JPH11183443A - Measuring method for ripeness degree of fruit - Google Patents

Measuring method for ripeness degree of fruit

Info

Publication number
JPH11183443A
JPH11183443A JP35263797A JP35263797A JPH11183443A JP H11183443 A JPH11183443 A JP H11183443A JP 35263797 A JP35263797 A JP 35263797A JP 35263797 A JP35263797 A JP 35263797A JP H11183443 A JPH11183443 A JP H11183443A
Authority
JP
Japan
Prior art keywords
fruit
vibration
measured
frequency
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35263797A
Other languages
Japanese (ja)
Inventor
Shoji Terasaki
章二 寺崎
Naoki Wada
直樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP35263797A priority Critical patent/JPH11183443A/en
Publication of JPH11183443A publication Critical patent/JPH11183443A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method, for the ripeness degree of a fruit, in which the ripeness degree of the fruit in which the elastic modulus of sarcocarp is changed as a tomato, a kiwi fruit, an apple or the like ripens is measured nondestructively. SOLUTION: A vibration whose frequency (f) is changed sequentialliy is applied to a fruit 2, to be measured, by a vibration generator 4. The magnitude and the phase of the vibration of the fruit 2 at the applied vibration frequency (f) are measured sequentially. The maximum value of a peak in the measured vibration magnitude in which the phase difference between an applied vibration phase and a measured vibration phase is situated between -270 deg.±90 deg. is found. An elastic coefficient E is found by E=m.EXP(2/3).f.EXP (2) on the basis of the frequency (f) of the applied vibration indicating the maximum value and on the basis of the weight (m) of the fruit 2. The ripenss degree of the fruit 2 is measured on the basis of the value of the elastic coefficient E.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トマト、キウイフ
ルーツ、リンゴなどの熟すに連れ、果肉の弾性率が変化
する果実の熟度を非破壊的に測定する果実の熟度測定方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively measuring the ripeness of fruits, such as tomatoes, kiwifruits and apples, whose pulp elasticity changes as they ripen. is there.

【0002】[0002]

【従来の技術】果実の果肉の硬度から熟度を測定する装
置として、Magness-Taylor式果実硬度計が広く用いられ
ている。前記果実硬度計は定められた条件下でプランジ
ャーを果実に貫入させ、その応力を計測して果実の硬度
を測定するため試料を破壊してしまうという欠点があり
果実の選果方法としては不適当であった。
2. Description of the Related Art The Magness-Taylor fruit hardness tester is widely used as an apparatus for measuring the degree of maturity from the hardness of fruit pulp. The fruit hardness tester has the drawback that the plunger penetrates the fruit under specified conditions, and the stress is measured to measure the fruit hardness. It was appropriate.

【0003】この欠点を解決するため、果実の色の変化
を計測する方法や果実表面の硬さを計測する方法など非
破壊的に果実の熟度を計測する方法が試みられてきた。
ところが、果実の色の変化を計測する方法では、キウイ
フルーツやセイヨウナシなどのように熟すにつれて色が
変化しない果実には適用できない。また、表面の硬さ
は、非破壊で計測できる装置がないため、もっぱら人の
手により硬さの判断が行われており、客観的な測定がで
きないという問題があった。
[0003] In order to solve this drawback, nondestructive methods for measuring the ripeness of fruits, such as a method for measuring a change in fruit color and a method for measuring the hardness of the fruit surface, have been tried.
However, the method of measuring the change in the color of a fruit cannot be applied to a fruit such as kiwifruit or pear that does not change color as it ripens. In addition, since there is no device capable of measuring the hardness of the surface in a non-destructive manner, the hardness is determined solely by human hands, and there is a problem that objective measurement cannot be performed.

