JPH11182975A - Absorption type cogeneration system utilizing waste - Google Patents

Absorption type cogeneration system utilizing waste

Info

Publication number
JPH11182975A
JPH11182975A JP9354365A JP35436597A JPH11182975A JP H11182975 A JPH11182975 A JP H11182975A JP 9354365 A JP9354365 A JP 9354365A JP 35436597 A JP35436597 A JP 35436597A JP H11182975 A JPH11182975 A JP H11182975A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
engine
cooling water
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9354365A
Other languages
Japanese (ja)
Other versions
JP3400701B2 (en
Inventor
Katashi Endo
確 遠藤
Toshihiro Asanuma
俊浩 浅沼
Kunio Yazawa
國雄 矢澤
Cho Fukumitsu
超 福光
Koji Kiyokawa
浩二 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
NTT Power and Building Facilities Inc
Original Assignee
Hitachi Ltd
NTT Power and Building Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, NTT Power and Building Facilities Inc filed Critical Hitachi Ltd
Priority to JP35436597A priority Critical patent/JP3400701B2/en
Publication of JPH11182975A publication Critical patent/JPH11182975A/en
Application granted granted Critical
Publication of JP3400701B2 publication Critical patent/JP3400701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an absorption type congeneration system utilizing the exhaust waste from an inter-cooler coolant for a absorption type water cooler/ heater, thereby improving the heat efficiency. SOLUTION: The system has an absorption type water cooler/heater and an engine 17 having an inter-cooler for cooling compressed air from a turbo- charger of an engine 17, which intercooler is divided in a high-temp. side inter- cooler 15 for cooling the compressed air to a medium temp., and a low-temp. side inter-cooler 16 for cooling the cooled compressed air at the medium temp. to specified temp. The system comprises a waste-heat exchanger 11 disposed in a dil. soln. line branched from a low-temp. heat exchanger 6 of the water cooler/heater and piping for passing the coolant through the waste-heat heat exchanger 11 from the high temp. side inter-cooler 15 of the engine 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発電と冷暖房を同時
にできるコージェネレーションシステムに関し、特に吸
収冷温水機にエンジンのターボチャージャーの圧縮エア
ーを冷却するインタークーラ冷却水の排熱を熱回収して
冷暖房に利用するエンジン排熱利用吸収式コージェネレ
ーションシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration system capable of simultaneously generating and cooling and heating, and more particularly to cooling and heating by recovering exhaust heat of intercooler cooling water for cooling compressed air of an engine turbocharger in an absorption chiller / heater. The present invention relates to an absorption cogeneration system utilizing engine exhaust heat for use in an engine.

【0002】[0002]

【従来の技術】従来、高温溶液熱交換器と低温溶液熱交
換器を含む吸収剤の稀溶液ラインに吸収冷温水機外部の
温熱源より供給される流体と前記稀溶液ラインを流れる
稀溶液との間で熱交換を行い、吸収冷温水機の熱源とし
て有効利用する排熱投入型吸収冷温水機がある。なお、
この種の技術として関連するものに特開平7−2180
17号公報が挙げられる。
2. Description of the Related Art Conventionally, a fluid supplied from a heat source outside an absorption chiller / heater to a dilute solution line of an absorbent including a high temperature solution heat exchanger and a low temperature solution heat exchanger and a dilute solution flowing through the dilute solution line are used. There is a waste heat input type absorption chiller / heater that exchanges heat between the heat exchangers and effectively uses it as a heat source of the absorption chiller / heater. In addition,
Japanese Unexamined Patent Application Publication No. 7-2180 relates to this type of technology.
No. 17 publication.

【0003】[0003]

【発明が解決しようとする課題】エンジンのターボチャ
ージャーの圧縮エアーを冷却するインタークーラ冷却水
は、吸収冷温水機の加熱源として利用するには温度が低
く、吸収冷温水機とエンジンを組み合わせたコージェネ
レーションシステムでは排熱利用できなかった。このた
め、インタークーラ冷却水の排熱は給湯に利用するか、
外部へ放熱していた。
The intercooler cooling water for cooling the compressed air of the turbocharger of the engine has a low temperature to be used as a heating source for the absorption chiller / heater, and the absorption chiller / heater is combined with the engine. Waste heat could not be used in the cogeneration system. Therefore, waste heat of the intercooler cooling water is used for hot water supply,
Heat was radiating outside.

