JPH11183251A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPH11183251A
JPH11183251A JP36411897A JP36411897A JPH11183251A JP H11183251 A JPH11183251 A JP H11183251A JP 36411897 A JP36411897 A JP 36411897A JP 36411897 A JP36411897 A JP 36411897A JP H11183251 A JPH11183251 A JP H11183251A
Authority
JP
Japan
Prior art keywords
wavelength
light
energy
angle
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36411897A
Other languages
Japanese (ja)
Inventor
Taro Osumi
太郎 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP36411897A priority Critical patent/JPH11183251A/en
Publication of JPH11183251A publication Critical patent/JPH11183251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an energy-absorbance spectrum without performing any troublesome operation. SOLUTION: An energy/dispersion angle converting section 23 finds the dispersion angles for energy step widths. A pulse signal generating section 22 finds the number of driving pulse signals required for finding the dispersion angles, and only sends the found number of pulses to a stepping motor 112. As a result, a diffraction grating 111 is rotated by energy step widths and monochromatic light having the wavelength corresponding to the rotation is taken out from the grating 111.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外可視光又は赤
外光を用いた分光光度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrophotometer using ultraviolet visible light or infrared light.

【0002】[0002]

【従来の技術】図3は、一般的な紫外可視分光光度計の
一例を示す概略構成図である。重水素ランプ又はタング
ステンヨウ素ランプ等による光源10から発した光は種
々の波長を含んでおり、分光器11にて所定波長を有す
る単色光が測定光として取り出される。この測定光は試
料溶液を満たした試料セル12に照射され、該試料セル
12内を透過する際に試料に特有な波長を有する光が吸
収される。透過光は光検出器13にて検出され、信号処
理部14において検出信号に基づき吸光度や透過率が計
算される。
2. Description of the Related Art FIG. 3 is a schematic diagram showing an example of a general ultraviolet-visible spectrophotometer. Light emitted from a light source 10 such as a deuterium lamp or a tungsten iodine lamp contains various wavelengths, and a monochromatic light having a predetermined wavelength is extracted as measurement light by a spectroscope 11. This measurement light is applied to the sample cell 12 filled with the sample solution, and when passing through the sample cell 12, light having a wavelength specific to the sample is absorbed. The transmitted light is detected by the photodetector 13, and the signal processor 14 calculates the absorbance and the transmittance based on the detection signal.

【0003】分光器11は、回折格子111や該回折格
子111を所定角度範囲内で回転駆動するステッピング
モータ112を備えている。回折格子111への入射光
に対するその格子面の角度が変化すると取り出される単
色光の波長が変化するから、測定光の波長λと回折格子
111の角度(以下「分散角」という)とは所定の関係
を有している。また、ステッピングモータ112のロー
タの回転角度と分散角とは機械的に決まっているから、
ステッピングモータ112に送られる駆動パルス信号数
と分散角とは所定の関係を有する。従って、制御部20
は、操作部16を用いて測定者より指示された波長操作
範囲及び波長ステップ幅に対応して定められる数の駆動
パルス信号を順次ステッピングモータ112に送出する
ことにより、所定の波長走査を実行することができる。
このような波長走査の結果、信号処理部14では該波長
ステップ毎に吸光度や透過率が得られるから、これによ
り図4(a)に示すような横軸を波長λ、縦軸を吸光度
(又は透過率)としたスペクトルを作成することができ
る。
[0003] The spectroscope 11 includes a diffraction grating 111 and a stepping motor 112 for rotating the diffraction grating 111 within a predetermined angle range. When the angle of the grating surface with respect to the light incident on the diffraction grating 111 changes, the wavelength of the monochromatic light taken out changes. Therefore, the wavelength λ of the measurement light and the angle of the diffraction grating 111 (hereinafter referred to as “dispersion angle”) are predetermined. Have a relationship. Further, since the rotation angle and the dispersion angle of the rotor of the stepping motor 112 are mechanically determined,
The number of drive pulse signals sent to the stepping motor 112 and the dispersion angle have a predetermined relationship. Therefore, the control unit 20
Performs a predetermined wavelength scan by sequentially transmitting to the stepping motor 112 a number of drive pulse signals determined in accordance with the wavelength operation range and the wavelength step width designated by the measurer using the operation unit 16. be able to.
As a result of such wavelength scanning, the signal processing unit 14 obtains the absorbance and the transmittance for each wavelength step. Accordingly, the horizontal axis and the vertical axis as shown in FIG. Spectrum) can be created.