【0004】このような問題を解決するために、果実の
果肉の硬度は弾性率と強い相関があることを利用して、
果実に様々な周期の振動を与えることにより果実の固有
振動数を計測し弾性率を計算することで果実の果肉の硬
度を測定する試みがAbbottら(1968a. Food Technol.22
(5):635-646 )やFinneyら(1972. J. Texture studies
2(1):62-74 )によってなされてきた。さらにCooke
(1972. Trans of ASAE.15(6) :1075-1080)により果実
振動の理論解析が行われ、測定で得られた果実の固有振
動数fと果実の重量m とから果肉の弾性率EをE=m・
EXP(2/3)・f・EXP(2)と計算出来ることが報告された。
[0004] In order to solve such a problem, utilizing the fact that the hardness of fruit pulp has a strong correlation with the elastic modulus,
Abbott et al. (1968a. Food Technol. 22) tried to measure the pulp hardness of fruits by measuring the natural frequency of the fruits by applying vibrations of various cycles to the fruits and calculating the elastic modulus.
(5): 635-646) and Finney et al. (1972. J. Texture studies)
2 (1): 62-74). Further Cooke
(1972. Trans of ASAE.15 (6): 1075-1080) theoretical analysis of fruit vibration was performed, and the natural frequency f of fruit and the weight m of fruit obtained from the measurement were used to determine the elastic modulus E of the pulp. E = m
It was reported that EXP (2/3) ・ f ・ EXP (2) can be calculated.

【0005】[0005]

【発明が解決しようとする課題】ところが、この弾性率
E を求めるためには、果実の固有振動数fを求めなけれ
ばならないが、従来は、果実の振動を検出しX−Yプロ
ッターなどに出力することにより、固有振動数を人間の
目で判断しているため実用的な熟度測定手法ではなかっ
た。
However, this elastic modulus
In order to obtain E, the natural frequency f of the fruit must be obtained. However, conventionally, the natural frequency is determined by human eyes by detecting the vibration of the fruit and outputting it to an XY plotter or the like. Therefore, it was not a practical technique for measuring the degree of maturity.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明の果実の熟度測定方法は、果実に印加した振動
と果実の振動との周波数応答関数を計算し、位相が−27
0 ゜±90゜の間にあるとき、前記測定された果実の振動
のピークの最大値を求め、その最大値を固有振動数とし
て認識することを特徴としたものである。本発明によれ
ば、果実の固有振動数を自動認識することにより、果実
の熟度を非破壊で高速かつ正確に測定できる。
According to the present invention, there is provided a method for measuring ripeness of a fruit, which comprises calculating a frequency response function between a vibration applied to the fruit and a vibration of the fruit, and having a phase of -27.
When the angle is between 0 ° and ± 90 °, the maximum value of the peak of the measured vibration of the fruit is obtained, and the maximum value is recognized as the natural frequency. ADVANTAGE OF THE INVENTION According to this invention, the ripeness of a fruit can be measured nondestructively at high speed and accurately by automatically recognizing the natural frequency of a fruit.

【0007】[0007]

【発明の実施の形態】請求項1に記載の発明は、測定す
べき果実に順次周波数fが変化する振動を印加し、その
各印加振動周波数fにおける前記果実の振動の大きさと
位相を順次測定し、前記の印加した振動の位相と測定さ
れた振動との位相との間の位相差が−270 ゜±90゜の間
に位置する前記測定された振動の大きさのピークの最大
値を求め、その最大値を示す前記印加振動周波数fと前
記果実の重量mより弾性係数Eを、E=m・EXP(2/3)・
f・EXP(2)で求め、その弾性係数Eの値により、前記果
実の熟度を計ることを特徴とする。
According to the first aspect of the present invention, a vibration whose frequency f changes sequentially is applied to a fruit to be measured, and the magnitude and phase of the vibration of the fruit at each applied vibration frequency f are sequentially measured. Then, a maximum value of a peak value of the magnitude of the measured vibration is determined in which a phase difference between the phase of the applied vibration and the phase of the measured vibration is located between −270 ° ± 90 °. From the applied vibration frequency f indicating the maximum value and the weight m of the fruit, the elastic modulus E is calculated as E = m · EXP (2/3) ·
It is characterized in that the ripeness of the fruit is measured by f · EXP (2) and the value of the elastic coefficient E is measured.