【0004】本発明は、インタークーラ冷却水の排熱を
吸収冷温水機にて利用し熱効率を向上させる排熱利用吸
収式コージェネレーションシステムを提供することを目
的とする。
[0004] It is an object of the present invention to provide an exhaust heat utilization absorption type cogeneration system in which waste heat of intercooler cooling water is utilized by an absorption chiller / heater to improve thermal efficiency.

【0005】[0005]

【課題を解決するための手段】上記目的は、蒸発器、吸
収器、凝縮器、高温再生器、低温再生器、高温熱交換
器、低温熱交換器及びこれらを作動的に結合する配管系
を有する吸収冷温水機と、エンジンのターボチャージャ
ーの圧縮エアーを冷却するインタークーラを、前記圧縮
エアーを中間温度まで冷却する高温側インタークーラ
と、この中間温度まで冷却された圧縮エアーを所定の温
度まで冷却する低温側インタークーラとに分割されたエ
ンジンとを備え、このエンジンの排熱を利用する吸収式
コージェネレーションシステムにおいて、前記吸収冷温
水機の低温熱交換器を分岐した稀溶液ラインに排熱熱交
換器を配置し、前記エンジンの高温側インタークーラの
冷却水を前記排熱熱交換器に貫流する配管を備える、こ
とによって達成される。
An object of the present invention is to provide an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, a high-temperature heat exchanger, a low-temperature heat exchanger, and a piping system for operatively connecting these. An absorption chiller / heater having an intercooler for cooling compressed air of an engine turbocharger, a high-temperature side intercooler for cooling the compressed air to an intermediate temperature, and a compressed air cooled to the intermediate temperature to a predetermined temperature. An engine divided into a low-temperature side intercooler for cooling, and an absorption-type cogeneration system using the exhaust heat of the engine. This is achieved by disposing a heat exchanger and providing piping for flowing cooling water of the high-temperature side intercooler of the engine to the exhaust heat exchanger.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例を説明す
る。
Embodiments of the present invention will be described below.

【0007】図1において、1は蒸発器、2は吸収器、
3は凝縮器、4は低温再生器、5は高温再生器、6は低
温熱交換器、7は高温熱交換器、8は冷媒ポンプ、9は
溶液循環ポンプ、10は溶液スプレ−ポンプ、11は排
熱熱交換器、13は稀溶液配管、14は直接熱源、15
は高温側インタ−ク−ラ、16は低温側インタ−ク−
ラ、17はエンジン、18は発電機、19は冷却水配
管、22は冷却水ポンプ、25は温水三方弁である。
In FIG. 1, 1 is an evaporator, 2 is an absorber,
3 is a condenser, 4 is a low temperature regenerator, 5 is a high temperature regenerator, 6 is a low temperature heat exchanger, 7 is a high temperature heat exchanger, 8 is a refrigerant pump, 9 is a solution circulation pump, 10 is a solution spray pump, 11 Is a waste heat exchanger, 13 is a dilute solution pipe, 14 is a direct heat source, 15
Is a high-temperature side intercooler, 16 is a low-temperature side interlock.
Reference numerals 17 and 18 denote an engine, 18 a generator, 19 a cooling water pipe, 22 a cooling water pump, and 25 a hot water three-way valve.

【0008】エンジン17の高温側インタークーラ15
を冷却した冷却水は冷却水配管19を通り排熱熱交換器
11に導かれる。低温熱交換器6を分岐した稀溶液ライ
ン13に配置された排熱熱交換器11において、低温熱
交換器6を分岐した稀溶液と高温側インタークーラ15
の冷却水との間で熱交換を行う。
High temperature side intercooler 15 of engine 17
The cooling water which has been cooled is guided to the exhaust heat exchanger 11 through the cooling water pipe 19. In the exhaust heat exchanger 11 disposed in the diluted solution line 13 branched from the low-temperature heat exchanger 6, the diluted solution branched from the low-temperature heat exchanger 6 and the high-temperature side intercooler 15 are separated.
Heat exchange with the cooling water.

【0009】ここで、エンジン17の高温側インターク
ーラ15を冷却した冷却水は、入口60℃、出口70℃
程度であり、一方吸収器2を出た稀溶液は39℃程度で
あるため排熱熱交換器11で、高温側インタークーラ1
5を冷却した冷却水から稀溶液に熱を伝えることができ
る。
Here, the cooling water that has cooled the high-temperature side intercooler 15 of the engine 17 has an inlet temperature of 60 ° C. and an outlet temperature of 70 ° C.
On the other hand, the temperature of the diluted solution exiting the absorber 2 is about 39 ° C., so that the exhaust heat exchanger 11
The heat can be transferred from the cooling water that has cooled the 5 to the dilute solution.