【0004】[0004]

【発明が解決しようとする課題】上記のような紫外可視
光の吸収は、試料分子において基底状態にある結合電子
が光エネルギ(E=hc/λ、h:プランクの定数、
c:光の速度)を吸収して励起状態に遷移することによ
り生じる。このため、例えば半導体や高分子化合物等の
電子状態や立体構造を分析する際には、波長ではなくバ
ンドギャップのエネルギや結合エネルギに着目すること
が多い。しかしながら、図4(a)のように横軸を波長
として表わされたスペクトルでは、それらのエネルギと
吸光度との対応関係を即座に認識又は判断することは困
難である。
The absorption of ultraviolet and visible light as described above is based on the fact that the bond electrons in the ground state in the sample molecule are converted to light energy (E = hc / λ, h: Planck's constant,
c: the speed of light) and the transition to the excited state. For this reason, for example, when analyzing an electronic state or a three-dimensional structure of a semiconductor, a polymer compound, or the like, attention is often paid to the energy of the band gap and the binding energy instead of the wavelength. However, in a spectrum whose wavelength is represented on the horizontal axis as shown in FIG. 4A, it is difficult to immediately recognize or determine the correspondence between the energy and the absorbance.

【0005】そこで、このような分析を行なう場合に
は、図3に示すように信号処理部14の後段に波長/エ
ネルギ変換処理部15を設ける構成とすることができ
る。波長/エネルギ変換処理部15は、上記の如く波長
毎に得られたスペクトルデータをエネルギE(単位e
V)に換算する演算処理を実行し、図4(b)に示すよ
うに横軸をエネルギEとしたスペクトルを作成する。し
かしながらこのような構成では、測定者は、一旦波長-
吸光度スペクトルを取得する作業を行なった後に、波長
軸をエネルギ軸に変換するための処理を操作部16によ
り指示する必要があった。このため、特に複数の試料を
測定する際には操作が面倒であった。
Therefore, when such an analysis is performed, a configuration may be adopted in which a wavelength / energy conversion processing unit 15 is provided at a subsequent stage of the signal processing unit 14 as shown in FIG. The wavelength / energy conversion processing unit 15 converts the spectrum data obtained for each wavelength as described above into an energy E (unit e).
V) is calculated, and a spectrum with energy E on the horizontal axis is created as shown in FIG. However, in such a configuration, the measurer once sets the wavelength
After performing the operation of acquiring the absorbance spectrum, it was necessary to instruct the operation unit 16 to perform a process for converting the wavelength axis into the energy axis. Therefore, the operation is troublesome especially when measuring a plurality of samples.

【0006】本発明は上記課題を解決するために成され
たものであり、その目的とするところは、必要に応じて
エネルギ、振動数、波数等波長以外の単位を横軸とした
スペクトルを直接得ることができる分光光度計を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has an object to directly convert a spectrum having a unit other than wavelength, such as energy, frequency, and wave number, as a horizontal axis, if necessary. It is to provide a spectrophotometer that can be obtained.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る分光光度計は、 a)光源と、 b)該光源から発した光を波長分散して特定波長の光を取
り出して試料に照射する分光手段と、 c)試料の透過光又は反射光を検出する光検出手段と、 d)波長と特定の関係を有する波長以外の所定単位を基準
として波長方向の走査を行なうべく前記分光手段を制御
する制御手段と、 e)前記光検出手段により得た検出信号に基づき前記所定
単位を横軸とするスペクトルを作成する信号処理手段
と、 を備えることを特徴としている。
Means for Solving the Problems A spectrophotometer according to the present invention made to solve the above-mentioned problems comprises: a) a light source; and b) light of a specific wavelength by dispersing the wavelength of light emitted from the light source. Spectroscopic means for taking out and irradiating the sample; c) light detecting means for detecting transmitted light or reflected light of the sample; d) scanning in the wavelength direction with reference to a predetermined unit other than a wavelength having a specific relationship with the wavelength. Control means for controlling the spectroscopic means to be performed; and e) signal processing means for generating a spectrum having the predetermined unit as a horizontal axis based on the detection signal obtained by the light detection means.

【0008】[0008]

【発明の実施の形態】例えば上記分光手段は、回折格
子、プリズム等の波長分散素子と該素子を機械的に回転
させる駆動手段とを含む。この構成では、駆動手段が入
射光に対する波長分散素子の素子面の角度を変えること
により、出射光である単色光の波長が変化する。従来の
分光光度計では、所定の波長ステップ幅でもって波長走
査を行なうべくその波長に対応した素子面角度が得られ
るように駆動手段が制御される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For example, the above-mentioned spectral means includes a wavelength dispersion element such as a diffraction grating or a prism and a driving means for mechanically rotating the element. In this configuration, the wavelength of the monochromatic light, which is the outgoing light, changes when the driving unit changes the angle of the element surface of the wavelength dispersion element with respect to the incident light. In a conventional spectrophotometer, driving means is controlled so that an element surface angle corresponding to the wavelength is obtained in order to perform wavelength scanning with a predetermined wavelength step width.

【0009】これに対し本発明に係る分光光度計の制御
手段は、波長と特定の関係を有する波長以外の所定単
位、例えばエネルギ、振動数、波数等を基準として、そ
の所定単位のステップ幅でもって波長方向の走査を行な
う。つまり、例えば所定のエネルギステップ幅毎のエネ
ルギに対応した波長を有する単色光が順次得られるよう
に素子面角度を算出し、その角度だけ波長分散素子が順
次回転するように駆動手段を制御する。これにより、光
検出手段からは所定単位のステップ幅毎の検出信号が得
られるので、信号処理手段はその所定単位を横軸、吸光
度や透過率等を縦軸としたスペクトルを作成する。
On the other hand, the control means of the spectrophotometer according to the present invention uses a predetermined unit other than the wavelength having a specific relationship with the wavelength, for example, the energy, the frequency, the wave number, etc., as a reference, and the step width of the predetermined unit. Thus, scanning in the wavelength direction is performed. That is, for example, the element surface angle is calculated so that monochromatic light having a wavelength corresponding to the energy for each predetermined energy step width is sequentially obtained, and the driving means is controlled so that the wavelength dispersion element is sequentially rotated by that angle. As a result, a detection signal for each step width of a predetermined unit is obtained from the light detection means, and the signal processing means creates a spectrum with the predetermined unit on the horizontal axis and absorbance, transmittance, and the like on the vertical axis.

【0010】[0010]

【発明の効果】このように本発明の分光光度計によれ
ば、必要に応じて、波長と特定の関係を有する、エネル
ギ、振動数、波数等を横軸とするスペクトルを直接取得
することができる。このため、従来のように一旦波長を
横軸とするスペクトルを取得する必要がないので、操作
が極めて簡略化され、特に複数の試料を測定する場合に
も測定効率が向上する。
As described above, according to the spectrophotometer of the present invention, it is possible to directly obtain a spectrum having a specific relationship with the wavelength and having the energy, frequency, wave number and the like as the horizontal axis, if necessary. it can. For this reason, since it is not necessary to once acquire a spectrum having the wavelength on the horizontal axis as in the related art, the operation is extremely simplified, and the measurement efficiency is improved especially when a plurality of samples are measured.

【0011】[0011]

【実施例】以下、本発明に係る分光光度計の一実施例を
図面を参照して説明する。図1は、本実施例による分光
光度計の要部の構成図である。本実施例による分光光度
計では、制御部20は走査制御部21、パルス信号発生
部22、エネルギ/分散角変換部23を含んでいる。こ
れにより、後述するように信号処理部14において、直
接的にエネルギEを横軸とする吸光スペクトルを得るこ
とができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the spectrophotometer according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a main part of the spectrophotometer according to the present embodiment. In the spectrophotometer according to this embodiment, the control unit 20 includes a scan control unit 21, a pulse signal generation unit 22, and an energy / dispersion angle conversion unit 23. As a result, an absorption spectrum having the energy E as the horizontal axis can be directly obtained in the signal processing unit 14 as described later.