【0008】(実施の形態)以下に、本発明の請求項1
に記載された発明の実施の形態について、図1、図2、
図3、図4を用いて説明する。図1に、果実の周波数応
答関数のゲイン特性を示す。図1より、多くのピークが
存在していることが確認できる。これらピークは、周波
数の低い方から順に1次ピーク、2次ピークと呼ばれる
が、Abbottらにより果実の果肉硬度に大きく関与する固
有振動は2次ピーク(以下固有振動数)であると報告さ
れている。図1に示すように、この固有振動数は未熟か
ら過熟と果実が軟化する従い低周波側にシフトしてい
く。この固有振動数と位相の関係を図2に示す。固有振
動数が変化しても、その位相は−270 ゜の付近に多く分
布している。これは振動理論より説明できる。
(Embodiment) The first aspect of the present invention will be described below.
The embodiment of the invention described in FIG.
This will be described with reference to FIGS. FIG. 1 shows a gain characteristic of a frequency response function of a fruit. From FIG. 1, it can be confirmed that many peaks exist. These peaks are referred to as a primary peak and a secondary peak in order from the lowest frequency. Abbott et al. Reported that the natural vibration that greatly affects the fruit pulp hardness is a secondary peak (hereinafter, natural frequency). I have. As shown in FIG. 1, the natural frequency shifts from immature to overripe and low-frequency as the fruit softens. FIG. 2 shows the relationship between the natural frequency and the phase. Even if the natural frequency changes, its phase is largely distributed around -270 °. This can be explained by vibration theory.

【0009】すなわち、ピークは2次遅れ要素で生じる
ためピークの位相はピーク周波数を中心に低い周波数の
方向で90゜進み、高い周波数の方向で90゜遅れてしま
う。周波数応答関数に1次、2次と多数のピークが存在
する時、ピーク同士が十分に離れていれば、それぞれの
ピークは2次遅れ要素の線形結合と考えて良い。このと
きピークとピークの間は180 ゜の位相差を持つので、1
次ピーク周波数の位相は−90゜に生じ、2次ピークの周
波数はさらに180 ゜遅れた−270 ゜に生じる。実際に
は、測定時の誤差などにより2次ピークの位相にばらつ
きを生じるので、実用上は−270 ゜±90゜の範囲に2次
ピークが存在していると判断して良い。この範囲内にあ
るゲインのピークの最大値が、果実固有振動数である。
このようにして求められた固有振動数と果実の重量より
果実の弾性率Eを計算し果実の熟度を測定することが出
来る。
That is, since the peak is generated by the second-order lag element, the phase of the peak is advanced by 90 ° in the direction of the low frequency and delayed by 90 ° in the direction of the high frequency around the peak frequency. When there are a large number of first and second order peaks in the frequency response function, if the peaks are sufficiently separated, each peak may be considered as a linear combination of second order delay elements. At this time, since there is a phase difference of 180 ° between the peaks,
The phase of the next peak frequency occurs at -90 °, and the frequency of the second peak occurs at -270 °, further delayed by 180 °. Actually, the phase of the secondary peak varies due to an error at the time of measurement or the like. Therefore, in practice, it may be determined that the secondary peak exists in the range of -270 ° ± 90 °. The maximum value of the gain peak within this range is the fruit natural frequency.
The elastic modulus E of the fruit is calculated from the natural frequency and the weight of the fruit thus obtained, and the ripeness of the fruit can be measured.

【0010】以上の計測方法を用いた熟度測定装置を図
3に示す。図3において、重量計3は測定する果実2の
重量を測定するためのものであり、マイクロプロセッサ
11に接続されている。振動発生器4は、測定する果実
2に所定の振動を与えるための振動源であり、例えば永
久磁石と電磁コイルとから構成されており、与えられた
電気信号を機械的振動に変換する。振動発生器4には、
測定する果実2を載せるための架台6が機械的に接続さ
れている。果実に与える振動信号は、マイクロプロセッ
サ11に接続された信号発生器8により電力増幅器7を
介して振動発生器4に与えられる。測定する果実2の直
上にはレーザードップラー振動計1を配置する。レーザ
ードップラー振動計1により果実2の表面の振動を非接
触に検出し速度に比例したビート信号を出力する。復調
器9はレーザードップラー振動計1の出力を振動信号に
変換しFFT10に入力する。架台6には、果実に与え
る振動を検出するための加速度センサーのような振動検
出手段5が設けられている。振動検出手段5の出力はF
FT10に入力される。FFT10では、復調器9から
の信号と振動検出手段5からの信号とをそれぞれ高速フ
ーリエ変換しマイクロプロセッサ11に出力する。表示
装置12は、マイクロプロセッサ11に接続され測定結
果を表示する。
FIG. 3 shows a maturity measuring apparatus using the above measuring method. In FIG. 3, a weight scale 3 is for measuring the weight of the fruit 2 to be measured, and is connected to the microprocessor 11. The vibration generator 4 is a vibration source for giving a predetermined vibration to the fruit 2 to be measured, and is composed of, for example, a permanent magnet and an electromagnetic coil, and converts a given electric signal into mechanical vibration. The vibration generator 4 includes
A gantry 6 for mounting the fruit 2 to be measured is mechanically connected. The vibration signal given to the fruit is given to the vibration generator 4 via the power amplifier 7 by the signal generator 8 connected to the microprocessor 11. The laser Doppler vibrometer 1 is placed immediately above the fruit 2 to be measured. The laser Doppler vibrometer 1 detects the vibration of the surface of the fruit 2 in a non-contact manner and outputs a beat signal proportional to the speed. The demodulator 9 converts the output of the laser Doppler vibrometer 1 into a vibration signal and inputs the vibration signal to the FFT 10. The gantry 6 is provided with vibration detecting means 5 such as an acceleration sensor for detecting vibration applied to the fruit. The output of the vibration detecting means 5 is F
Input to FT10. In the FFT 10, the signal from the demodulator 9 and the signal from the vibration detection means 5 are each subjected to fast Fourier transform and output to the microprocessor 11. The display device 12 is connected to the microprocessor 11 and displays a measurement result.

【0011】図3における熟度測定装置において、マイ
クロプロセッサ11が行う計測手順を図4に示す。ま
ず、重量計3に果実2を載せ果実2の重量m をマイクロ
プロセッサ11に入力する。その後、架台6に果実2を
載せ、マイクロプロセッサ11から信号発生器8に対し
サイン波を第一の周波数(たとえば20Hz)で発生さ
せる指示を行う。信号発生器8の発振出力は電力増幅器
7を介して振動発生器4に送られ架台6上の果実2を振
動させる。この時、架台の振動を加速度センサ5にて検
出しFFT10を介してマイクロプロセッサ11に入力
する。同時に果実2の表面振動をレーザードップラー振
動計1にて検出し復調器9を介してFFT10に入力す
る。FFT10の出力はマイクロプロセッサ11に入力
される。マイクロプロセッサ11はFFT10からの入
力をもとに周波数応答関数を演算する。このようにし
て、マイクロプロセッサ11は信号発生器8に対し第一
の周波数より高い第二の周波数(たとえば3KHz)ま
で適当な周波数間隔を持つサイン波の出力を指令しその
都度FFTからの入力をもとに周波数応答関数を演算す
る。
FIG. 4 shows a measurement procedure performed by the microprocessor 11 in the maturity measuring device shown in FIG. First, the fruit 2 is put on the weight scale 3 and the weight m of the fruit 2 is input to the microprocessor 11. Thereafter, the fruit 2 is placed on the gantry 6, and the microprocessor 11 instructs the signal generator 8 to generate a sine wave at a first frequency (for example, 20 Hz). The oscillation output of the signal generator 8 is sent to the vibration generator 4 via the power amplifier 7 to vibrate the fruit 2 on the gantry 6. At this time, the vibration of the gantry is detected by the acceleration sensor 5 and input to the microprocessor 11 via the FFT 10. At the same time, the surface vibration of the fruit 2 is detected by the laser Doppler vibrometer 1 and input to the FFT 10 via the demodulator 9. The output of the FFT 10 is input to the microprocessor 11. The microprocessor 11 calculates a frequency response function based on the input from the FFT 10. In this manner, the microprocessor 11 commands the signal generator 8 to output a sine wave having an appropriate frequency interval up to a second frequency (for example, 3 KHz) higher than the first frequency, and inputs the input from the FFT each time. The frequency response function is calculated based on the frequency response function.

【0012】次にマイクロプロセッサ11は、前記演算
した周波数応答関数において位相情報が−270 ゜±90゜
の範囲にある周波数応答関数についてピーク値の検出を
行う。得られたピーク値の内、そのゲインが最大になる
周波数f を検出する。前記検出された周波数f と重量m
とから弾性率E をE=m2/3・f 2と演算する。このように
して演算した弾性率E を表示装置12に表示する。な
お、本例では加振信号にサイン波を用いたが、第一の周
波数と第二の周波数を含む帯域のランダム波、スエプト
サイン波を用いても同様の結果が得られる。
Next, the microprocessor 11 detects the peak value of the frequency response function whose phase information is in the range of -270 {± 90} in the calculated frequency response function. From the obtained peak values, the frequency f at which the gain becomes maximum is detected. The detected frequency f and weight m
Then, the elastic modulus E is calculated as E = m2 / 3 · f2. The elastic modulus E calculated in this way is displayed on the display device 12. Although a sine wave is used as the excitation signal in this example, a similar result can be obtained by using a random wave or a swept sine wave in a band including the first frequency and the second frequency.

【0013】[0013]

【発明の効果】以上のように本発明の果実の熟度測定方
法によれば、振動を与えた果実の固有振動数を検出し果
実重量から果肉の弾性率を計算することにより、果実を
破壊せずに果実の熟度を高速かつ正確に測定できる青果
物の熟度測定器を提供することが可能である。
As described above, according to the method for measuring the ripeness of a fruit of the present invention, the fruit is destroyed by detecting the natural frequency of the vibrated fruit and calculating the elastic modulus of the flesh from the fruit weight. It is possible to provide an instrument for measuring the ripeness of fruits and vegetables, which can quickly and accurately measure the ripeness of fruits without performing the method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】果実の周波数応答関数のゲイン特性を示す図FIG. 1 is a diagram showing gain characteristics of a frequency response function of a fruit;

【図2】果実の固有振動数と位相の関係を示す図FIG. 2 is a diagram showing a relationship between a natural frequency and a phase of a fruit.

【図3】本発明の果実の熟度測定方法を適応した熟度測
定装置を示すブロック図
FIG. 3 is a block diagram showing a ripeness measuring apparatus to which the method for measuring ripeness of fruit of the present invention is applied.

【図4】同熟度測定装置におけるマイクロプロセッサが
行う計測手順を示すフローチャート
FIG. 4 is a flowchart showing a measurement procedure performed by a microprocessor in the same maturity measuring device.

【符号の説明】[Explanation of symbols]

1 レーザードップラー振動計 2 測定する果実 3 重量計 4 振動発生器 5 振動検出手段 6 架台 7 電力増幅器 8 信号発生器 9 復調器 10 FFT 11 マイクロプロセッサ 12 表示装置 DESCRIPTION OF SYMBOLS 1 Laser Doppler vibrometer 2 Fruit to be measured 3 Weight scale 4 Vibration generator 5 Vibration detection means 6 Mount 7 Power amplifier 8 Signal generator 9 Demodulator 10 FFT 11 Microprocessor 12 Display device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定すべき果実に順次周波数fが変化する
振動を印加し、その各印加振動周波数fにおける前記果
実の振動の大きさと位相を順次測定し、前記の印加した
振動の位相と測定された振動との位相との間の位相差が
−270 ゜±90゜の間に位置する前記測定された振動の大
きさのピークの最大値を求め、その最大値を示す前記印
加振動周波数fと前記果実の重量mより弾性係数Eを、
E=m・EXP(2/3)・f・EXP(2)で求め、その弾性係数E
の値により、前記果実の熟度を計ることを特徴とする果
実の熟度測定方法。
1. A vibration whose frequency f changes sequentially is applied to a fruit to be measured, and the magnitude and phase of the vibration of the fruit at each of the applied vibration frequencies f are sequentially measured, and the phase of the applied vibration and the measurement are measured. The maximum value of the peak of the magnitude of the measured vibration whose phase difference between the phase and the applied vibration is located between -270 ° ± 90 ° is determined, and the applied vibration frequency f indicating the maximum value is obtained. And the elastic modulus E from the weight m of the fruit,
E = m ・ EXP (2/3) ・ f ・ EXP (2)
And measuring the ripeness of the fruit according to the value of (1).
JP35263797A 1997-12-22 1997-12-22 Measuring method for ripeness degree of fruit Pending JPH11183443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35263797A JPH11183443A (en) 1997-12-22 1997-12-22 Measuring method for ripeness degree of fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35263797A JPH11183443A (en) 1997-12-22 1997-12-22 Measuring method for ripeness degree of fruit

Publications (1)

Publication Number Publication Date
JPH11183443A true JPH11183443A (en) 1999-07-09

Family

ID=18425413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35263797A Pending JPH11183443A (en) 1997-12-22 1997-12-22 Measuring method for ripeness degree of fruit