【0010】排熱熱交換器11を出た稀溶液は低温熱交
換器6を出た稀溶液と合流し、低温再生器4及び高温熱
交換器7へ導かれる。排熱熱交換器11を出た冷却水は
冷却水配管A19を通り、高温側インタークーラ15へ
導かれる。
The dilute solution leaving the exhaust heat exchanger 11 joins with the dilute solution leaving the low-temperature heat exchanger 6 and is led to the low-temperature regenerator 4 and the high-temperature heat exchanger 7. The cooling water that has exited the exhaust heat exchanger 11 passes through the cooling water pipe A19 and is guided to the high-temperature side intercooler 15.

【0011】高温側インタークーラ15の冷却水からの
排熱を稀溶液に回収することにより、直接熱源14(ガ
ス、油等)の燃料消費量を削減することが可能となり、
コージェネレーションシステムの熱効率を向上させるこ
とができる。
By recovering the exhaust heat from the cooling water of the high-temperature side intercooler 15 into a dilute solution, the fuel consumption of the direct heat source 14 (gas, oil, etc.) can be reduced.
The thermal efficiency of the cogeneration system can be improved.

【0012】次に本発明の他の実施例を図2を用いて説
明する。図2は図1の実施例に対しエンジン17におけ
るジャケット等のエンジン冷却水を稀溶液ラインに配置
した排熱熱交換器12に導き稀溶液との間で熱交換させ
るようにしたものである。ジャケット等のエンジン冷却
水の排熱を吸収冷温水機に取り入れる構成は様々な形態
が知られており、ここでは代表例として低温熱交換器6
をでた稀溶液ラインに排熱熱交換器12を配置した形態
を説明する。高温側インタークーラ15の冷却水と熱交
換し温度の上昇した稀溶液と低温熱交換器6で濃溶液と
熱交換した稀溶液は合流し、排熱熱交換器12に導かれ
る。排熱熱交換器12では、エンジンジャケット等の冷
却水と稀溶液の間で熱交換が行われ、排熱熱交換器12
を出た稀溶液は低温再生器4及び高温熱交換器7へ導か
れる。排熱熱交換器12を出たジャケット冷却水は冷却
水配管B20を通りエンジン17へ導かれる。
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 2 is different from the embodiment of FIG. 1 in that engine cooling water such as a jacket in an engine 17 is led to an exhaust heat exchanger 12 arranged in a dilute solution line to exchange heat with the dilute solution. Various configurations are known for introducing exhaust heat of engine cooling water such as a jacket into an absorption chiller / heater. Here, a typical example is a low-temperature heat exchanger 6.
An embodiment in which the exhaust heat exchanger 12 is arranged in the diluted solution line that has been described will be described. The dilute solution that has exchanged heat with the cooling water of the high-temperature side intercooler 15 and the dilute solution whose temperature has risen and the dilute solution that has exchanged heat with the concentrated solution in the low-temperature heat exchanger 6 merge and are led to the exhaust heat exchanger 12. In the exhaust heat exchanger 12, heat exchange is performed between the cooling water in the engine jacket or the like and the dilute solution.
Is passed to the low-temperature regenerator 4 and the high-temperature heat exchanger 7. The jacket cooling water exiting the exhaust heat exchanger 12 is guided to the engine 17 through a cooling water pipe B20.

【0013】高温側インタークーラ15の冷却水からの
排熱とエンジンジャケット等の冷却水からの排熱を稀溶
液に回収することにより、直接熱源4の燃料消費量を削
減することが可能となり、コージェネレーションシステ
ムの熱効率を向上させることができる。
By recovering the exhaust heat from the cooling water of the high-temperature side intercooler 15 and the exhaust heat from the cooling water of the engine jacket and the like into a dilute solution, the fuel consumption of the heat source 4 can be reduced directly. The thermal efficiency of the cogeneration system can be improved.

【0014】本発明のさらに他の実施例を図3を用いて
説明する。図3において高温側インタークーラ15を冷
却した冷却水は、冷却水配管21を通りエンジンジャケ
ット等の冷却に使用される。エンジンジャケット等を冷
却した冷却水は冷却水配管21を通り排熱熱交換器12
に導かれる。図2と同様にジャケット等のエンジン冷却
水の排熱を吸収冷温水機に取り入れる構成は様々な形態
が知られているが、ここでは代表例として低温熱交換器
6をでた稀溶液ラインに排熱熱交換器12を配置した形
態を説明する。排熱熱交換器12では、エンジンジャケ
ット等の冷却水と稀溶液の間で熱交換が行われ、排熱熱
交換器12を出た稀溶液は低温再生器4及び高温熱交換
器7へ導かれる。排熱熱交換器12を出た冷却水は冷却
水配管21を通り高温側インタークーラ15へ導かれ
る。
Another embodiment of the present invention will be described with reference to FIG. In FIG. 3, the cooling water that has cooled the high-temperature side intercooler 15 passes through the cooling water pipe 21 and is used for cooling the engine jacket and the like. The cooling water that has cooled the engine jacket and the like passes through a cooling water pipe 21 and is connected to the exhaust heat exchanger 12.
It is led to. Various configurations are known in which exhaust heat of engine cooling water such as a jacket is taken into the absorption chiller / heater as in FIG. 2, but here, as a representative example, a dilute solution line with a low-temperature heat exchanger 6 is used. An embodiment in which the exhaust heat exchanger 12 is arranged will be described. In the exhaust heat exchanger 12, heat exchange is performed between the cooling water in the engine jacket or the like and the dilute solution, and the dilute solution exiting the exhaust heat exchanger 12 is guided to the low-temperature regenerator 4 and the high-temperature heat exchanger 7. I will The cooling water that has exited the exhaust heat exchanger 12 is guided to the high-temperature side intercooler 15 through the cooling water pipe 21.

【0015】高温側インタークーラ15を冷却した冷却
水を直列にエンジンジャケット等の冷却に利用すること
により、冷却水温度は88℃〜93℃程度に上昇する。
冷却水温度が88℃〜93℃程度であれば吸収冷温水機
の稀溶液の加熱源として、例えば図2の熱交換器12の
ような従来より知られた構成で排熱を回収することが可
能となる。
By using the cooling water that has cooled the high-temperature side intercooler 15 in series for cooling the engine jacket and the like, the cooling water temperature rises to about 88 ° C. to 93 ° C.
If the cooling water temperature is about 88 ° C. to 93 ° C., the exhaust heat can be recovered by a conventionally known configuration such as the heat exchanger 12 in FIG. It becomes possible.

【0016】この場合、高温側インタークーラに入る冷
却水は80℃程度になるが、ターボチャージャー出口の
圧縮空気温度が150℃〜180℃になっているため、
熱回収は可能である。回収熱量はやや減少するが、冷却
水配管がジャケット冷却水系に統合でき排熱熱交換器も
1台ですむのでコストが下がる効果が有る。
In this case, although the cooling water entering the high-temperature side intercooler is about 80 ° C., since the temperature of the compressed air at the turbocharger outlet is 150 ° C. to 180 ° C.,
Heat recovery is possible. Although the amount of heat recovered is slightly reduced, the cooling water piping can be integrated into the jacket cooling water system and only one exhaust heat exchanger is required, which has the effect of reducing costs.

【0017】高温側インタークーラ15の冷却水をエン
ジンジャケット等の冷却水と直列に接続することにより
高温側インタークーラ15の排熱をエンジンジャケット
等の排熱とともに吸収冷温水機に回収することが可能と
なり、直接熱源14の燃料消費量を削減することが可能
となり、コージェネレーションシステムの熱効率を向上
させることができる。
By connecting the cooling water of the high-temperature side intercooler 15 in series with the cooling water of the engine jacket or the like, the exhaust heat of the high-temperature side intercooler 15 and the exhaust heat of the engine jacket or the like can be collected by the absorption chiller / heater. As a result, the fuel consumption of the direct heat source 14 can be reduced, and the thermal efficiency of the cogeneration system can be improved.

【0018】[0018]

【発明の効果】本発明によれば、コージェネレーション
システムにおいてエンジンのターボチャージャーの圧縮
エアーを冷却するインタークーラ冷却水の排熱を吸収冷
温水機の加熱源として利用することができ、熱効率の向
上した排熱利用吸収式コージェネレーションシステムが
得られる。
According to the present invention, the exhaust heat of the intercooler cooling water for cooling the compressed air of the turbocharger of the engine in the cogeneration system can be used as the heating source of the absorption chiller / heater, and the thermal efficiency is improved. A waste heat utilization absorption type cogeneration system is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の系統図。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】本発明の他の実施例の系統図。FIG. 2 is a system diagram of another embodiment of the present invention.

【図3】本発明のさらに他の実施例の系統図。FIG. 3 is a system diagram of still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…蒸発器、2…吸収器、3…凝縮器、4…低温再生
器、5…高温再生器、6…低温熱交換器、7…高温熱交
換器、11…排熱熱交換器、15…高温側インタ−ク−
ラ、16…低温側インタ−ク−ラ、17…エンジン。
DESCRIPTION OF SYMBOLS 1 ... Evaporator, 2 ... Absorber, 3 ... Condenser, 4 ... Low temperature regenerator, 5 ... High temperature regenerator, 6 ... Low temperature heat exchanger, 7 ... High temperature heat exchanger, 11 ... Waste heat heat exchanger, 15 … High temperature side interwork
LA, 16: low temperature side intercooler, 17: engine.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅沼 俊浩 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 矢澤 國雄 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 福光 超 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 清川 浩二 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshihiro Asanuma 603, Kandachi-cho, Tsuchiura-shi, Ibaraki Inside the Tsuchiura Plant, Hitachi, Ltd. (72) Kunio Yazawa 3-4-1 Shibaura, Minato-ku, Tokyo Co., Ltd. Within NTT Facilities (72) Inventor Fukumitsu Cho 3-4-1, Shibaura, Minato-ku, Tokyo Inside NTT Facilities, Inc. (72) Koji Kiyokawa 3-4-1, Shibaura, Minato-ku, Tokyo No. 1 in NTT Facilities

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】蒸発器、吸収器、凝縮器、高温再生器、低
温再生器、高温熱交換器、低温熱交換器及びこれらを作
動的に結合する配管系を有する吸収冷温水機と、エンジ
ンのターボチャージャーの圧縮エアーを冷却するインタ
ークーラを、前記圧縮エアーを中間温度まで冷却する高
温側インタークーラと、この中間温度まで冷却された圧
縮エアーを所定の温度まで冷却する低温側インタークー
ラとに分割されたエンジンとを備え、このエンジンの排
熱を利用する吸収式コージェネレーションシステムにお
いて、前記吸収冷温水機の低温熱交換器を分岐した稀溶
液ラインに排熱熱交換器を配置し、前記エンジンの高温
側インタークーラの冷却水を前記排熱熱交換器に貫流す
る配管を備えることを特徴とする排熱利用吸収式コージ
ェネレーションシステム。
An absorption chiller / heater having an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, a high-temperature heat exchanger, a low-temperature heat exchanger, and a piping system for operatively connecting them, and an engine. An intercooler that cools the compressed air of the turbocharger is divided into a high-temperature intercooler that cools the compressed air to an intermediate temperature and a low-temperature intercooler that cools the compressed air cooled to the intermediate temperature to a predetermined temperature. In the absorption cogeneration system using the exhaust heat of the engine, the exhaust heat exchanger is disposed in a dilute solution line branched from the low-temperature heat exchanger of the absorption chiller / heater, An exhaust cogeneration system utilizing exhaust heat, comprising a pipe through which cooling water of an intercooler on the high temperature side of the engine flows through the exhaust heat exchanger. Temu.
【請求項2】請求項1に記載の排熱利用吸収式コージェ
ネレーションシステムにおいて、前記吸収冷温水機の稀
溶液ラインに排熱熱交換器を配置し、エンジンのジャケ
ット冷却水を前記排熱熱交換器に貫流する配管を備えた
ことを特徴とする排熱利用吸収式コージェネレーション
システム。
2. An exhaust cogeneration system utilizing exhaust heat according to claim 1, wherein an exhaust heat exchanger is disposed in a dilute solution line of the absorption chiller / heater, and the engine jacket cooling water is supplied to the exhaust heat heat. An exhaust-heat-absorption-type cogeneration system characterized by being provided with piping that flows through the exchanger.
【請求項3】請求項1に記載の排熱利用吸収式コージェ
ネレーションシステムにおいて、前記吸収冷温水機の稀
溶液ラインに排熱熱交換器を配置し、前記エンジンの高
温側インタークーラを出た冷却水をエンジンのジャケッ
ト冷却水に直列に接続する配管と、エンジンを冷却した
冷却水を前記排熱熱交換器に貫流する配管を備えること
を特徴とする排熱利用吸収式コージェネレーションシス
テム。
3. An exhaust cogeneration system utilizing exhaust heat according to claim 1, wherein an exhaust heat exchanger is disposed in a dilute solution line of said absorption chiller / heater and exits a high temperature side intercooler of said engine. A waste heat absorption cogeneration system comprising: a pipe for connecting cooling water in series with a jacket cooling water of an engine; and a pipe for flowing cooling water for cooling an engine through the exhaust heat exchanger.
JP35436597A 1997-12-24 1997-12-24 Waste heat absorption cogeneration system Expired - Fee Related JP3400701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35436597A JP3400701B2 (en) 1997-12-24 1997-12-24 Waste heat absorption cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35436597A JP3400701B2 (en) 1997-12-24 1997-12-24 Waste heat absorption cogeneration system

Publications (2)

Publication Number Publication Date
JPH11182975A true JPH11182975A (en) 1999-07-06
JP3400701B2 JP3400701B2 (en) 2003-04-28

Family

ID=18437073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35436597A Expired - Fee Related JP3400701B2 (en) 1997-12-24 1997-12-24 Waste heat absorption cogeneration system

Country Status (1)

Country Link
JP (1) JP3400701B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907367A (en) * 2010-08-05 2010-12-08 靳北彪 Adsorption type thermal fluid self-cooling system
CN109974061A (en) * 2018-12-27 2019-07-05 北京建筑大学 Steam power plant's cold-hot combined supply system and method based on city Public residence subregion
CN114576677A (en) * 2020-11-30 2022-06-03 上海本家空调系统有限公司 Gas heat pump unit, heat supply method and heat supply equipment of central heat supply pipe network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562496B (en) * 2012-01-17 2013-08-07 天津大学 Middle/low-temperature geothermic efficient thermoelectric coupling combined supply system based on organic Rankine cycle (ORC)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907367A (en) * 2010-08-05 2010-12-08 靳北彪 Adsorption type thermal fluid self-cooling system
WO2012016418A1 (en) * 2010-08-05 2012-02-09 Jin Beibiao Adsorption hot fluid self-cooling system
CN109974061A (en) * 2018-12-27 2019-07-05 北京建筑大学 Steam power plant's cold-hot combined supply system and method based on city Public residence subregion
CN109974061B (en) * 2018-12-27 2023-09-19 北京建筑大学 Combined heat and power supply system and method for thermal power plant based on urban public building residential partition
CN114576677A (en) * 2020-11-30 2022-06-03 上海本家空调系统有限公司 Gas heat pump unit, heat supply method and heat supply equipment of central heat supply pipe network
CN114576677B (en) * 2020-11-30 2024-02-23 上海本家空调系统有限公司 Gas heat pump unit, heat supply method and heat supply equipment of central heat supply pipe network

Also Published As

Publication number Publication date
JP3400701B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
CN1303378C (en) Combined circulating device capable of realizing absorption type cycle and organic matter Rankine cycle
JPH11182975A (en) Absorption type cogeneration system utilizing waste
JPS59221409A (en) Thermal energy recovery device in engine
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JPS58220945A (en) Heat energy recovery device in engine
CN212409130U (en) Plate-type heating absorption heat pump unit
CN211695946U (en) Waste heat recycling device
CN201152649Y (en) Cold and hot simultaneously fetching typed lithium bromide absorption cold and hot water supply set
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
JP3664587B2 (en) Air conditioner
JPS6187908A (en) Combined device of power generation, refrigeration, and heat pump cycle
JP3297720B2 (en) Absorption refrigerator
JP2000186549A (en) Engine cooling system
JPS5865917A (en) Power generating device of exhaust heat recovery in diesel engine
CN217873048U (en) Waste heat utilization system of internal combustion engine
CN216924819U (en) Skid-mounted integrated device for combined heat and power supply
CN216281670U (en) Hot water supply system
CN217423663U (en) Smoke type lithium bromide absorption type second-class heat pump unit
CN201311217Y (en) Two-stage heat pipe EGR cooler
JPS62225869A (en) Multiple effect absorption refrigerator
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JPH0821207A (en) Steam producing system by waste heat of steam, gas turbine composite plant
JPH01244257A (en) Double-effect absorption water cooler/heater
JP4540086B2 (en) Exhaust gas driven absorption chiller / heater
JPS62242776A (en) Multiple effect absorption refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees