微鏡の対物レンズ3で集束され試料4上に照射され
る。試料4で反射した光は再び対物レンズ3を介して共
焦点スキャナ2に戻る。スキャナ2部で結像した試料面
の像はカメラ6により撮像され、その出力信号はアナロ
グ・デジタル変換器7でデジタル変換されて中央処理装
置(以下CPUと言う)8に読み取られる。
Here, a confocal microscope will be described. FIG.
1 is a configuration diagram illustrating an example of a conventional confocal microscope device.
The laser beam emitted from the light source 1 through the confocal scanner 2 is focused by the objective lens 3 of the microscope and is irradiated on the sample 4. The light reflected by the sample 4 returns to the confocal scanner 2 via the objective lens 3 again. An image of the sample surface formed by the scanner 2 is picked up by a camera 6, and an output signal thereof is converted into a digital signal by an analog / digital converter 7 and read by a central processing unit (hereinafter referred to as a CPU) 8.

【0004】共焦点スキャナ2は試料4に照射する光ビ
ームを光軸と直角な方向(XY軸方向)に二次元走査す
ることができる。したがってカメラ6では試料の走査面
の像、すなわちスライス像を捉えることができる。
The confocal scanner 2 can two-dimensionally scan the light beam irradiating the sample 4 in a direction perpendicular to the optical axis (XY axis direction). Therefore, the camera 6 can capture an image of the scanning surface of the sample, that is, a slice image.

【0005】一方、試料4を載せたステージ5は、ステ
ージ移動機構9により光軸方向(高さ方向あるいはZ軸
方向とも呼ぶ)に移動可能になっている。ステージ移動
機構9はCPU8により制御され、その移動量はCPU
8で確認できるようになっている。
On the other hand, the stage 5 on which the sample 4 is placed can be moved in the optical axis direction (also called the height direction or the Z axis direction) by the stage moving mechanism 9. The stage moving mechanism 9 is controlled by the CPU 8, and the moving amount is controlled by the CPU 8.
8 can be confirmed.

【0006】ステージを移動させつつ撮像したスライス
像は、メモリ10に保存しておくことができる。CPU
8はZ軸移動量と前記各スライス像から試料の例えば三
次元表示画像を再構築し、その画像データをフレームメ
モリ11に保存する。フレームメモリ11の画像はCR
T12上に表示される。
A slice image taken while moving the stage can be stored in the memory 10. CPU
Reference numeral 8 reconstructs, for example, a three-dimensional display image of the sample from the Z-axis movement amount and each of the slice images, and stores the image data in the frame memory 11. The image in the frame memory 11 is CR
It is displayed on T12.

【0007】更に述べれば、このような共焦点顕微鏡装
置は、ピンポイントで照明する方式であるため、レーザ
光または非レーザ光とピンホールの組み合わせが用いら
れる。このような組み合わせによれば、測定点以外から
の散乱光を容易に防止することができるという効果が得
られる。
[0007] Further, since such a confocal microscope apparatus employs a pinpoint illumination method, a combination of laser light or non-laser light and a pinhole is used. According to such a combination, an effect is obtained that scattered light from other than the measurement point can be easily prevented.

【0008】また、受光器の前には空間フィルタとして
ピンホールが設置され、測定点以外からの光がカットさ
れる。すなわち、測定点同一面内にあるノイズ光はピン
ホールの横に結像し、受光器には入らないようにカット
される。
In addition, a pinhole is installed as a spatial filter in front of the light receiver, and light from other than the measurement point is cut off. That is, noise light existing in the same plane of the measurement point forms an image beside the pinhole, and is cut so as not to enter the light receiver.

【0009】また、光軸方向にずれた点の光は対物レン
ズによってピンホールの前で広がり、そのため受光され
る光は激減する。要するに、光軸上で焦点のあったとき
のみ光量が増大し、ピントの外れた点では光量がほぼ零
となる。このことから、共焦点顕微鏡は光軸方向にも分
解能を持つことが知られている。
Further, the light at the point shifted in the optical axis direction is spread by the objective lens in front of the pinhole, so that the received light is drastically reduced. In short, the light amount increases only when there is a focus on the optical axis, and the light amount becomes almost zero at a point out of focus. From this, it is known that the confocal microscope has a resolution also in the optical axis direction.