Country Status (1)

Country Link
JP (1) JPH11183443A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017959A1 (en) * 2009-08-11 2011-02-17 Empire Technology Development Llc Fruit maturity determination method and system
ITPN20110022A1 (en) * 2011-04-05 2012-10-06 Unitec Spa PROCEDURE AND APPARATUS FOR THE ASSESSMENT OF HARDNESS AND FOR THE SELECTION OF ORTO-FRUIT PRODUCTS
JP2015112083A (en) * 2013-12-13 2015-06-22 学校法人桐蔭学園 Method and device for evaluating health condition of plant and method for cultivating plant
JP2019174259A (en) * 2018-03-28 2019-10-10 学校法人立命館 Viscoelasticity measurement device and viscoelasticity measurement method
CN110892262A (en) * 2017-08-10 2020-03-17 洋马株式会社 Fruit growth monitoring system and fruit growth monitoring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017959A1 (en) * 2009-08-11 2011-02-17 Empire Technology Development Llc Fruit maturity determination method and system
US20110040504A1 (en) * 2009-08-11 2011-02-17 Rong Zhi Xin Science and Technology Development (Beijing) Co., Ltd. Fruit maturity determination method and system
ITPN20110022A1 (en) * 2011-04-05 2012-10-06 Unitec Spa PROCEDURE AND APPARATUS FOR THE ASSESSMENT OF HARDNESS AND FOR THE SELECTION OF ORTO-FRUIT PRODUCTS
WO2012136484A1 (en) * 2011-04-05 2012-10-11 Unitec S.P.A. Process and apparatus for the measurement of the hardness and for the selection of agricultural products
JP2015112083A (en) * 2013-12-13 2015-06-22 学校法人桐蔭学園 Method and device for evaluating health condition of plant and method for cultivating plant
CN110892262A (en) * 2017-08-10 2020-03-17 洋马株式会社 Fruit growth monitoring system and fruit growth monitoring method
CN110892262B (en) * 2017-08-10 2022-06-03 洋马动力科技有限公司 Fruit growth monitoring system and fruit growth monitoring method
JP2019174259A (en) * 2018-03-28 2019-10-10 学校法人立命館 Viscoelasticity measurement device and viscoelasticity measurement method

Similar Documents

Publication Publication Date Title
US6276536B1 (en) Method of measuring ripeness and texture of vegetable or fruit and measuring instrument
US5520052A (en) Method and apparatus for determining material structural integrity
US10352823B2 (en) Methods of analysing apparatus
EP3987283B1 (en) Method and system for analysing a test piece using a vibrational response signal
JP2004523768A (en) Method and apparatus for detecting material or object damage
Taniwaki et al. Non-destructive determination of the optimum eating ripeness of pears and their texture measurements using acoustical vibration techniques
FINNEY JR Vibration techniques for testing fruit firmness
US5811680A (en) Method and apparatus for testing the quality of fruit
JPH11183443A (en) Measuring method for ripeness degree of fruit
JP2008185345A (en) Vibration measuring method and device
JP2982802B1 (en) Fruit texture measuring device
JPH09236587A (en) Method and device for measuring maturity and defect of fruit
JP3209111B2 (en) Method and apparatus for measuring ripeness of fruits and vegetables
JPH11281625A (en) Method for measuring degree of ripeness of fruit and vegetables
JP3352652B2 (en) Fruit and vegetable sorting method and fruit and vegetable sorting device
JP2000097920A (en) Apparatus for measuring maturity of fruit
EP0746765A1 (en) Method and apparatus for testing the quality of fruit
JP4696218B2 (en) Method and apparatus for evaluating the internal quality of fruits and vegetables
JPH0727689A (en) Apparatus and method for measuring surface hardness of fruit and vegetable
JP3802200B2 (en) Fruit ripeness measuring method and ripeness measuring device
Lu et al. A transient method for determining dynamic viscoelastic properties of solid foods
JP2005134114A (en) Hardness measuring device
Lu et al. Evaluation of tomato quality during storage by acoustic impulse response
JP2007256206A (en) Viscosity measuring method for vegetables and fruits, and viscosity-measuring instrument therefor
Bengtsson et al. Prediction of postharvest maturity and size of Victoria plums by vibration response