【0012】まず、図2により本発明の分光光度計の動
作原理を説明する。回折格子111に対する入射光軸A
と出射光軸Bとの開き角を2k、その開き角の二等分線
をL、回折格子111の格子面の法線をP、二等分線L
と法線Pとのなす角をθとすると、出射光の波長λは次
の(1)式で与えられる。 λ=2d/m・cosk・sinθ …(1) ここで、mは回折光の次数、dは回折格子111の格子
間隔である。k、m及びdは光学系の設計により決まる
定数であるから、波長λと角度θとの関係は定数Cを用
いて次の(2)式のように表わせる。 λ=C・sinθ …(2)
First, the operating principle of the spectrophotometer of the present invention will be described with reference to FIG. Incident optical axis A for diffraction grating 111
Angle between the light beam and the output optical axis B is 2k, the bisector of the angle is L, the normal to the grating surface of the diffraction grating 111 is P, and the bisector L
And the normal P, the angle λ of the emitted light is given by the following equation (1). λ = 2d / m · cosk · sin θ (1) where m is the order of the diffracted light, and d is the grating interval of the diffraction grating 111. Since k, m and d are constants determined by the design of the optical system, the relationship between the wavelength λ and the angle θ can be expressed by the following equation (2) using the constant C. λ = C · sinθ… (2)

【0013】一方、波長λとエネルギE(eV)との間
には(3)式のような関係がある。 E={1/(8.06546・λ)}×1013 …(3) 従って、(2)式及び(3)式より、エネルギEと角度θとの
関係は定数C’を用いて次の(4)式のように表わせる。 E={1/(8.06546・C・sinθ)}×1013 =C’/sinθ …(4) この関係を基に所定のエネルギに対する分散角を得るこ
とができる。
On the other hand, there is a relationship as shown in equation (3) between the wavelength λ and the energy E (eV). E = {1 / (8.0546 · λ)} × 10 13 (3) Accordingly, from the equations (2) and (3), the relationship between the energy E and the angle θ is expressed by the following equation using a constant C ′. It can be expressed as in equation (4). E = {1 / (8.06546 · C · sin θ)} × 10 13 = C ′ / sin θ (4) Based on this relationship, a dispersion angle with respect to a predetermined energy can be obtained.

【0014】上記エネルギ/分散角変換部23は、上記
のような計算式を含むソフトウエアをCPUに実行させ
る構成としてもよいし、或いは、エネルギと分散角との
対応関係を(4)式により予め計算してROM等に格納し
ておき、エネルギEの値を入力すると分散角を出力とし
て得られるような構成としてもよい。
The energy / dispersion angle conversion unit 23 may be configured to cause the CPU to execute software including the above-described calculation formulas, or the energy / dispersion angle conversion unit 23 may calculate the correspondence between the energy and the dispersion angle by the formula (4). It is also possible to adopt a configuration in which the value is calculated in advance and stored in a ROM or the like, and when the value of the energy E is input, the variance angle can be obtained as an output.

【0015】図1に立ち戻って、上記構成の分光光度計
の動作を説明する。測定者が操作部16(例えばキーボ
ード等)により走査のエネルギステップ幅(例えば0.
05eV)及び走査するエネルギ範囲を指示すると、エ
ネルギ/分散角変換部23は指示されたエネルギ範囲内
の最小又は最大エネルギ値に対応する分散角を求める。
パルス信号発生部22は、予め格納されている分散角/
駆動パルス信号数の対応関係を基に必要な駆動パルス信
号数を求め、その数の駆動パルス信号をステッピングモ
ータ112へ送出する。これにより、ステッピングモー
タ112のロータは例えばホームポジション(初期位
置)からその駆動パルス信号数に応じて回転し、回折格
子111の角度が変化する。
Returning to FIG. 1, the operation of the spectrophotometer having the above configuration will be described. The measurer can use the operation unit 16 (for example, a keyboard or the like) to scan the energy step width (for example, 0.
05 eV) and the energy range to be scanned, the energy / dispersion angle conversion unit 23 obtains the dispersion angle corresponding to the minimum or maximum energy value within the designated energy range.
The pulse signal generation unit 22 calculates a variance angle /
The required number of drive pulse signals is obtained based on the correspondence between the number of drive pulse signals, and the number of drive pulse signals is transmitted to the stepping motor 112. Accordingly, the rotor of the stepping motor 112 rotates from the home position (initial position) according to the number of drive pulse signals, for example, and the angle of the diffraction grating 111 changes.

【0016】走査制御部21は信号処理部14に対し信
号取得指示信号を送り、これにより信号処理部14は回
折格子111が所定角度だけ回転して停止した後に光検
出器13より検出信号を取得する。そして、この検出信
号に基づき吸光度を計算する。走査制御部21はその
後、パルス信号発生部22に対し駆動指示信号を送る。
これによりパルス信号発生部22は、指示されたエネル
ギ範囲内の最小又は最大エネルギ値より所定のエネルギ
ステップ幅だけ離れたエネルギ値に対応する分散角に応
じた駆動パルス信号数を求め、その数の駆動パルス信号
をステッピングモータ112へ送出する。信号処理部1
4は、回折格子111が回転した後の検出信号を再び取
得する。
The scanning control unit 21 sends a signal acquisition instruction signal to the signal processing unit 14, whereby the signal processing unit 14 acquires a detection signal from the photodetector 13 after the diffraction grating 111 has rotated by a predetermined angle and stopped. I do. Then, the absorbance is calculated based on the detection signal. Thereafter, the scanning control unit 21 sends a drive instruction signal to the pulse signal generation unit 22.
Accordingly, the pulse signal generation unit 22 obtains the number of drive pulse signals corresponding to the variance angle corresponding to the energy value separated by a predetermined energy step width from the minimum or maximum energy value within the designated energy range, and The driving pulse signal is transmitted to the stepping motor 112. Signal processing unit 1
4 acquires again the detection signal after the diffraction grating 111 rotates.

【0017】このような処理の繰返しにより、回折格子
111は指示されたエネルギステップ幅に対応する角度
をもって順次回転し、信号処理部14はその回転毎に取
得した検出信号を基に吸光度を計算する。その結果、図
4(b)に示したような、エネルギEを横軸とするスペ
クトルが作成される。
By repeating such processing, the diffraction grating 111 rotates sequentially with an angle corresponding to the designated energy step width, and the signal processing unit 14 calculates the absorbance based on the detection signal acquired for each rotation. . As a result, a spectrum having energy E as the horizontal axis is created as shown in FIG.

【0018】なお、本発明による分光光度計は、波長と
特定の関係を有する他の単位、例えば振動数ν(=c/
λ、c:光の速度)や波数1/λを横軸としてスペクト
ルを作成するものにも適用できることは明らかである。
また、分光器として、例えばプリズム等の回折格子以外
の波長分散素子を用いる構成とすることもできる。
The spectrophotometer according to the present invention has another unit having a specific relationship with the wavelength, for example, the frequency ν (= c / c).
Obviously, the present invention can be applied to a case where a spectrum is created with the horizontal axis of (λ, c: speed of light) and the wave number 1 / λ.
Further, a configuration using a wavelength dispersion element other than the diffraction grating such as a prism, for example, may be used as the spectroscope.

【0019】更に、上記実施例は一例であって、本発明
の趣旨の範囲で適宜変更や修正を行なうことができるこ
とは明らかである。
Further, the above embodiment is merely an example, and it is apparent that changes and modifications can be appropriately made within the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による分光光度計の一実施例の要部の
構成図。
FIG. 1 is a configuration diagram of a main part of an embodiment of a spectrophotometer according to the present invention.

【図2】 本発明の分光光度計の原理説明図。FIG. 2 is a diagram illustrating the principle of the spectrophotometer of the present invention.

【図3】 従来の一般的な分光光度計の概略構成図。FIG. 3 is a schematic configuration diagram of a conventional general spectrophotometer.

【図4】 吸収スペクトルの一例を示す図。FIG. 4 shows an example of an absorption spectrum.

【符号の説明】[Explanation of symbols]

10…光源 11…分光器 111…回折格子 112…モータ 12…試料セル 13…光検出器 14…信号処理部 20…制御部 21…走査制御部 22…パルス信号発生
部 23…エネルギ/分散角変換部
Reference Signs List 10 light source 11 spectroscope 111 diffraction grating 112 motor 12 sample cell 13 photodetector 14 signal processing unit 20 control unit 21 scanning control unit 22 pulse signal generation unit 23 energy / dispersion angle conversion Department

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a)光源と、 b)該光源から発した光を波長分散して特定波長の光を取
り出して試料に照射する分光手段と、 c)試料の透過光又は反射光を検出する光検出手段と、 d)波長と特定の関係を有する波長以外の所定単位を基準
として波長方向の走査を行なうべく前記分光手段を制御
する制御手段と、 e)前記光検出手段により得た検出信号に基づき前記所定
単位を横軸とするスペクトルを作成する信号処理手段
と、 を備えることを特徴とする分光光度計。
A) a light source; b) spectral means for dispersing light emitted from the light source to extract light of a specific wavelength and irradiating the sample with a light; c) detecting transmitted light or reflected light of the sample. Light detection means, d) control means for controlling the spectroscopic means to perform scanning in the wavelength direction with reference to a predetermined unit other than a wavelength having a specific relationship with the wavelength, e) a detection signal obtained by the light detection means And a signal processing means for generating a spectrum having the predetermined unit as a horizontal axis based on the following.
JP36411897A 1997-12-16 1997-12-16 Spectrophotometer Pending JPH11183251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36411897A JPH11183251A (en) 1997-12-16 1997-12-16 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36411897A JPH11183251A (en) 1997-12-16 1997-12-16 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPH11183251A true JPH11183251A (en) 1999-07-09

Family

ID=18481020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36411897A Pending JPH11183251A (en) 1997-12-16 1997-12-16 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPH11183251A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974629A (en) * 2019-04-17 2019-07-05 上海理工大学 A kind of measurement method at transmission-type plane balzed grating, flute profile angle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974629A (en) * 2019-04-17 2019-07-05 上海理工大学 A kind of measurement method at transmission-type plane balzed grating, flute profile angle

Similar Documents

Publication Publication Date Title
US4180327A (en) Spectrophotometers with digital processing
US5654796A (en) Apparatus and method for mapping plasma characteristics
JP2008046132A (en) Spectroscopy system
CN101666681B (en) Spectrometer using MOEMS movable blazed grating array
Strauss et al. Performance of a fast fiber based UV/Vis multiwavelength detector for the analytical ultracentrifuge
WO2000058712A1 (en) Isopotomer absorption spectral analyzer and its method
JPH0534273A (en) Retardation measuring apparatus
US4732476A (en) Continuously rotating grating rapid-scan spectrophotometer
JP4872863B2 (en) Spectrophotometer
KR900005331B1 (en) Concentration measuring instrument of inorganic element
JPH11183251A (en) Spectrophotometer
CN112595416A (en) Broadband infrared spectrometer
JP5206322B2 (en) Spectrophotometer
CN212031304U (en) Novel Raman spectrometer based on optical field coupling device
JP3473524B2 (en) Spectrometer
JPH11132847A (en) Optical spectrum analyzer
JPH0694602A (en) Spectral photographing device for detecting absorption of modulated electromagnetic wave based on ultrasonic wave
US3723008A (en) Differential spectrophotometer
JP3102485B2 (en) Spectrophotometer
JPH07151678A (en) Infrared microscope
JPS5985918A (en) Direct ratio type spectrophotometer
JP2892670B2 (en) Optical spectrum analyzer
KR100406838B1 (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP2001356049A (en) Spectrophotometer
US4523845A (en) Double grating monochromator