【0010】以上のような構成の共焦点顕微鏡では三次
元空間中の一点だけを測定できる。試料に照射する光を
光軸と直角な方向に二次元走査ずれば試料の三次元空間
中のスライス像を得ることができる。
With the confocal microscope having the above-described configuration, only one point in a three-dimensional space can be measured. If the light irradiating the sample is two-dimensionally scanned in a direction perpendicular to the optical axis, a slice image of the sample in a three-dimensional space can be obtained.

【0011】なお、焦点位置で光量がピークになるた
め、半導体等のように表面を持つ試料を測定した場合に
は光量が最大になる光軸位置が試料の表面と考えられ
る。したがって、複数のスライス像の中で光軸方向に最
大光量を与える位置を画素ごとにピークサーチして各画
素のピーク値を与える高さを求め、それらの高さを基に
画像を再構築することにより試料の三次元表面形状画像
を得ることができる。
Since the amount of light peaks at the focal position, when a sample having a surface such as a semiconductor is measured, the optical axis position where the amount of light becomes maximum is considered to be the surface of the sample. Therefore, a position where the maximum amount of light is provided in the optical axis direction among a plurality of slice images is peak-searched for each pixel, a height at which the peak value of each pixel is obtained is obtained, and an image is reconstructed based on those heights. Thereby, a three-dimensional surface shape image of the sample can be obtained.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、試料に
急斜面があったり、表面反射率が低くて走査している間
にピークが非常に小さい場合には、そのままピークサー
チを行うと結果的にノイズを拾うことになり画質が悪化
してしまうという課題があった。つまり、例えば8ビッ
トのAD変換器7であればダイナミックレンジは8ビッ
トに限されてしまう。
However, if the sample has a steep slope or the surface reflectance is low and the peak is very small during scanning, the peak search as it is will result in noise. There is a problem that image quality is deteriorated due to picking up. That is, for example, in the case of an 8-bit AD converter 7, the dynamic range is limited to 8 bits.

【0013】本発明は、上記の課題を解決するもので、
ダイナミックレンジを容易に拡大することのできる共焦
点顕微鏡装置を提供することを目的とする。
The present invention solves the above problems,
An object of the present invention is to provide a confocal microscope device capable of easily expanding a dynamic range.

【0014】[0014]

【課題を解決するための手段】このような目的を達成す
るために請求項1に記載の発明では、多数の微小開口部
を持つ基板を回転させ、この基板の微小開口部を通過し
た照射光を試料に対して走査し、試料からの反射光を受
光して試料のスライス画像を得ると共に、相対的に試料
を光軸方向に移動させて前記スライス画像を得ることが
できるように構成された共焦点顕微鏡装置において、前
記試料からの反射光の光量に応じて測定光量あるいはス
ライス画像の信号レベルを変化させる制御手段と、前記
測定光量あるいはスライス画像の信号レベルの変化量を
重み付けして前記試料の光軸方向の相対的な各移動位置
におけるスライス画像を画素ごとにピークサーチし、試
料の三次元画像または焦点深度の深い画像を得る画像再
構築手段を具備したことを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a substrate having a large number of minute openings is rotated and irradiation light passing through the minute openings of the substrate is rotated. Is configured to scan the sample, receive reflected light from the sample to obtain a slice image of the sample, and relatively move the sample in the optical axis direction to obtain the slice image. In the confocal microscope apparatus, a control unit that changes a measured light amount or a signal level of a slice image in accordance with a light amount of reflected light from the sample, and weights a change amount of the measured light amount or a signal level of the slice image to obtain the sample. Image reconstruction means for peak-searching a slice image at each relative movement position in the optical axis direction for each pixel to obtain a three-dimensional image of the sample or an image with a deep focal depth. It is characterized in.

【0015】請求項1に記載の発明では、制御手段によ
り試料からの反射光の光量に応じて測定光量あるいはス
ライス画像の信号レベルを変化させる。すなわち、常に
ある所定範囲の測定光量あるいは信号レベルになるよう
に制御する。これによりSN比が良くなる。つづいて、
画像再構築手段により、このように変化させたときの変
化量を重み付けしつつ、試料の光軸方向の各位置でのス
ライス画像についてピークサーチを行う。このようにし
て、試料の三次元画像あるいは焦点深度の深い画像を容
易に得ることができる。
According to the first aspect of the present invention, the measured light amount or the signal level of the slice image is changed by the control means in accordance with the light amount of the reflected light from the sample. That is, control is performed so that the measured light amount or signal level always falls within a certain predetermined range. This improves the SN ratio. Then,
The peak search is performed on the slice image at each position in the optical axis direction of the sample while weighting the amount of the change when the image is reconstructed by the image reconstructing means. In this way, a three-dimensional image of the sample or an image with a large depth of focus can be easily obtained.

【0016】[0016]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明に係る共焦点顕微鏡装置の一実
施例を示す構成図である。なお、図1は試料の高さ画像
演算を行う共焦点顕微鏡装置の実施例である。図1にお
いて、図4と同等部分には同一符号を付し、その部分の
説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of a confocal microscope device according to the present invention. FIG. 1 shows an embodiment of a confocal microscope apparatus for calculating a height image of a sample. 1, the same reference numerals are given to the same parts as those in FIG. 4, and the description of those parts will be omitted.

【0017】本発明は、試料からの反射光の光量に応じ
て画像信号あるいは測定光量を変化させる制御手段と、
その変化させた量をスライス画像に重み付けしながら各
スライス画像をピークサーチし、試料の三次元画像また
は焦点深度の深い画像を得る画像再構築手段を持つこと
を特徴とする。
According to the present invention, there is provided a control means for changing an image signal or a measured light amount according to the amount of reflected light from a sample,
It is characterized by having an image reconstructing means for peak-searching each slice image while weighting the changed amount to the slice image to obtain a three-dimensional image of the sample or an image having a deep focal depth.

【0018】なお、本実施例では、上記制御手段に自動
ゲイン制御回路(AGC回路)およびAD変換器を用
い、画像再構築手段にはCPUを用いている。以下各構
成要素および動作について詳細に説明する。
In this embodiment, an automatic gain control circuit (AGC circuit) and an AD converter are used as the control means, and a CPU is used as the image reconstruction means. Hereinafter, each component and operation will be described in detail.

【0019】AGC回路21は、カメラ6から出力され
るスライス画像の信号レベルを制御するもので、制御さ
れた信号レベルの出力(スライス画像)はNTSC信号
でAD変換器22に送られる。またAGC回路21のゲ
イン値はAD変換23に送られる。
The AGC circuit 21 controls the signal level of a slice image output from the camera 6, and the output (slice image) of the controlled signal level is sent to the AD converter 22 as an NTSC signal. The gain value of the AGC circuit 21 is sent to the AD converter 23.

【0020】CPU24はAD変換器22のスライス画
像にAD変換器23のゲイン値を重み付けしながらピー
クサーチを行う。なお、CPU24はステージ移動機構
9を駆動すると共にZ方向移動量をAD変換器25を介
して読み取ることができる。
The CPU 24 performs a peak search while weighting the slice image of the AD converter 22 with the gain value of the AD converter 23. The CPU 24 drives the stage moving mechanism 9 and can read the Z-direction moving amount via the AD converter 25.

【0021】このような構成におげる動作を次に説明す
る。カメラ6で試料4のスライス像を撮影するところま
での動作は従来例と同様である。カメラ6の撮影信号は
AGC回路21に導かれ、レベル制御され、NTSC信
号としてAD変換器22に入力される。
The operation of such a configuration will be described below. The operation up to the point where the camera 6 takes a slice image of the sample 4 is the same as in the conventional example. The photographing signal of the camera 6 is guided to the AGC circuit 21, the level of which is controlled, and input to the AD converter 22 as an NTSC signal.

【0022】このとき、試料4に急斜面があったり、走
査している間にピークが非常に小さい場合には、カメラ
6からの共焦点スライス画像はノイズが大きくコントラ
ストの小さいデータであるが、AGC回路21を通すこ
とによりゲインを増大させ、信号レベルを持ち上げたN
TSC信号としてAD変換器22に送られる。
At this time, if the sample 4 has a steep slope or the peak is very small while scanning, the confocal slice image from the camera 6 is data with large noise and small contrast, but AGC. N through which the gain is increased and the signal level is raised by passing through the circuit 21
The signal is sent to the AD converter 22 as a TSC signal.

【0023】そしてこのときの各フレームごとのAGC
回路21のゲイン値はAD変換器23に送られる。CP
U24はAD変換器22から読み取ったNTSC信号の
スライス画像にAD変換器23から読み取ったゲイン値
を重み付けしつつピークサーチを行う。
AGC for each frame at this time
The gain value of the circuit 21 is sent to the AD converter 23. CP
U24 performs peak search while weighting the slice image of the NTSC signal read from the AD converter 22 with the gain value read from the AD converter 23.

【0024】従来の装置であれば、8ビットのAD変換
器を使用したときはその8ビットのAD変換器でダイナ
ミックレンジが制限を受ける。しかし、本発明ではAG
C回路21を用いたことにより、(AGC回路のゲイン
値)×(8ビットのAD変換器)にダイナミックレンジ
を拡大することができ、試料4からの反射光量の小さい
場合でもノイズに紛れることなにく確実にピークサーチ
を行うことができる。
In a conventional apparatus, when an 8-bit AD converter is used, the dynamic range is limited by the 8-bit AD converter. However, in the present invention, AG
By using the C circuit 21, the dynamic range can be expanded to (gain value of the AGC circuit) × (8-bit AD converter), and even if the amount of reflected light from the sample 4 is small, noise is not mixed in. The peak search can be performed reliably.

【0025】このようにしてピークサーチされたスライ
ス画像はフレームメモリ11に書込まれ、CRT12上
に表示される。
The slice image subjected to the peak search in this manner is written into the frame memory 11 and displayed on the CRT 12.

【0026】なお、以上の説明は、本発明の説明および
例示を目的として特定の好適な実施例を示したに過ぎな
い。したがって本発明は、上記実施例に限定されること
なく、その本質から逸脱しない範囲で更に多くの変更、
変形をも含むものである。
The foregoing description has been directed to specific preferred embodiments for the purpose of describing and illustrating the invention. Therefore, the present invention is not limited to the above-described embodiments, and includes many more modifications without departing from the spirit thereof.
This includes deformation.

【0027】例えば、AGC回路用21のAD変換器2
2,23をフレームメモリ11で兼用することもでき
る。この場合、フレームメモリにはAD変換機能がある
ためAD変換器22,23が不要となるばかりか、次の
ようにフレームメモリを巧みに利用することによりスラ
イス画像とゲイン値を同時処理できるという利点も生ず
る。
For example, the AD converter 2 of the AGC circuit 21
Frame memory 11 can be used for both 2 and 23. In this case, since the frame memory has an AD conversion function, not only the AD converters 22 and 23 are unnecessary, but also the advantage that the slice image and the gain value can be simultaneously processed by skillfully using the frame memory as follows. Also occurs.

【0028】フレームメモリの巧みな利用とは次の通り
である。NTSC信号は1フレーム525本の走査線を
持つが実際にCRT画面に表示されるのは490本程度
であり、図2に示すようにフレームの上下15本ずつ程
度はブランクエリアである。そこでこのブランクエリア
にAGC回路21のゲイン値を記録する。
Successful use of a frame memory is as follows. The NTSC signal has 525 scanning lines per frame, but about 490 lines are actually displayed on the CRT screen. As shown in FIG. 2, about 15 upper and lower lines of the frame are blank areas. Therefore, the gain value of the AGC circuit 21 is recorded in this blank area.

【0029】図3はこの場合のNTSC信号を示したも
ので、垂直同期信号と実画像信号の間にあるブランク期
間にゲイン値が重畳されている。したがって、CPU2
4側では当該フレームのスライス画像とそのゲイン値を
同時に読取り、処理することができる。なお、AGC回
路21からフレームメモリに入力する画像信号はNTS
C方式に限らず、PAL方式のものであっても何ら差し
支えない。
FIG. 3 shows an NTSC signal in this case, in which a gain value is superimposed in a blank period between the vertical synchronizing signal and the actual image signal. Therefore, CPU2
On the side 4, the slice image of the frame and the gain value thereof can be simultaneously read and processed. The image signal input from the AGC circuit 21 to the frame memory is NTS
Not only the C system but also the PAL system may be used.

【0030】また、AGC回路21のゲイン値は、スラ
イス画像の特定の一部分の光量に基づいて決めるように
してもよい。また、上記実施例のようにスライス画像の
信号レベルを変化させるのではなく、光源1の光量を変
化させるようにしてもよい。光量制御には、例えば絞り
で光量を制御する方式等が適用できる。
The gain value of the AGC circuit 21 may be determined based on the light amount of a specific part of the slice image. Further, instead of changing the signal level of the slice image as in the above embodiment, the light amount of the light source 1 may be changed. For the light quantity control, for example, a method of controlling the light quantity with a diaphragm can be applied.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば次の
ような効果がある。請求項1に記載の発明によれば、制
御手段により試料からの反射光の光量に応じて測定光量
あるいはスライス画像の信号レベルを変化させ、画像再
構成手段によりその変化量を重み付けしてスライス画像
のピークサーチを行うようにしたため、AD変換器のダ
イナミックレンジ以上のダイナミックレンジで画像を処
理することができる効果がある。更に、ピークサーチは
レベル変化させたスライス画像を基にピークサーチを行
うため、反射光量の小さい場合でもノイズに紛れること
なく確実にピークをサーチすることができる効果があ
る。
As described above, according to the present invention, the following effects can be obtained. According to the first aspect of the present invention, the control unit changes the measured light amount or the signal level of the slice image in accordance with the light amount of the reflected light from the sample, and the image reconstruction unit weights the change amount to obtain the slice image. Is performed, so that an image can be processed with a dynamic range equal to or greater than the dynamic range of the AD converter. Further, in the peak search, the peak search is performed based on the slice image whose level has been changed. Therefore, even when the amount of reflected light is small, there is an effect that the peak can be reliably searched without being mixed with noise.

【0032】請求項2に記載の発明によれば、試料を照
射する照射光の光源の光量を変化させることにより請求
項1と同様の効果を得ることができる。
According to the second aspect of the invention, the same effect as in the first aspect can be obtained by changing the light amount of the light source of the irradiation light for irradiating the sample.

【0033】請求項3に記載の発明によれば、自動ゲイ
ン制御回路により容易にスライス画像の信号レベルを変
化させることができ、また信号レベルの変化量はゲイン
値により容易に読み取ることができるという効果があ
る。
According to the third aspect of the present invention, the signal level of the slice image can be easily changed by the automatic gain control circuit, and the amount of change in the signal level can be easily read by the gain value. effective.

【0034】請求項4に記載の発明によれば、スライス
画像の一部の受光量を基に自動ゲイン制御回路のゲイン
値を決定できる利点がある。
According to the fourth aspect of the present invention, there is an advantage that the gain value of the automatic gain control circuit can be determined based on the light receiving amount of a part of the slice image.

【0035】請求項5に記載の発明によれば、自動ゲイ
ン制御回路から出力されるNTSC信号をフレームメモ
リに保存すると共に、自動ゲイン制御回路のゲイン値は
NTSC信号におけるブランクエリアに記録するように
したため、フレームメモリの有効利用、ブランクエリア
の有効活用が図れる。
According to the present invention, the NTSC signal output from the automatic gain control circuit is stored in the frame memory, and the gain value of the automatic gain control circuit is recorded in a blank area of the NTSC signal. As a result, effective use of the frame memory and effective use of the blank area can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る共焦点顕微鏡装置の一実施例を
示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a confocal microscope device according to the present invention.

【図2】 ブランクエリアについての説明図である。FIG. 2 is an explanatory diagram of a blank area.

【図3】 NTSC信号についての説明図である。FIG. 3 is an explanatory diagram of an NTSC signal.

【図4】 従来の共焦点顕微鏡装置の一例を示す構成図
である。
FIG. 4 is a configuration diagram showing an example of a conventional confocal microscope device.

【符号の説明】[Explanation of symbols]

1 光源 2 共焦点スキャナ 3 対物レンズ 4 試料 5 ステージ 6 カメラ 9 ステージ移動機構 11 フレームメモリ 12 CRT 21 自動ゲイン制御回路 22,23,25 AD変換器 24 CPU Reference Signs List 1 light source 2 confocal scanner 3 objective lens 4 sample 5 stage 6 camera 9 stage moving mechanism 11 frame memory 12 CRT 21 automatic gain control circuit 22, 23, 25 AD converter 24 CPU

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】多数の微小開口部を持つ基板を回転させ、
この基板の微小開口部を通過した照射光を試料に対して
走査し、試料からの反射光を受光して試料のスライス画
像を得ると共に、相対的に試料を光軸方向に移動させて
前記スライス画像を得ることができるように構成された
共焦点顕微鏡装置において、 前記試料からの反射光の光量に応じて測定光量あるいは
スライス画像の信号レベルを変化させる制御手段と、 前記測定光量あるいはスライス画像の信号レベルの変化
量を重み付けして前記試料の光軸方向の相対的な各移動
位置におけるスライス画像を画素ごとにピークサーチ
し、試料の三次元画像または焦点深度の深い画像を得る
画像再構築手段を具備したことを特徴とする共焦点顕微
鏡装置。
A substrate having a large number of minute openings is rotated;
The sample is scanned with irradiation light that has passed through the minute opening of the substrate, reflected light from the sample is received, and a slice image of the sample is obtained. In a confocal microscope device configured to be able to obtain an image, a control unit that changes a measured light amount or a signal level of a slice image according to a light amount of reflected light from the sample; and Image reconstruction means for weighting the amount of change in the signal level and performing a peak search for a slice image at each relative movement position of the sample in the optical axis direction for each pixel to obtain a three-dimensional image of the sample or an image with a deep depth of focus. A confocal microscope device comprising:
【請求項2】前記試料からの反射光の光量に応じて測定
光量あるいはスライス画像の信号レベルを変化させる制
御手段は、前記試料を照射する照射光の光源の光量を変
化させる機能を有することを特徴とする請求項1記載の
共焦点用顕微鏡装置。
2. A control means for changing a measured light amount or a signal level of a slice image according to a light amount of reflected light from the sample, the control means having a function of changing a light amount of a light source of irradiation light for irradiating the sample. 2. The confocal microscope device according to claim 1, wherein:
【請求項3】前記制御手段として自動ゲイン制御回路を
使用したことを特徴とする請求項1記載の共焦点顕微鏡
装置。
3. The confocal microscope device according to claim 1, wherein an automatic gain control circuit is used as said control means.
【請求項4】前記制御手段は、スライス画像の一部を受
光する手段を備え、その手段の受光量に応じて前記自動
ゲイン制御回路のゲイン値を決定するようにしたことを
特徴とする請求項3記載の共焦点顕微鏡装置。
4. The apparatus according to claim 1, wherein said control means includes means for receiving a part of the slice image, and determines a gain value of said automatic gain control circuit in accordance with an amount of light received by said means. Item 6. A confocal microscope device according to Item 3.
【請求項5】前記制御手段は、フレームメモリを含み、
前記自動ゲイン制御回路から出力される画像信号をフレ
ームメモリに保存すると共に、自動ゲイン制御回路のゲ
イン値を画像信号のブランクエリアに記録するようにし
たことを特徴とする請求項3記載の共焦点顕微鏡装置。
5. The control means includes a frame memory.
4. The confocal device according to claim 3, wherein the image signal output from the automatic gain control circuit is stored in a frame memory, and a gain value of the automatic gain control circuit is recorded in a blank area of the image signal. Microscope equipment.
JP35269897A 1997-12-22 1997-12-22 Confocal microscope Expired - Fee Related JP3783813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35269897A JP3783813B2 (en) 1997-12-22 1997-12-22 Confocal microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35269897A JP3783813B2 (en) 1997-12-22 1997-12-22 Confocal microscope

Publications (2)

Publication Number Publication Date
JPH11183803A true JPH11183803A (en) 1999-07-09
JP3783813B2 JP3783813B2 (en) 2006-06-07

Family

ID=18425828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35269897A Expired - Fee Related JP3783813B2 (en) 1997-12-22 1997-12-22 Confocal microscope

Country Status (1)

Country Link
JP (1) JP3783813B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257932A (en) * 2001-03-06 2002-09-11 Nippon Telegr & Teleph Corp <Ntt> Imaging device of type detecting reflected electromagnetic wave
JP2007041120A (en) * 2005-08-01 2007-02-15 Keyence Corp Confocal scanning type microscope
US7280680B2 (en) 2002-03-04 2007-10-09 Riken Method and apparatus for observing three-dimensional localizations of in vivo expressed genes as well as method and apparatus for observing minute three-dimensional localizations of in vivo expressed genes
JP2008170973A (en) * 2006-12-13 2008-07-24 Olympus Corp Confocal laser microscope
WO2010143375A1 (en) * 2009-06-10 2010-12-16 株式会社ニコン Microscope device and control program
JP2011002715A (en) * 2009-06-19 2011-01-06 Olympus Corp Confocal laser microscope
US8275226B2 (en) 2008-12-09 2012-09-25 Spectral Applied Research Ltd. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
US20130070054A1 (en) * 2011-09-20 2013-03-21 Olympus Corporation Image processing apparatus, fluorescence microscope apparatus, and image processing program
US8670178B2 (en) 2009-12-08 2014-03-11 Spectral Applied Research Inc. Imaging distal end of multimode fiber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257932A (en) * 2001-03-06 2002-09-11 Nippon Telegr & Teleph Corp <Ntt> Imaging device of type detecting reflected electromagnetic wave
US7280680B2 (en) 2002-03-04 2007-10-09 Riken Method and apparatus for observing three-dimensional localizations of in vivo expressed genes as well as method and apparatus for observing minute three-dimensional localizations of in vivo expressed genes
JP2007041120A (en) * 2005-08-01 2007-02-15 Keyence Corp Confocal scanning type microscope
JP2008170973A (en) * 2006-12-13 2008-07-24 Olympus Corp Confocal laser microscope
US8275226B2 (en) 2008-12-09 2012-09-25 Spectral Applied Research Ltd. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
US9134519B2 (en) 2008-12-09 2015-09-15 Spectral Applied Reseach Inc. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
WO2010143375A1 (en) * 2009-06-10 2010-12-16 株式会社ニコン Microscope device and control program
JP2011002715A (en) * 2009-06-19 2011-01-06 Olympus Corp Confocal laser microscope
US8670178B2 (en) 2009-12-08 2014-03-11 Spectral Applied Research Inc. Imaging distal end of multimode fiber
US8922887B2 (en) 2009-12-08 2014-12-30 Spectral Applied Research Inc. Imaging distal end of multimode fiber
US20130070054A1 (en) * 2011-09-20 2013-03-21 Olympus Corporation Image processing apparatus, fluorescence microscope apparatus, and image processing program
EP2573607A2 (en) 2011-09-20 2013-03-27 Olympus Corporation Image processing apparatus, fluorescence microscope apparatus, and image processing program
US9279973B2 (en) 2011-09-20 2016-03-08 Olympus Corporation Image processing apparatus, fluorescence microscope apparatus, and image processing program

Also Published As

Publication number Publication date
JP3783813B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
EP0176358B1 (en) Image pick-up apparatus
JPH08160305A (en) Laser scanning microscope
US6248995B1 (en) Confocal microscopic equipment
JP3230911B2 (en) Scanning electron microscope and image forming method thereof
JP3783813B2 (en) Confocal microscope
JP3568286B2 (en) Confocal scanning optical microscope and measuring method using this microscope
US6621628B1 (en) Laser microscope and confocal laser scanning microscope
KR20010014602A (en) Method and apparatus for detecting in-focus state of microscope
JPH1068616A (en) Shape measuring equipment
JP4197898B2 (en) Microscope, three-dimensional image generation method, program for causing computer to control generation of three-dimensional image, and recording medium recording the program
JP5019279B2 (en) Confocal microscope and method for generating focused color image
JP2861723B2 (en) Confocal microscope
JP2001056438A (en) Confocal scanning microscope, picture display method thereof and recording medium obtained by recording processing program for executing picture display processing
JP3518925B2 (en) Automatic image forming equipment for scanning microscope
JP4885439B2 (en) Color image acquisition method and confocal laser microscope
JPH0821961A (en) Autofocusing device of microscope
Awamura et al. Color laser microscope
JP3518923B2 (en) Automatic image forming equipment for confocal scanning optical microscope
JPH1138324A (en) Laser scanning microscope
JPH10333056A (en) Microscopic device and image forming method
US11988824B2 (en) Microscope and method for forming a microscopic image with an extended depth of field
JP3294458B2 (en) Scanning electron microscope
JPH03209415A (en) Microscopic image outputting method and scanning type microscope
JPH0527178A (en) Microscope observation device
JP3465964B2 (en) Confocal scanning optical microscope and measuring method therewith

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees