JPH11182363A - Fossil fuel magnetization and activation device due to magnetic field application - Google Patents

Fossil fuel magnetization and activation device due to magnetic field application

Info

Publication number
JPH11182363A
JPH11182363A JP9369895A JP36989597A JPH11182363A JP H11182363 A JPH11182363 A JP H11182363A JP 9369895 A JP9369895 A JP 9369895A JP 36989597 A JP36989597 A JP 36989597A JP H11182363 A JPH11182363 A JP H11182363A
Authority
JP
Japan
Prior art keywords
magnet
fuel
permanent magnet
pole
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9369895A
Other languages
Japanese (ja)
Inventor
Yasuro Kuratomi
康郎 倉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9369895A priority Critical patent/JPH11182363A/en
Publication of JPH11182363A publication Critical patent/JPH11182363A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an amplifying device of a magnetic line of force which can make a magnetic line of force of a permanent magnet general magnetic flux density or the magnetic line of force and extreme infrared radiated from ceramics act on various fuels effectively to activate fuel, improve fuel consumption efficiency, reduce toxic exhaust gas greatly, assist the reaction, mixture, and aging of substances used in various industries, use fuel or fluid material with high efficiency, and achieve the purification of the environment. SOLUTION: A member 4 is provided between a permanent magnet 1 having a central hole 2 and a permanent magnet, a magnet continuously providing body 5 in which a ferromagnetic field occurrence region is provided is formed by the permanent magnet, and the magnet continuously providing body is stored and arranged in a cylindrical body 7 which has a connection pipe 6 for forming a fuel flow passage 12 at both ends thereof and is made an iron material. The central hole of the magnet is communicated with the fuel flow passage so that supplied fuel is concentrated and flows in a clearance forming the ferromagnetic field occurrence region, and fuel and the other fluid are activated due to a ferromagnetic field and the electromagnetic wave action.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主に化石燃料が磁化活
性と電磁波作用により、燃料自体の燃焼効率の高率化を
行わんとするものである。其の他、水、各種工業用流体
等に利用される。永久磁石と永久磁石間に介置される介
装部材との連設体により磁束密度を増幅せしめ、更に、
磁石連設体から発生する高密度の磁界発生域に供給燃料
の全量を通過せしめ、強力な磁界印加を行わしめ、燃料
の磁化活性の高揚を促進せしめんとするものであり、自
動車、燃焼機器等に於ける低燃費対策、排出ガス逓減対
策等の用途に供給するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly aims at increasing the combustion efficiency of fossil fuel itself by the magnetizing activity and electromagnetic wave action. In addition, it is used for water, various industrial fluids, and the like. The magnetic flux density is amplified by the continuous body of the permanent magnet and the interposition member interposed between the permanent magnets, and further,
It is intended to allow the entire amount of supplied fuel to pass through the high-density magnetic field generation area generated by the magnet assembly, to apply a strong magnetic field, and to promote the enhancement of the magnetizing activity of the fuel. It is supplied for applications such as low fuel consumption measures and measures to reduce exhaust gas.

【0002】[0002]

【従来の技術】従来から、流体活性化装置に関して、各
種の磁石を利用する形式が数多く発表されているが、そ
れらのものは、複数の永久磁石を連設し、これら磁石間
に相互に吸引し合う磁場(吸引磁場)やあるいは反発し
合う(反発磁場)を発生させることによって、磁束密度
の向上を計り、燃料を磁化活性せしめ、諸種の燃焼機関
に供与せんとする努力が行われている。
2. Description of the Related Art Conventionally, many types of fluid activating devices using various magnets have been disclosed, but in these devices, a plurality of permanent magnets are connected in series, and these magnets are mutually attracted. Efforts are being made to increase the magnetic flux density by generating a repulsive magnetic field (attraction magnetic field) or a repulsive magnetic field (repulsive magnetic field), activate the fuel to magnetize it, and supply it to various combustion engines. .

【0003】永久磁石は、要求される磁束密度を決定
し、定められた材料に決定された磁束密度に沿った着磁
を行うことによって製造されている。このような永久磁
石の磁束密度を増幅する手段としては、磁石間に吸引磁
場または、反発磁場が形成されるように複数の永久磁石
を重合密接して軸方向に連設し、全体の磁束密度を向上
せしめる方法が採用されている。このような形式を採用
した場合の磁束密度の向上率は、使用された永久磁石単
体の磁束密度に対比し、非常に低率である。一般に供給
されている廉価な永久磁石を単純に重合密接させて連設
しただけでは、本発明が目的とする燃料等の活性化はほ
ど遠いものである。化石燃料を磁界印加によって活性化
出来る磁力線の磁束密度は10000ガウス(以下ガウ
スをGと表示する)以上を必要とする事は、一般にも知
悉されている事である。永久磁石単体の定格磁束密度が
5000Gを越えると磁石の吸引磁又は、反発磁場によ
って製品までの組立作業が誠に困難を極める。低廉な装
置を得るためには、原材料の価格は勿論の事、組立作業
時間を短縮し、量産体制を確立し、人件費等の軽減、特
に、永久磁石を数多く使用する必要性があり、低廉な磁
石を入手しなければならない。然かも、化石燃料の磁化
活性には、少くとも、10000〜12000Gの磁束
密度を必要とする。然かも、一般的従来形式によって得
られる磁束密度の向上率は、使用した永久磁石単体の磁
束密度の20〜50%程度に過ぎず,市販されている廉
価な永久磁石を単純に連設しただけでは、各種の燃料を
活性化できるだけの磁束密度は得られない。定められた
磁束密度を有する市販の永久磁石を複数個連設して、よ
り大きい磁束密度を得るという発想は、従来形式からも
明らかなるがごとく、極めて一般的なものである。しか
しながら、永久磁石を単に連設するのみでは、磁束密度
の高い向上率がえられないことも事実である。
[0003] Permanent magnets are manufactured by determining the required magnetic flux density and magnetizing a given material according to the determined magnetic flux density. As means for amplifying the magnetic flux density of such a permanent magnet, a plurality of permanent magnets are superposed and closely connected in the axial direction so that an attractive magnetic field or a repulsive magnetic field is formed between the magnets. The method of improving is adopted. The improvement rate of the magnetic flux density when such a form is adopted is very low as compared with the magnetic flux density of the used permanent magnet alone. Simply arranging inexpensive permanent magnets that are generally supplied in close contact with one another is far from activating fuel or the like, which is the object of the present invention. It is generally known that the magnetic flux density of the lines of magnetic force that can activate a fossil fuel by applying a magnetic field requires 10,000 gauss (hereinafter, gauss is referred to as G) or more. If the rated magnetic flux density of the permanent magnet alone exceeds 5,000 G, the assembling of the magnet or the repulsive magnetic field makes it extremely difficult to assemble the product. In order to obtain an inexpensive device, it is necessary to shorten the assembly work time, establish a mass production system, reduce labor costs, etc., and in particular, use a large number of permanent magnets. You have to get a good magnet. Of course, the magnetizing activity of fossil fuels requires a magnetic flux density of at least 10,000-12,000 G. Of course, the improvement rate of the magnetic flux density obtained by the general conventional type is only about 20 to 50% of the magnetic flux density of the used permanent magnet alone, and simply connecting a commercially available inexpensive permanent magnet simply. Does not provide a magnetic flux density sufficient to activate various fuels. The idea of obtaining a larger magnetic flux density by connecting a plurality of commercially available permanent magnets having a predetermined magnetic flux density is very common, as is clear from the conventional type. However, it is also a fact that simply increasing the number of permanent magnets does not provide a high rate of improvement in magnetic flux density.

【0004】因に、図面の図1と図2に依って、永久磁
石の磁束密度の測定試験例を説明する。図1は、永久磁
石(ネオジーム鉄ボロン磁石)、一般では、ネオジム磁
石と称する。定格磁束密度3400G,厚6mm、巾径
17mm、中心孔径7mmで円盤状を呈する。図2は、
前記磁石をS極とN極を対面にし、次に、各磁石をS極
にN極を対面にし磁石6体が連設された磁石連設体が形
成されている。磁石連設体左端部の磁束密度は4910
G、右端部は4950G、中間部は左より810G・7
50G・950Gである。磁石数を20体にし、磁石連
設体を形成しても両端部の磁束密度は7200G〜75
00Gであり、化石燃料を磁化活性するに必要な磁束密
度が得られない。矢印は、磁束密度を示す。以下も同
じ。
An example of a test for measuring the magnetic flux density of a permanent magnet will be described with reference to FIGS. 1 and 2 of the drawings. FIG. 1 is referred to as a permanent magnet (neodymium iron boron magnet), generally a neodymium magnet. It has a disk shape with a rated magnetic flux density of 3400 G, a thickness of 6 mm, a width of 17 mm, and a center hole diameter of 7 mm. FIG.
A magnet connecting body is formed in which the magnets are arranged with the S pole and the N pole facing each other, and then six magnets are connected with each magnet facing the S pole and the N pole. The magnetic flux density at the left end of the magnet assembly is 4910
G, right end is 4950G, middle is 810G ・ 7 from left
50G and 950G. Even if the number of magnets is set to 20 and a magnet connected body is formed, the magnetic flux density at both ends is 7200 G to 75
00G, and the magnetic flux density required for magnetizing the fossil fuel cannot be obtained. Arrows indicate magnetic flux density. The same applies to the following.

【0005】[0005]

【発明が解決しようとする課題】依って、磁束密度の高
い装置を得ようとすると、その基本的な材料である永久
磁石が高価なものにならざるを得ず、また、安価な市販
の永久磁石を利用すると、望ましい磁束密度を得ること
ができない状況に鑑み、本発明に於ては市販品の永久磁
石を利用して、従来得られなかった極めて高い磁束密度
を得るための研究を行った。更に、化石燃料を活性化す
る手段として、近年注目を集めている遠赤外線を有効に
利用し、化石燃料に対して磁力線と遠赤外線という二つ
の放射線を一度に作用させる装置が要求されることも勿
論である。また、高い磁束密度が得られた場合、その結
果として本発明装置に近接する電子機器に対する影響が
憂慮され、特に自動車の燃料活性化に本発明装置を使用
した場合、自動車に設置されている各種電子制御装置に
悪影響を与えないものでなければならない。
Therefore, in order to obtain a device having a high magnetic flux density, the permanent magnet, which is the basic material, must be expensive, and an inexpensive commercially available permanent magnet must be used. In view of the situation where a desired magnetic flux density cannot be obtained when a magnet is used, in the present invention, a study was conducted using a commercially available permanent magnet to obtain an extremely high magnetic flux density which could not be obtained conventionally. . Furthermore, as a means for activating fossil fuels, a device that effectively utilizes far-infrared rays, which have been attracting attention in recent years, and applies two radiations, magnetic field lines and far-infrared rays, to fossil fuels at the same time may be required. Of course. In addition, when a high magnetic flux density is obtained, as a result, there is concern about the effect on electronic devices close to the device of the present invention. In particular, when the device of the present invention is used for fuel activation of a vehicle, various types of devices installed in the vehicle are used. It must not adversely affect the electronic control unit.

【0006】次に、磁石連設体における強磁界発生域内
に送達燃料の全てが10000G〜12000Gの磁化
作用が受けられるか、燃料が完全に活性化され、該燃料
の燃焼効率の向上が計られ得るか、特に、有害排出ガス
の逓減率の向上が得られるかが追及された。本発明は、
これ等の問題点を解決すべくなされたものである。
[0006] Next, in the strong magnetic field generation region in the magnet connected body, all of the delivered fuel is subjected to the magnetization action of 10,000 G to 12000 G, or the fuel is completely activated, and the combustion efficiency of the fuel is improved. It was sought to determine whether it would be possible, or in particular to increase the rate of harmful emissions. The present invention
It has been made to solve these problems.

【0007】[0007]

【課題を解決するための手段】課題解決の重点は、磁力
線の最大限の増幅率の向上にあると考えた。 永久磁石
の要部に、前記以上の強磁界発生域を形成し、該発生域
に化石燃料の全量が流動を可能にし、流動燃料の磁化活
性を行わんとする。より高度の磁束密度を得るために、
永久磁石と永久磁石間に介装部材を介置した磁石連設体
を形成し、この連設体自体から要求する増幅された磁束
密度が得られると共に、永久磁石と永久磁石間に介装部
材が介置された強磁界発生域を複数個所に形成し、該発
生域に化石燃料の全量が通過するように燃料流動路を形
成する事により、更には、燃料流動路を通過した化石燃
料が遠赤外線を放射するセラミックス層を通過せしめる
事により、磁力線と遠赤外線を併せて利用する事によっ
て、本発明が有効適切に実施できるものと判断した。
Means for solving the problem was considered to be focused on improving the maximum amplification factor of the magnetic flux lines. A strong magnetic field generation region as described above is formed in the main part of the permanent magnet, and the entire amount of fossil fuel is allowed to flow in the generation region, and the magnetizing activity of the flowing fuel is performed. To obtain higher magnetic flux density,
A magnet connected body in which an interposed member is interposed between the permanent magnets is formed, an amplified magnetic flux density required from the connected body itself is obtained, and the interposed member is interposed between the permanent magnet and the permanent magnet. Is formed at a plurality of locations, and a fuel flow path is formed so that the entire amount of fossil fuel passes through the generation area.Fossil fuel that has passed through the fuel flow path is further It has been determined that the present invention can be effectively and appropriately implemented by using a magnetic field line and far infrared rays together by passing through a ceramic layer that emits far infrared rays.

【0008】因に、図面の図3と図4に依って、永久磁
石の磁束密度の測定試験例を説明する。 図3は、磁石
連設体で、使用磁石は、前記磁石と同等である。前記磁
石をS極とN極を対面にし1体とした磁石重合体、該磁
石重合体と他の同等の磁石重合体のS極とN極を対面に
し、中間位置に一部分が切除された鉄材からなるリング
状の介装部材を介置し、磁石重合体2体からなる磁石連
設体が形成されている。磁石連設体左端部の磁束密度は
5700G、右端部は5590G、介装部材が介在する
中間の空隙部は9760Gが測定された。図4は、前記
磁石重合体4体からなる磁石連設体が形成されている。
磁石連設体左端部の磁束密度は5980G、右端部は5
970G、介装部材が介在する中間の空隙部は、左より
11720G・11910G・11290Gが測定され
た。この強磁界発生域の磁束密度の平均値と永久磁石単
体の磁束密度と対比すれば346%の磁束密度の増幅で
ある。 前記磁石連設体の構成では、磁石体2体を以て
磁石重合体を1体とした。磁石単体での磁石連設体を形
成してもよいが、磁束密度の向上率が期待するほどに向
上しない。磁石2体の磁石重合体又は磁石3体の磁石重
合体によって磁石連設体を形成する事が望ましい。
An example of a measurement test of the magnetic flux density of the permanent magnet will be described with reference to FIGS. 3 and 4 of the drawings. FIG. 3 shows a magnet connected body in which the magnets used are the same as the above-mentioned magnets. A magnet polymer in which the magnet is an S-pole and an N-pole facing each other, and an iron material in which the S-pole and the N-pole of the magnet polymer and another equivalent magnet polymer face each other and a part of which is cut off at an intermediate position A ring-shaped interposed member made of is interposed to form a magnet continuous body composed of two magnet polymers. The magnetic flux density at the left end of the continuous magnet assembly was 5700 G, the right end was 5590 G, and the intermediate gap where the interposition member was interposed was 9760 G. FIG. 4 shows a magnet connected body composed of the four magnet polymers.
The magnetic flux density at the left end of the magnet assembly is 5980 G, and the right end is 5
970G, 11720G, 11910G and 11290G were measured from the left in the middle gap portion where the interposition member was interposed. Compared to the average value of the magnetic flux density in the strong magnetic field generation region and the magnetic flux density of the permanent magnet alone, the amplification of the magnetic flux density is 346%. In the configuration of the magnet connected body, two magnet bodies are used as one magnet polymer. The magnet connected body may be formed by a single magnet, but the improvement rate of the magnetic flux density is not improved as expected. It is desirable to form a magnet connecting body by a magnet polymer of two magnets or a magnet polymer of three magnets.

【0009】これらの状況に鑑み本願発明者は、限られ
た数の永久磁石を並べて一個の装置を形成するに当た
り、より多くの磁力線の集束箇所が発生する並べ方を追
及することにより、より高い磁束密度の向上を獲得する
研究を行った。その結果、使用すべき永久磁石は、現在
のところ単体で最も高い磁束密度が得られるネオジム磁
石がもっとも望ましいが、今後、各種新素材の永久磁石
が開発された場合には、それらの新磁石が利用できるこ
とは勿論であり、また、従来のサマリューム・コバルト
磁石、フェライト磁石を使用した場合にも、それぞれの
単体の磁束密度に応じて、ネオジム磁石を使用した場合
と同様の磁束密度の向上率が確認できる。従来の、磁極
を有する盤面(磁極面)同志を対面させ、それら磁極面
の間に磁性体あるいは非磁性体の介装部材を設置して、
両者の間に吸引磁場を発生させる形式が、より高い磁束
密度の向上を獲得するためには、より多くの永久磁石の
連設を必要とすることから、永久磁石の並べ方に限界が
あると考え、この手法とは異なる新規の並べ方も追求し
た。前述の介装部材は、磁極面間により大きな磁極勾配
を発生させるための手段であると考えるなら、この介装
部材の設置は磁束密度の増幅に極めて有効であるが、こ
の手段以外に大なる磁極勾配を獲得する方法が考えられ
るなら、それらを併用する事によって、より大きな磁束
密度の増幅率が得られることは確実である。本願発明者
は、従来から使用されている中心孔を有する円盤型の永
久磁石を使用し、永久磁石の磁石盤面同志のS極とN極
によって対面せしめる手法と永久磁石の磁石外側周面同
志のS極とN極によって接極せしめる手法によって、磁
石連設体を形成する事により、磁石密度の増幅が出来る
事を確認した。
In view of these circumstances, the inventor of the present application has pursued an arrangement in which a limited number of permanent magnets are arranged to form a single device by generating more converging points of magnetic field lines, thereby achieving a higher magnetic flux. Research was conducted to obtain an increase in density. As a result, the permanent magnet to be used is currently most preferably a neodymium magnet that can obtain the highest magnetic flux density alone, but if permanent magnets of various new materials are developed in the future, those new magnets will be Of course, when using conventional samarium-cobalt magnets and ferrite magnets, the improvement rate of magnetic flux density is the same as that when using neodymium magnets, depending on the magnetic flux density of each single substance. You can check. Conventional board surfaces having magnetic poles (magnetic pole surfaces) face each other, and a magnetic or non-magnetic intervening member is installed between the magnetic pole surfaces.
The method of generating an attractive magnetic field between the two requires more permanent magnets to be connected in order to obtain a higher magnetic flux density improvement. We also pursued a new arrangement that is different from this method. If the above-mentioned interposed member is considered to be a means for generating a larger magnetic pole gradient between the magnetic pole faces, the installation of the interposed member is extremely effective for amplifying the magnetic flux density. If a method of obtaining the magnetic pole gradient is conceivable, it is certain that by using them together, a larger magnetic flux density amplification factor can be obtained. The inventor of the present application uses a disk-shaped permanent magnet having a center hole which has been conventionally used, a method of facing the S pole and the N pole of the permanent magnet surface of the permanent magnet, and a method of facing the outer peripheral surface of the permanent magnet. It was confirmed that the magnet density can be amplified by forming the magnet continuous body by the technique of making the S pole and the N pole contact each other.

【0010】即ち、永久磁石盤面のS極が隣接する永久
磁石盤面のN極と対面し、それに続く各永久磁石盤面の
S極がN極に対面する磁石による連設体の軸線にそって
直列に連設した磁石連設体であって、該磁石連設体の各
要部が特定の強磁界発生域を形成し、更には、永久磁石
外側周面のS極が隣接する永久磁石外側周面のN極に接
極し、それに続く各永久磁石外側周面のS極が隣接する
永久磁石外側周面のN極に接極する磁石による連設体の
軸線にそって直列に連設した磁石連設体であり、該磁石
連設体の各要部が特定の強磁界発生域を形成し、前記そ
れぞれ強磁界発生域より発生した高密度に増幅された磁
力線によって化石燃料が高率に磁化活性する事を確認し
た。 然して、磁化活性率を高めるため、筒体内の燃料
流動路に流動する流動燃料量が前記強磁界発生域を通過
するようにし、更に、セラミックス層を通過せしめた事
により本発明が完成された。
That is, the S pole of the permanent magnet board faces the N pole of the adjacent permanent magnet board, and the subsequent S pole of each permanent magnet board faces in series along the axis of the continuous body of magnets facing the N pole. , Each main part of the magnet connected body forms a specific strong magnetic field generation region, and further, the S pole of the permanent magnet outer circumferential surface is adjacent to the permanent magnet outer circumferential surface. The S pole of the outer peripheral surface of each permanent magnet following the N pole of the surface is connected in series along the axis of a continuous body of magnets that is in contact with the N pole of the outer peripheral surface of the adjacent permanent magnet. A magnet connected body, each main part of the magnet connected body forms a specific strong magnetic field generation area, and the fossil fuel is highly efficient by the high-density lines of magnetic force generated from the respective strong magnetic field generation areas. It was confirmed that magnetization was activated. However, the present invention has been completed by making the amount of flowing fuel flowing into the fuel flow path in the cylinder pass through the strong magnetic field generation region and further pass through the ceramics layer in order to increase the magnetization activation rate.

【0011】本発明の実施上の要点は、永久磁石の磁石
連設体から発生する磁束密度の増幅が第1義である。次
に、介装部材は、なるべく永久磁石間の距離を乖離させ
ぬように厚さが制限される。素材は、非磁性材又は、磁
性材の何れでもよいが、非磁性材は磁性材より磁束密度
の増幅率が5〜10%程度低下するので、成るべく磁性
材が用いられる鉄系材が最も望ましい。形態は、磁束密
度増幅率向上のため、出来得る限り磁極勾配aを多数に
形成する事が望まれる。鉄材によるリング状、条線、細
片、これ等による十字状、放射状の異形の介装部材が適
応する。更に鉄粉、鉄粒、スチルウール等の成形体、其
の他、磁極勾配を形成する金属系材を用いる事が肝要で
ある。前記介装部材は、磁石間の空隙部に介置される。
三元触媒の一助としてセラミック層を形成し、電磁波を
放射する材料を筒体内の適所に配置する。組立て工程上
磁石連設体と他の磁性材との磁着による障害を取り除く
ためには、永久磁石連設体の両端に対に等しい鉄材を配
置するか、鉄板等を対称に磁着せしめる事に依って筒体
内に磁石連設体を容易に挿装する事が出来る。永久磁石
連設体の2体以上を横側に連設配置する場合等には、磁
石連設体のS極と他の磁石連設体のN極により横側連設
を賢固なものとし、接極部の中心線には新たに、強磁界
発生域が形成される。化石燃料が供給される燃料流動路
は、前記の如く、その全てが強磁界発生域を通過するよ
うに形成されなければならない。また、本発明装置に近
接して使用されるであろう電子機器に対する悪影響を除
去するために種々なる実験を行ったが、筒体が鉄材から
なる場合、組立永久磁石の単体の磁束密度が定格340
0Gから5000Gの磁石連設体でも、筒体の厚味が2
mm以上であれば、筒体の外側の磁束密度cは1G以内
で、5mm程度の距離から側定すれば磁束密度cは0で
あり、且つ、筒体内側の磁束密度bは、磁化されて50
00G〜6000G程度の磁束密度bである事から、非
鉄金属製又は合成樹脂製の如く筒体外に高磁束密度が発
生する事が無い事から、本発明装置は、鉄系材の筒体が
採用されなければならない。
The first point of the embodiment of the present invention is to amplify the magnetic flux density generated from the permanent magnet connected to the permanent magnet. Next, the thickness of the interposition member is limited so that the distance between the permanent magnets is kept as small as possible. The material may be either a non-magnetic material or a magnetic material. However, since the amplification rate of the magnetic flux density of the non-magnetic material is lower than that of the magnetic material by about 5 to 10%, the iron-based material using the magnetic material as much as possible is most preferable. desirable. In order to improve the magnetic flux density amplification factor, it is desirable to form as many magnetic pole gradients a as possible. Ring-shaped, striations, and strips made of iron material, and cross-shaped and radial-shaped interposed members made of these are suitable. Furthermore, it is important to use a molded body such as iron powder, iron particles, and still wool, and a metal material that forms a magnetic pole gradient. The interposition member is interposed in a gap between the magnets.
A ceramic layer is formed as a part of the three-way catalyst, and a material that emits electromagnetic waves is placed at an appropriate position in the cylinder. In order to remove the obstacles due to the magnetic adhesion between the magnet assembly and other magnetic materials during the assembly process, place an equal pair of iron materials at both ends of the permanent magnet assembly or symmetrically magnetize an iron plate etc. Accordingly, the magnet connected body can be easily inserted into the cylinder. In the case where two or more permanent magnet connected bodies are arranged side by side, the lateral connection should be made wise by the S pole of the magnet connected body and the N pole of the other magnet connected body. A strong magnetic field generation region is newly formed at the center line of the contact pole portion. As described above, the fuel flow path to which the fossil fuel is supplied must be formed such that all of the fuel flow paths pass through the strong magnetic field generation region. In addition, various experiments were conducted in order to eliminate adverse effects on electronic devices that would be used in close proximity to the device of the present invention. 340
The thickness of the cylinder is 2 even with the magnet connected body of 0G to 5000G.
mm or more, the magnetic flux density c on the outside of the cylinder is within 1 G, and the magnetic flux density c is 0 if determined from a distance of about 5 mm, and the magnetic flux density b on the inside of the cylinder is magnetized. 50
Since the magnetic flux density b is about 00G to 6000G, no high magnetic flux density is generated outside the cylindrical body such as made of non-ferrous metal or synthetic resin. It must be.

【0012】[0012]

【作用】本発明装置に各種の燃料を供給し、燃料の組成
分子を励起振動せしめる遠赤外線エネルギーと磁気誘導
エネルギーを与え、燃料の組成分子の相互結合を分断
し、超微細粒化し且つ、酸素の供給量が増大され、反応
性に富んだ磁化活性された燃料を得て、低燃費と排出ガ
ス中の有害有機物の逓減を行う事が出来る。
Various fuels are supplied to the device of the present invention, and far-infrared energy and magnetic induction energy for exciting and oscillating the constituent molecules of the fuel are given to break the mutual bonding of the constituent molecules of the fuel, to form ultrafine particles, and to obtain oxygen. As a result, it is possible to obtain a highly reactive and magnetized activated fuel, thereby reducing fuel consumption and gradually reducing harmful organic substances in exhaust gas.

【0013】次に、本発明の第1実施例を図面に基き説
明する。図5は、本発明装置の部分破砕切断図面、図6
は、図5のA−A’線切断面図、図6から図13は、各
種部材の説明図である。磁石中心孔は鎖線で示す。図5
と図6に示す実施例において、永久磁石1は、定格磁束
密度3400Gの磁石、厚6mm、径17mm、磁石中
心孔2の径は7mmで円盤型磁石である。該磁石1の磁
石盤面と同体の磁石の磁石盤面がS極とN極によって1
体となり磁石重合体3が形成され、該磁石重合体3と同
体の磁石重合体がS極とN極によって接極する中間に介
装部材4を介置し、以下同様にして磁石重合体3の12
体が直列に連設された磁石連設体5が形成される。図5
中の上下に燃料供給管の中間に連結するための接続管6
と6’を備えた鉄系材からなる円筒状の筒体7内に前記
磁石連設体5が振動等による各磁石重合体3の連設振れ
を防止するためと、磁石連設体5の磁石外周面と筒体7
の内側間に11個所からなる強磁界発生域10から磁化
活性された燃料が放流される放流燃料流動路8を形成す
るためと磁石連設体5の各磁石外周面に磁極勾配aを多
数に形成するため、鉄材でなる厚1mm、巾1.5mm
の条線9を介在して前記筒体7に前記磁石連設体5が収
容配置される。この条線9は、4体が等分に配設されて
いる。図7、はその平面図、図8は、その側面図、図9
は、前記介装部材4の形態を示す。厚0.7mm、巾
0.7mmの十字状の介装部材である。 其の他、これ
に類する異形体が使用されてもよい。素材は、鉄材から
なり、磁石と磁石間に磁束密度が増幅する磁極勾配aが
形成される。この磁束勾配aは、磁石体部に接し金属材
を以って多数に形成する事により、磁束密度が増幅する
ものである。磁石連設体5の下端部の磁石中心孔孔口1
3と筒体7の蓋体14に螺着された接続管孔口15間
に、磁石中心孔2の孔径より大き目の中心孔を穿設した
燃料流動案内体11を介在せしめ、前記鉄材からなる蓋
体14の内側面と磁石下端の磁力により磁着せしめる。
図10は、燃料流動案内体11の平面図、図11はその
切断面図である。図10の平面図の円形鉄板17の中心
部に中空突筒18が立設されている。この中空突筒18
を磁石連設体5の下端部磁石中心孔孔口13に嵌着す
る。然して、磁石連設体5の上端部の磁石中心孔を閉塞
するために孔口閉塞体18により磁石中心孔が閉塞され
る。図12は、孔口閉塞体18の平面図、図13は、そ
の切断面図である。図12は、円形状の鉄板の上下に燃
料流動口19を有し、図13に示すような孔口閉塞突筒
20を設け、この突筒を磁石中心孔2の孔口に嵌着し孔
口を閉塞する。斯ようになされた事によって、燃料が下
部の接続管6’から供給された場合、この燃料は、油圧
によって燃料流動案内体11を経由し急流となって磁石
中心孔2から形成された燃料流動路12内に進入する。
進入した燃料は一旦、孔口閉塞体18にはばまれ、燃料
の急流が逆流状態を呈しつつ強磁界発生域10の空隙に
流動し、放流状態で通過し、磁石連設体5の外側周面と
筒体7の内側周面間に形成されている放出燃料流動路8
に放流される。流動燃料は、前記強磁界発生域10内の
高密度磁界(10000G〜12000G)によって完
璧に磁化活性される事となる。そして、放出燃料流動路
8の燃料は、磁石連設体5の磁石外側周面を流動し、孔
口閉塞体18の燃料流動口19を通過し、上部のセラミ
ックス層21内を流動し、上部の接続管6を経て燃焼機
関部に供給される。前記燃料流動案内体11或は、孔口
閉塞体18を鉄材等の磁性部材を採用する事によって、
磁石連設体の両端部から発生する磁力線を集束し、鉄材
である筒体7に磁石連設体5の挿着が容易となる。更
に、前記条線9もこのような役目を果す。これ等の部材
に替えて、蓋体14の内側面と磁石連設体5の下部の磁
石盤面を磁着せしめ、接続管孔口15と磁石中心孔孔口
を対面せしめて、燃料の流路を形成してもよい。磁石連
設体5の上部の磁石中心孔2の孔口閉塞は、適応部材に
よって適宜に閉塞してもよい。
Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a partially crushed cut drawing of the apparatus of the present invention, and FIG.
Is a sectional view taken along line AA ′ of FIG. 5, and FIGS. 6 to 13 are explanatory views of various members. The magnet center hole is indicated by a chain line. FIG.
6 and the embodiment shown in FIG. 6, the permanent magnet 1 is a magnet having a rated magnetic flux density of 3400 G, a thickness of 6 mm, a diameter of 17 mm, and a diameter of the magnet center hole 2 of 7 mm. The magnetic disk surface of the same magnet as the magnetic disk surface of the magnet 1 is 1 by the S pole and the N pole.
A magnet polymer 3 is formed, and an interposition member 4 is interposed between the magnet polymer 3 and the magnet polymer of the same body as the magnet polymer 3 is tangent by the S-pole and the N-pole. Of 12
The magnet connected body 5 in which the bodies are connected in series is formed. FIG.
Connection pipe 6 for connecting to the middle of the fuel supply pipe up and down inside
The magnet connecting body 5 is provided in the cylindrical body 7 made of an iron-based material provided with the magnet connecting members 5 and 6 ′ to prevent continuous vibration of each magnet polymer 3 due to vibration or the like. Magnet outer peripheral surface and cylinder 7
In order to form a discharge fuel flow path 8 through which the magnetized fuel is discharged from the 11 strong magnetic field generation areas 10 between the insides of the magnets, a large number of magnetic pole gradients a are formed on the outer peripheral surface of each magnet of the magnet connecting body 5. 1mm thick and 1.5mm wide made of iron to form
The magnet connecting body 5 is accommodated and arranged in the cylindrical body 7 with the strip line 9 interposed therebetween. As for this striation line 9, four bodies are arranged equally. 7 is a plan view thereof, FIG. 8 is a side view thereof, FIG.
Shows the form of the interposition member 4. It is a cross-shaped interposition member having a thickness of 0.7 mm and a width of 0.7 mm. In addition, a variant similar to this may be used. The material is made of an iron material, and a magnetic pole gradient a is formed between the magnets so that the magnetic flux density is amplified. This magnetic flux gradient a is a magnetic flux density that is amplified by forming a large number of metal materials in contact with the magnet body. The magnet center hole hole 1 at the lower end of the magnet assembly 5
A fuel flow guide 11 having a center hole larger than the diameter of the magnet center hole 2 is interposed between the connection pipe hole 15 screwed to the cover 3 of the cylindrical body 7 and the cover 7 and is made of the iron material. The inner surface of the lid 14 and the lower end of the magnet are magnetically attached.
FIG. 10 is a plan view of the fuel flow guide 11, and FIG. A hollow projecting cylinder 18 is provided upright at the center of the circular iron plate 17 in the plan view of FIG. This hollow cylinder 18
Is fitted to the magnet center hole hole 13 at the lower end of the magnet connecting body 5. However, in order to close the magnet center hole at the upper end of the magnet connecting body 5, the hole center closing body 18 closes the magnet center hole. FIG. 12 is a plan view of the hole closing body 18, and FIG. 12 has a fuel flow port 19 on the upper and lower sides of a circular iron plate, and has a hole-blocking protrusion 20 as shown in FIG. 13, and this protrusion is fitted into the hole of the magnet center hole 2 to form a hole. Close mouth. When the fuel is supplied from the lower connecting pipe 6 ′ by the above-described operation, the fuel flows rapidly through the fuel flow guide 11 by the hydraulic pressure, and the fuel flows through the fuel center formed in the magnet center hole 2. Enter into Road 12.
The fuel that has entered once is once interrupted by the hole closing body 18, and the rapid flow of the fuel flows into the gap of the strong magnetic field generation region 10 while exhibiting a reverse flow state, passes through in a discharge state, and is formed around the outer periphery of the magnet connecting body 5. Fuel flow path 8 formed between the surface and the inner peripheral surface of the cylinder 7
To be released. The flowing fuel is perfectly magnetized by the high-density magnetic field (10000 G to 12000 G) in the strong magnetic field generation region 10. Then, the fuel in the discharged fuel flow path 8 flows on the outer peripheral surface of the magnet of the magnet connecting body 5, passes through the fuel flow port 19 of the hole closing body 18, flows in the upper ceramic layer 21, and Is supplied to the combustion engine section through the connecting pipe 6. By adopting a magnetic member such as an iron material for the fuel flow guide 11 or the hole closing member 18,
The lines of magnetic force generated from both ends of the magnet assembly are collected, and the magnet assembly 5 can be easily inserted into the cylindrical body 7 made of iron. Further, the striations 9 also fulfill such a role. Instead of these members, the inner surface of the lid 14 and the lower magnet plate surface of the magnet connecting body 5 are magnetically attached, and the connection pipe hole 15 and the magnet center hole are opposed to each other, so that the fuel flow path is formed. May be formed. The opening of the magnet center hole 2 at the upper part of the magnet connecting body 5 may be appropriately closed by an adaptive member.

【0014】図5において、磁束密度測定機により測定
された11個所の強磁界発生域10の各空隙部の磁束密
度の測定数値は、次の通りである。その数値は、10a
−12300G、10b−12250G、10c−12
230G、10d−12200G、10e−12400
G、10f−12300G、10g−12200G、1
0h−12350G、10i−12300G、10j−
12200G、10k−12250、磁石連設体5の上
端部は、11450G、下端部は、11730Gであ
る。更に、筒体7の内側壁面bの磁束密度は5210
G、外側壁面cは1G未満で、筒体7より5m間隔をお
いての磁束密度は感知しない結果を得る事が出来た。こ
の試験例における平均磁束密度は12270Gである。
矢印d の磁束密度は8600G〜9500Gである。
これにより、永久磁石単体の磁束密度に比較し、実に、
360%強の磁束密度の増幅結果を得る事が出来た。
In FIG. 5, the measured values of the magnetic flux densities of the respective voids in the eleven strong magnetic field generating regions 10 measured by the magnetic flux density measuring device are as follows. The numerical value is 10a
-12300G, 10b-12 250G, 10c-12
230G, 10d-12200G, 10e-12400
G, 10f-12300G, 10g-12200G, 1
0h-12350G, 10i-12300G, 10j-
12200G, 10k-12250, the upper end of the magnet connected body 5 is 11450G, and the lower end is 11730G. Further, the magnetic flux density of the inner wall surface b of the cylinder 7 is 5210
G, the outer wall surface c was less than 1 G, and the result that the magnetic flux density at a distance of 5 m from the cylinder 7 was not detected was obtained. The average magnetic flux density in this test example is 12270G.
The magnetic flux density of the arrow d is 8600G to 9500G.
As a result, compared to the magnetic flux density of the permanent magnet alone,
A result of amplification of a magnetic flux density of slightly more than 360% was obtained.

【0015】更に、介装部材を磁性材で形成する事によ
って磁束密度が5〜10%増幅するとともに、筒体を鉄
材にする事によって、筒体内側に流動する化石燃料が筒
体内に発生した高密度の磁力線によって磁化活性が促進
される事も確認された。然も、筒体外側壁の磁束密度c
が1G未満である事から、自動車、燃焼機器等に装備さ
れている電子機器にもまったく磁力線の影響が発生しえ
ない事も確認された。
Further, the magnetic flux density is increased by 5 to 10% by forming the interposition member from a magnetic material, and the fossil fuel flowing inside the cylinder is generated in the cylinder by forming the cylinder from iron. It was also confirmed that the magnetization activity was promoted by the high-density magnetic field lines. Of course, the magnetic flux density c on the outer wall of the cylinder
Is less than 1 G, it was also confirmed that no influence of the magnetic field lines could be generated on electronic devices mounted on automobiles, combustion devices, and the like.

【0016】本実施例では、定格3400Gのネオジム
磁石を採用し、強磁界発生域においては10000G〜
12000Gの磁石密度であるが、該要部の磁束密度の
向上の必要がある場合は、磁石単体の磁束密度が450
0G或は5000Gの磁石を使用すればよい。磁石連設
体の要部から発生する磁束密度も基本磁石の磁束密度に
比例し磁束密度が増幅する。
In the present embodiment, a neodymium magnet having a rating of 3400 G is adopted,
Although the magnet density is 12000G, if the magnetic flux density of the main part needs to be improved, the magnetic flux density of
A magnet of 0 G or 5000 G may be used. The magnetic flux density generated from the main part of the magnet assembly is also proportional to the magnetic flux density of the basic magnet, and the magnetic flux density is amplified.

【0017】次に、本発明の第2実施例を図面に基き説
明する。図14は、本発明装置の部分破砕切断面図、図
15は、図14のA−A’線切断面図、図16から図1
9は、各種部材の説明図である。図示の如く、前記第1
実施例においては、筒体7が円筒形状であるが、本実施
例では方形状を呈する。筒体7に収容されている中心孔
2を有する磁石1の単体2体からなる磁石重合体3の数
を数多く用いる場合、機体が過長となり、本装置を装着
するに不便を来たし、外観上も好ましくない。更には、
燃焼機関に対し、燃料供給が量的に大きくなれば、それ
に対応し、燃料の磁化活性力を増大せしめなければなら
ないから、本第2実施例が有利である。 依って、本実
施例においては、磁石連設体と同体の磁石連設体との2
体を以って、磁石連設体5aの右側に発生するS極と磁
石連設体5bの左側に発生するN極を接極せしめ、磁石
連設体5aの右横側に磁石連設体5bを併列状に横設し
た複合磁石連設体5cを形成し、方形状の筒体7に収容
配置する。磁石連設体5aと5bは、都合磁石重合体3
の16体から形成されている。然かも、磁石連設体5a
と5bには、14個所に及ぶ強磁界発生域10が形成さ
れている。勿論、この磁石連設体5aと5bは,共に前
記第1実施例と同等の構成によるものであるが、複合磁
石連設体5cは、磁石連設体5aと5bの2体でなり、
磁石中心孔からなる燃料流動路12と12’は2路に形
成されている事から、下部接続管6’から供給される燃
料を2分し、この2路の燃料流動路12と12’に供給
しなければならない。よって、前記接続管6’の燃料注
入孔口22に近接し、燃料分流板23を配置すれば、燃
料注入孔口22より供給された燃材が燃料流動路12と
12’に分流する。これによって、前記第1実施例に記
載した通り、燃料が磁化活性し、接続管6’を介し、活
性燃料が燃焼機関部に供給される。図16は、燃料分流
板23の平面図、図17は其の正面図で、磁石1の中心
孔2に対面する二つの透孔24と24’が穿設された駆
形鉄板であり、両側に翼片25と25’を有し、2体の
磁石連設体5aと5bの下部端面に磁着され、燃料分流
槽26が形成されている。燃料分流槽26に流入した燃
料は、透孔24と24’に分流されて磁石の中心孔から
なる燃料流動路12と12’に流入する。図18は、鉄
板27の側面図、厚1mm、図19は、その平面図、巾
は任意、長さは磁石連設体5aと5bの長さと同等と
し、この鉄板27と27’が前記磁石連設体5aと5b
に磁着配置される。このように配置された事で筒体7に
複合磁石連設体5cの挿装が容易となるり、且つ、この
鉄板は磁性体となり6000G前後の磁束密度が測定さ
れた。 5bの接極部分は、磁石間の接点が多数の磁極勾配が形
成されている事から、磁束密度が増幅され、測定の結果
9500G〜11600Gである事が確認された。この
接極部分も磁束密度が強磁界発生域を形成している事が
解明され、化石燃 、磁石連設体5aの全長部分の磁束密度が8600G〜
9200Gである事が測定された。即ち、磁石連設体体
部外周の磁力線と磁石と磁石との接極線においても、強
磁界発生域としての磁力線が共に発生している。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 14 is a partially cutaway sectional view of the apparatus of the present invention, FIG. 15 is a sectional view taken along line AA ′ of FIG. 14, and FIGS.
9 is an explanatory diagram of various members. As shown in FIG.
In the embodiment, the cylinder 7 has a cylindrical shape, but in this embodiment, it has a square shape. When a large number of magnet polymers 3 each composed of two magnets 1 having the center hole 2 housed in the cylindrical body 7 are used, the body becomes excessively long, and it becomes inconvenient to mount the apparatus, and the appearance is reduced. Is also not preferred. Furthermore,
The second embodiment is advantageous because the greater the fuel supply to the combustion engine, the more the magnetism activating force of the fuel must be correspondingly increased. Therefore, in the present embodiment, the two magnets of the same magnet and the same magnet
The S pole generated on the right side of the magnet connected body 5a and the N pole generated on the left side of the magnet connected body 5b are brought into contact with each other, and the magnet connected body is located on the right side of the magnet connected body 5a. A composite magnet connecting body 5c in which the 5b are arranged side by side in parallel is formed, and is accommodated and arranged in the rectangular cylindrical body 7. The magnet connecting bodies 5a and 5b are made of a convenient magnet polymer 3
Are formed from 16 bodies. Naturally, the magnet connected body 5a
And 5b, a strong magnetic field generation area 10 extending to 14 places is formed. Needless to say, the magnet connecting members 5a and 5b have the same configuration as that of the first embodiment, but the composite magnet connecting member 5c is composed of two magnet connecting members 5a and 5b.
Since the fuel flow paths 12 and 12 ′ each having a magnet center hole are formed in two paths, the fuel supplied from the lower connection pipe 6 ′ is divided into two, and the fuel flow paths 12 and 12 ′ are formed in the two paths. Must be supplied. Therefore, if the fuel distribution plate 23 is disposed near the fuel inlet 22 of the connection pipe 6 ', the fuel supplied from the fuel inlet 22 is diverted to the fuel flow paths 12 and 12'. As a result, as described in the first embodiment, the fuel is magnetized and the active fuel is supplied to the combustion engine via the connection pipe 6 '. FIG. 16 is a plan view of a fuel distribution plate 23, and FIG. 17 is a front view of the fuel distribution plate 23, which is a driven iron plate having two through holes 24 and 24 'facing the center hole 2 of the magnet 1. The blades 25 and 25 'are magnetically attached to the lower end surfaces of the two magnet connected bodies 5a and 5b to form a fuel distribution tank 26. The fuel flowing into the fuel distribution tank 26 is divided into the through holes 24 and 24 'and flows into the fuel flow paths 12 and 12' formed by the center holes of the magnets. FIG. 18 is a side view of the iron plate 27, having a thickness of 1 mm, FIG. 19 is a plan view thereof, the width is arbitrary, and the length is the same as the length of the magnet connected bodies 5a and 5b. Concatenated bodies 5a and 5b
Magnetically arranged. With this arrangement, the composite magnet connected body 5c can be easily inserted into the cylindrical body 7, and the iron plate becomes a magnetic body, and the magnetic flux density around 6000G was measured. Since the contact point between the magnets has a large number of magnetic pole gradients in the contact portion of 5b, the magnetic flux density was amplified, and it was confirmed that the magnetic flux density was 9500G to 11600G as a result of measurement. It has been clarified that the magnetic flux density also forms a strong magnetic field generation area in this abutting part, , The magnetic flux density of the entire length of the magnet connected body 5a is 8600G or more.
It was measured to be 9200G. That is, the magnetic field lines as the strong magnetic field generating region are also generated in the magnetic field lines on the outer periphery of the magnet connected body and the tangent lines between the magnets.

【0018】第3実旅例の説明に当り、本願実施例にお
ける磁束密度の測定試験例を説明する。使用された永久
磁石は、第1実施例に記載した永久磁石と同等である。
図20の平面図と図21の側面図による試験例、磁石1
の外側周面の磁極がS−N−S−N−Sとなるように
し、接極された5体からなる磁石連設体5が形成されて
いる。このように配列した磁石連設体5のそれぞれの接
極部の矢印→の磁束密度は、図20の左側から8290
G、7720G、8300G、7370G、左端部が5
40G、右端部が610Gであることが測定された。図
21の磁石盤面の磁束密度は、左側から3870G、3
910G、3410G、4260G、3280G、左端
部が540G、右端部が610Gであることが測定され
た。図22は、磁石と磁石をN−Sの磁極によって磁石
重合体3の1体とし、前記配列と同様に磁石重合体3の
5体を以って磁石連設体5が形成されている。このよう
に配列した磁石連設体のそれぞれの接極部の矢印→の磁
束密度は、図22の左側から8500G、9080G、
8870G,8960G、左端部が1230G、右端部
が1330Gであることが測定された。図23は、磁石
1と磁石1’の磁石盤面間に図24の切断面図に示す介
装部材4を介置し、前記同様に磁石単体10体を以って
磁石連設体5が形成されている。このように配列した磁
石連設体5のそれぞれの接極部の矢印→の磁束密度は、
図23の左端から8980G、10020G、8800
Gが測定された。図24は、図23のA−A’線切断面
図である。図25は、S極とN極によって磁石1と1’
が1体の磁石重合体3を形成し、磁石重合体3の8体あ
てを以って磁石連設体31aと32bが形成され、磁石
連設体31aの側盤面のS極と磁石連設体32bの側盤
面のN極によって磁石連設体31aと32bの中間位置
に介装部材4が介置された複合磁石連設体33cが形成
されている。磁石重合体3の総体は、16体からなって
いる。介装部材4は条線の3体が介置されている。図2
6は、図25のA−A’線の切断面図である。このよう
に配列された複合磁石連設体33cの介装部材4が介置
された空隙の磁束密度は、図25の左端から13090
G、8130G、12850G、8130G、1394
0G、9950G、10450G、9750Gが測定さ
れた。平均磁束密度は、10700Gである。永久磁石
単体の磁束密度に比較し、315%の磁束密度の増幅で
ある。
In describing the third actual travel example, an example of a measurement test of magnetic flux density in the embodiment of the present invention will be described. The permanent magnet used is the same as the permanent magnet described in the first embodiment.
Test example by plan view of FIG. 20 and side view of FIG. 21, magnet 1
The magnetic poles on the outer peripheral surface are SNSNS, and a magnet connecting body 5 composed of five poled bodies is formed. The magnetic flux density indicated by an arrow at each of the contact pole portions of the magnet connected body 5 arranged in this manner is 8290 from the left side in FIG.
G, 7720G, 8300G, 7370G, left end is 5
It was measured to be 40 G and the right end at 610 G. The magnetic flux density of the magnet board surface in FIG.
It was measured that 910G, 3410G, 4260G, 3280G, the left end was 540G, and the right end was 610G. In FIG. 22, the magnet and the magnet are formed as one body of the magnet polymer 3 by the N-S magnetic poles, and the magnet connecting body 5 is formed by five magnet polymers 3 in the same manner as in the above arrangement. The magnetic flux densities indicated by arrows → of the respective abutting pole portions of the magnet serially arranged in this manner are 8500G, 9080G,
It was measured that 8870G and 8960G, the left end was 1230G, and the right end was 1330G. In FIG. 23, the interposed member 4 shown in the sectional view of FIG. 24 is interposed between the magnet plate surfaces of the magnet 1 and the magnet 1 '. Have been. The magnetic flux density indicated by an arrow at each of the abutting poles of the magnet assembly 5 arranged in this manner is:
8980G, 10020G, 8800 from the left end of FIG.
G was measured. FIG. 24 is a sectional view taken along line AA ′ of FIG. FIG. 25 shows magnets 1 and 1 ′ with S and N poles.
Form one magnet polymer 3, and magnet connecting bodies 31 a and 32 b are formed by addressing the eight magnet polymers 3, and the S pole on the side panel surface of the magnet connecting body 31 a is connected to the magnet. An N pole on the side panel surface of the body 32b forms a composite magnet connecting body 33c in which the interposition member 4 is interposed at an intermediate position between the magnet connecting bodies 31a and 32b. The whole of the magnet polymer 3 is composed of 16 bodies. The interposition member 4 has three striations interposed therebetween. FIG.
FIG. 6 is a sectional view taken along line AA ′ of FIG. The magnetic flux density of the air gap where the interposition member 4 of the composite magnet connected body 33c arranged in this manner is interposed is 13090 from the left end in FIG.
G, 8130G, 12850G, 8130G, 1394
0G, 9950G, 10450G, 9750G were measured. The average magnetic flux density is 10700G. The amplification of the magnetic flux density is 315% compared to the magnetic flux density of the permanent magnet alone.

【0019】次に、本発明の第3実施例を図面に基き説
明する。図27は、本発明装置の部分破砕切断面図、図
28は、図27のA−A’線切断面図、図29から図3
4は、各種部材の説明図である。図示の如く、方形状の
筒体7内に前記試験例において図25に説明した複合磁
石連設体33cを収容配置する。燃料流動路12を形成
するために駆形状鉄板28を複合連設体33cの下端部
と蓋体14間に磁着配置する。然して、前記複合磁石連
接体33cの左側と筒体7の右側間に鉄板27を狭着す
る。筒体7が鉄系材であり、鉄板27は磁性材なるがた
め、複合磁石連設体33cから発生する磁力線により吸
着固設する。この鉄板27によって、各磁石1の左端部
の磁石中心孔2の孔口の全てが閉塞される。複合磁石連
設体33cの右側に前記燃料流動路12に連通する燃料
流動路12’を形成するために、磁石中心孔2に対面す
る燃料通孔29が穿孔され、端側に切欠溝30を設けた
燃料通孔を有する鉄板27’が、前記複合磁石連設体3
3cの右側に磁着配設する。複合磁石連設体33cの上
部にセラミックスボールからなるセラミック層21を形
成する。6’は、燃料供給の接続管、6は、燃料を放出
する接続管である。図29は、鉄板27の側面図、鉄板
27は厚1mm、長さは筒体7の内側の全長である。図
30は、その平面図である。図31は、介装部材4が磁
石勾配aを形成する鉄条線からなり、厚0.7mm、巾
0.7mmの細条線からなるも、この条線より十字状又
はこれらの異形体として放射状線材等が望しい。これ等
の鉄条線により磁極勾配aが磁石と磁石間に多数に存在
することとなり磁束密度が増幅する。図32は、鉄板2
7’の平面図である。左端に切欠溝と磁石中心孔2に対
面する燃料通孔29が形成されている。燃料流動路12
からこの切欠溝30を通過した燃料が燃料流動路12’
に進入流動する。図33は、燃料流動路12”を形成す
る駆形状鉄板28の平面図、図34は、その側面図であ
る。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 27 is a partially cutaway sectional view of the apparatus of the present invention, FIG. 28 is a sectional view taken along line AA ′ of FIG. 27, and FIGS.
FIG. 4 is an explanatory diagram of various members. As shown in the figure, the composite magnet connecting body 33c described in FIG. In order to form the fuel flow path 12, the driven iron plate 28 is magnetically disposed between the lower end of the composite connecting body 33 c and the lid 14. However, the iron plate 27 is tightly mounted between the left side of the composite magnet connecting body 33c and the right side of the cylindrical body 7. Since the cylinder 7 is made of an iron-based material and the iron plate 27 is made of a magnetic material, it is attracted and fixed by lines of magnetic force generated from the composite magnet connecting body 33c. With this iron plate 27, all the holes of the magnet center hole 2 at the left end of each magnet 1 are closed. In order to form a fuel flow path 12 ′ communicating with the fuel flow path 12 on the right side of the composite magnet connecting body 33 c, a fuel through hole 29 facing the magnet center hole 2 is drilled, and a cutout groove 30 is formed on the end side. The iron plate 27 ′ having the provided fuel holes is provided by the composite magnet connecting body 3.
Magnetically attached to the right side of 3c. The ceramic layer 21 made of ceramic balls is formed on the composite magnet connection body 33c. 6 'is a connecting pipe for supplying fuel, and 6 is a connecting pipe for discharging fuel. FIG. 29 is a side view of the iron plate 27. The thickness of the iron plate 27 is 1 mm, and the length is the entire length inside the cylindrical body 7. FIG. 30 is a plan view thereof. FIG. 31 shows that the interposition member 4 is formed of a thin wire having a thickness of 0.7 mm and a width of 0.7 mm. I want a wire. Due to these iron wires, a large number of magnetic pole gradients a exist between the magnets, and the magnetic flux density is amplified. FIG. 32 shows the iron plate 2
It is a top view of 7 '. A cutout groove and a fuel through hole 29 facing the magnet center hole 2 are formed at the left end. Fuel flow path 12
From the fuel flow path 12 ′.
Entering and flowing. FIG. 33 is a plan view of the driven iron plate 28 forming the fuel flow path 12 ″, and FIG. 34 is a side view thereof.

【0020】然かも、矢印c で示す磁石連設体31a
と磁石連設体32bの磁極接極線においても磁石対磁石
間に磁極勾配aが形成され、磁束密度が増幅し8600
G〜9500Gの磁界が形成されて居る事から、前記強
磁界発生域10において供給燃料の全量が10000G
〜12000Gの強磁界によって磁化活性されるととも
に、強磁界発生域10を通過流動した燃料が全磁石体の
外側面に流動し、再び、高磁界によって活性化する。斯
ように、構成した事によって、接続管6’より供給され
た燃料は、燃料流動路12内に流動し、鉄板27’の下
端部に開口された切欠溝30から燃料流動路12’に流
動し、鉄板27’の8個所の燃料通孔29から磁石中心
孔2に分流流動する。然して、この燃料は、強磁界発生
域10の空隙に進入し、磁界印加によって供給燃料の全
量が強磁界により磁化活性し、各磁石体外周面と筒体内
側間に形成された燃料流動路12”に放出流動し、続い
てセラミックス層21を経由し、接続管6を通じ燃焼機
関部に活性燃料が供給される。
As a matter of course, the magnet connecting body 31a indicated by the arrow c
The magnetic pole gradient a is formed between the magnets and the magnets at the magnetic pole tangent line of the magnet connecting body 32b, and the magnetic flux density is amplified to 8600
Since a magnetic field of G to 9500 G is formed, the total amount of supplied fuel in the strong magnetic field generation region 10 is 10,000 G
While being magnetized by a strong magnetic field of 112000 G, the fuel that has flowed through the strong magnetic field generation region 10 flows to the outer surfaces of all the magnet bodies and is activated again by the high magnetic field. With this configuration, the fuel supplied from the connection pipe 6 ′ flows into the fuel flow path 12 and flows from the notch groove 30 opened at the lower end of the iron plate 27 ′ to the fuel flow path 12 ′. Then, the fuel flows are divided and flow from the eight fuel through holes 29 of the iron plate 27 ′ to the magnet center hole 2. However, this fuel enters the gap of the strong magnetic field generation region 10 and the entire amount of the supplied fuel is magnetized and activated by the strong magnetic field by the application of the magnetic field, and the fuel flow path 12 formed between the outer peripheral surface of each magnet body and the inner side of the cylinder body. Then, the active fuel is supplied to the combustion engine through the connecting pipe 6 via the ceramic layer 21.

【0021】本発明は、永久磁石の連設体が用いられた
全ての燃料(流体)活性装置に適応する。本発明装置
の、第1実施例並びに第2実施例を、排気量2000c
c級のガソリン自動車の燃料系に装着して実走試験を実
施した結果、燃料消費量が25%〜32%(国内)低
減、米国では、排気量6000cc級のガソリン車では
40%〜42%の低減率である。CO・HCが95%以
上の低減値を示し、排出NOxは50%以上を削減する
事ができる事実も立証された。また、ディーゼルエンジ
ン車にこれを使用した場合、有色排気ガスが無色に近
く、臭気が大幅に低減した事も実験により立証された。
ディーゼルエンジン車の燃費低減試験に就いては、燃費
低減率の試験中であり、目下15%〜18%を目標とし
ている。但し、インドネシアの公的機関での試験結果は
14.8%の低減率の資料を保有している。
The present invention is applicable to all fuel (fluid) activation devices in which a permanent magnet series is used. The first embodiment and the second embodiment of the apparatus of the present invention are described with a displacement of 2000 c.
As a result of conducting an actual driving test on a fuel system of a c-class gasoline vehicle, the fuel consumption was reduced by 25% to 32% (in Japan). In the United States, 40% to 42% for a 6000cc-class gasoline vehicle This is the reduction rate. It was proved that CO and HC showed a reduction value of 95% or more, and the emission NOx could be reduced by 50% or more. Experiments have also shown that when this is used in a diesel engine vehicle, the colored exhaust gas is nearly colorless and the odor is greatly reduced.
Regarding the fuel efficiency reduction test for diesel engine vehicles, the fuel efficiency reduction test is being conducted, and the target is 15% to 18% at present. However, the results of tests conducted by public institutions in Indonesia have data of 14.8% reduction rate.

【0022】有害排出ガス逓減に係る運輸省関連の公的
試験結果は、次の通りである。 上記のデータは、(財)日本自動車輸送技術協会での持
込車柄の試験結果である。更に、上記合格値の数値は、
本発明装置の装着時にエンジン廻りの要部を2乃至3個
所を調整する事によって、CO・HC・NOx等の合格
値の増減率を変える事が可能である。前記した燃費低減
率の向上、排出ガス逓減率をより増率せしめる事が可能
である。更に、CO2逓減についても、可能性があり、
目下試験中である。
The official test results related to the Ministry of Transport concerning the harmful emission gas reduction are as follows. The above data are the test results of the carry-in car pattern by the Japan Automobile Transportation Technology Association. Furthermore, the numerical value of the above pass value is:
By adjusting two or three main parts around the engine when the apparatus of the present invention is mounted, it is possible to change the rate of increase / decrease of the acceptable values of CO, HC, NOx and the like. It is possible to improve the fuel consumption reduction rate and increase the exhaust gas reduction rate. Furthermore, there is a possibility of CO2 reduction,
Currently under test.

【0023】[0023]

【発明の効果】以上の如く、本発明装置においては、磁
力線と遠赤外線を利用し、各種の燃料類は勿論の事、其
の他の流体を構成する分子を励起振動させ、遠赤外線放
射エネギーと磁気誘導エネルギーを与え、流体の分子活
動を活発化すると共に、流体のの組成分子の相互結合を
分断し、これを超微細化し、反応性に富んだ燃料を得る
事ができる燃料(流体)の活性装置を容易に製造するこ
とができる。また、前述のごとく、本発明による磁束密
度の高い増幅効率においても、介装部材による磁極勾配
の形成により磁力線が集束され、強磁界発生域を形成す
る事が出来る。従って、前記の強磁界発生域を必然的に
供給燃料の全量が通過する事によって、燃料の磁化活性
度が非常に高率である。また、本発明によれば、磁束密
度の高い増幅効果が得られる事から、比較的に磁束密度
の低い廉価な磁石を用いて、磁束密度の高い活性装置を
製造する事が可能となり、構造は簡単で、比較的に製造
原価が安価であるが、機能性が充分なる諸装置を形成し
得るものである。
As described above, in the apparatus of the present invention, the magnetic field lines and far-infrared rays are used to excite various fuels as well as other fluid constituent molecules to excite and oscillate the far-infrared radiation energy. A fuel (fluid) that activates the molecular activity of the fluid, breaks the mutual bonds of the constituent molecules of the fluid, makes it ultra-fine, and obtains a highly reactive fuel. Can be easily manufactured. Further, as described above, even in the amplification efficiency with a high magnetic flux density according to the present invention, the lines of magnetic force are focused by the formation of the magnetic pole gradient by the interposition member, and a strong magnetic field generation region can be formed. Therefore, since the whole amount of the supplied fuel necessarily passes through the above-mentioned strong magnetic field generation region, the magnetization activity of the fuel is extremely high. Further, according to the present invention, since an amplifying effect with a high magnetic flux density can be obtained, it is possible to manufacture an active device with a high magnetic flux density by using an inexpensive magnet with a relatively low magnetic flux density, and the structure is as follows. It is possible to form devices that are simple and relatively inexpensive to manufacture, but have sufficient functionality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】永久磁石単体の側面図である。FIG. 1 is a side view of a permanent magnet alone.

【図2】従来の形式による永久磁石の連設形態を示す側
面図である。
FIG. 2 is a side view showing a conventional permanent magnet continuous form.

【図3】磁石連設体の例示側面図である。FIG. 3 is an exemplary side view of the magnet connected body.

【図4】磁石連設体の他の例示側面図である。FIG. 4 is another exemplary side view of the magnet connected body.

【図5】本発明装置の部分破砕切断面図である。FIG. 5 is a partially crushed cutaway view of the apparatus of the present invention.

【図6】本発明装置の中間部の切断面図である。FIG. 6 is a cutaway view of an intermediate portion of the device of the present invention.

【図7】部材条線の平面図である。FIG. 7 is a plan view of a member line.

【図8】部材介装部材の側面図である。FIG. 8 is a side view of the member interposition member.

【図9】部材介装部材の平面図である。FIG. 9 is a plan view of a member interposition member.

【図10】部材燃料流動案内体の平面図である。FIG. 10 is a plan view of a member fuel flow guide.

【図11】部材燃料流動案内体の切断面図である。FIG. 11 is a sectional view of a member fuel flow guide.

【図12】部材孔口閉塞体の平面図である。FIG. 12 is a plan view of a member hole closure.

【図13】部材孔口閉塞体の切断面図である。FIG. 13 is a cross-sectional view of the member hole closing body.

【図14】本発明装置の部分破砕切断面図である。FIG. 14 is a partially crushed cutaway view of the apparatus of the present invention.

【図15】本発明装置中間部の切断面図である。FIG. 15 is a cross-sectional view of an intermediate portion of the device of the present invention.

【図16】部材燃料分流板の側面図であるFIG. 16 is a side view of a member fuel distribution plate.

【図17】部材燃料分流板の平面図である。FIG. 17 is a plan view of a member fuel distribution plate.

【図18】部材鉄板の側面図である。FIG. 18 is a side view of a member iron plate.

【図19】部材鉄板の平面図である。FIG. 19 is a plan view of a member iron plate.

【図20】磁石連設体の平面図である。FIG. 20 is a plan view of a continuous magnet body.

【図21】磁石連設体の側面図である。FIG. 21 is a side view of the continuous magnet body.

【図22】磁石連設体の平面図である。FIG. 22 is a plan view of a continuous magnet body.

【図23】磁石連設体の側面図である。FIG. 23 is a side view of the magnet connected body.

【図24】磁石連設体中間部の切断面図である。FIG. 24 is a cross-sectional view of an intermediate portion of the magnet assembly.

【図25】複合磁石連設体の平面図である。FIG. 25 is a plan view of a composite magnet assembly.

【図26】複合磁石連結体中間部の切断面図である。FIG. 26 is a cross-sectional view of an intermediate portion of the composite magnet coupling body.

【図27】本発明装置の部分破砕切断面図である。FIG. 27 is a partially crushed sectional view of the device of the present invention.

【図28】本発明装置中間部の部分破砕切断面図であ
る。
FIG. 28 is a partially crushed cutaway view of an intermediate portion of the apparatus of the present invention.

【図29】部材鉄板の側面図である。FIG. 29 is a side view of a member iron plate.

【図30】部材鉄板の側面図である。FIG. 30 is a side view of a member iron plate.

【図31】部材介装部材条線の平面図である。FIG. 31 is a plan view of a member interposition member striation.

【図32】部材鉄板の平面図である。FIG. 32 is a plan view of a member iron plate.

【図33】部材駆形状鉄板の正面図である。FIG. 33 is a front view of a member-driven iron plate.

【図34】部材駆形状鉄板の平面図である。FIG. 34 is a plan view of a member-driven iron plate.

【符号の説明】[Explanation of symbols]

1 永久磁石 2 磁石中心孔 3 磁石重合体 4 介装部材 5 磁石連設体 6 接続管 7 筒体 8 放流燃料流動路 9 条線 10 強磁界発生域 11 燃料流動案内体 12 燃料流動路 13 磁石中心孔孔口 14 蓋体 15 接続管孔口 17 円形鉄板 18 孔口閉塞体 19 燃料流動口 20 孔口閉鎖突筒 21 セラミックス層 22 燃料注入孔口 23 燃料分流板 24 透孔 25 翼片 26 燃料分流槽 27 鉄板 28 駆形状鉄板 29 燃料通孔 30 切欠清 31 磁石連設体a 32 磁石連設体b 33 複合磁石連設体c a 磁極勾配 b 磁束密度(筒体内側壁面) c 磁束密度(筒体外側壁面) d 矢印 DESCRIPTION OF SYMBOLS 1 Permanent magnet 2 Magnet center hole 3 Magnet polymer 4 Interposition member 5 Magnet connecting body 6 Connection pipe 7 Cylindrical body 8 Discharged fuel flow path 9 Strips 10 Strong magnetic field generation area 11 Fuel flow guide 12 Fuel flow path 13 Magnet Central hole hole 14 Lid 15 Connection pipe hole 17 Round iron plate 18 Hole closing body 19 Fuel flow port 20 Hole closing cylinder 21 Ceramic layer 22 Fuel injection hole 23 Fuel distribution plate 24 Through hole 25 Wing piece 26 Fuel Separation tank 27 Iron plate 28 Drive-shaped iron plate 29 Fuel through hole 30 Notch cleaning 31 Magnet connected body a 32 Magnet connected body b 33 Composite magnet connected body c a Magnetic pole gradient b Magnetic flux density (wall surface inside cylindrical body) c Magnetic flux density ( Outer wall of cylinder) d Arrow

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 中心孔を有する永久磁石と永久磁石間に
介装部材を介置し、各永久磁石間に強磁界発生域を設け
た磁石連設体を形成し、該連設体を両端に燃料流動路を
形成するための接続管を有する筒体内に収容配設し、磁
石中心孔は前記燃料流動路に連通し、供給燃料が前記強
磁界発生域を形成する空隙内に集中流動するようにした
事を特徴とする磁界印加による化石燃料磁化活性装置。
An interposed member is interposed between a permanent magnet having a center hole and a permanent magnet to form a magnet continuous body having a strong magnetic field generation region between the permanent magnets. The magnet has a central hole communicating with the fuel flow path, and the supplied fuel concentrates and flows in the gap forming the strong magnetic field generation area. A fossil fuel magnetization activation device by applying a magnetic field, characterized in that it is made as described above.
【請求項2】 永久磁石盤面のS極が隣接する永久磁石
盤面のN極と対面し、それに続く各磁石盤面のS極がN
極に対面する磁石による連設体の軸線にそって直列に連
設した磁石連設体である事を特徴とする請求項1項記載
の磁界印加による化石燃料磁化活性装置。
2. The S pole of the permanent magnet board face faces the N pole of the adjacent permanent magnet board face, and the S pole of each subsequent magnet board face is N
2. The fossil fuel magnetizing activation device according to claim 1, wherein the magnets are connected in series along the axis of the connected body of magnets facing the poles.
【請求項3】 永久磁石外側周面のS極が隣接する永久
磁石外側周面のN極に接極し、それに続く各永久磁石外
側周面のS極が隣接する永久磁石外側周面のN極に接極
する磁石による連設体の軸線にそって直列に連設した磁
石連設体である事を特徴とする請求項1項記載の磁界印
加による化石燃料磁化活性装置。
3. The S pole of the outer peripheral surface of the permanent magnet is in contact with the N pole of the outer peripheral surface of the adjacent permanent magnet, and the S pole of each outer peripheral surface of the permanent magnet is successively connected to the N pole of the outer peripheral surface of the adjacent permanent magnet. 2. The fossil fuel magnetization activation device according to claim 1, wherein the magnets are connected in series along the axis of the connected members formed by magnets that are in contact with the poles.
【請求項4】 燃料流動路が強磁界発生域の空隙に連通
し、燃料が前記強磁界発生域に集中流動する燃料の流動
路である事を特徴とする請求項1項、2項及び3項記載
の化石燃料磁化活性装置。
4. The fuel flow path according to claim 1, wherein the fuel flow path communicates with a gap in the strong magnetic field generation area, and the fuel is a flow path of the fuel that flows intensively in the strong magnetic field generation area. Item 2. The fossil fuel magnetizing activation device according to item 1.
【請求項5】 磁石連設体の複数体が該磁石連設体の横
側に併列状に連設された事を特徴とする請求項1項記載
の磁界印加による化石燃料磁化活性装置。
5. The fossil fuel magnetization activation apparatus according to claim 1, wherein a plurality of magnet connected bodies are connected side by side in parallel to the magnet connected body.
【請求項6】 磁束密度の増幅が永久磁石体間に介装部
材を介置した磁石連設体である事を特徴とする請求項1
項記載の化石燃料磁化活性装置。
6. The magnetic flux density amplification is performed by a magnet connected body having an interposition member interposed between permanent magnet bodies.
Item 2. The fossil fuel magnetizing activation device according to item 1.
【請求項7】 筒体が鉄又は鉄系材等の磁性材である事
を特徴とする請求項1項記載の磁界印加による化石燃料
磁化活性装置。
7. An apparatus for activating fossil fuel magnetization by applying a magnetic field according to claim 1, wherein the cylinder is made of a magnetic material such as iron or an iron-based material.
【請求項8】 介装部材が金属性部材である事を特徴と
する請求項1項記載の磁界印加による化石燃料磁化活性
装置。
8. The fossil fuel magnetization activation device according to claim 1, wherein the interposition member is a metal member.
JP9369895A 1997-12-15 1997-12-15 Fossil fuel magnetization and activation device due to magnetic field application Pending JPH11182363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9369895A JPH11182363A (en) 1997-12-15 1997-12-15 Fossil fuel magnetization and activation device due to magnetic field application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9369895A JPH11182363A (en) 1997-12-15 1997-12-15 Fossil fuel magnetization and activation device due to magnetic field application

Publications (1)

Publication Number Publication Date
JPH11182363A true JPH11182363A (en) 1999-07-06

Family

ID=18495578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9369895A Pending JPH11182363A (en) 1997-12-15 1997-12-15 Fossil fuel magnetization and activation device due to magnetic field application

Country Status (1)

Country Link
JP (1) JPH11182363A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040025031A (en) * 2002-09-18 2004-03-24 이종봉 Apparatus for reduction of fuel consumption and of exhaust gas generation
WO2006003705A1 (en) * 2004-07-02 2006-01-12 Tajiri, Yasuo Liquid fuel reformer
WO2006052054A1 (en) * 2004-11-12 2006-05-18 Bong Kyu Choi Multi-purpose liquid atomizer utilizing catalyst, turbulence, and collision
JP2007138915A (en) * 2005-11-21 2007-06-07 Shigenobu Fujimoto Energy excited state maintaining method of resonance molecule
JP2017517619A (en) * 2014-04-09 2017-06-29 エルイルマス,ジェンギス Maximized sufficient magnetic effects from improved next-generation devices to more efficiently move liquid and gaseous materials containing hydrogen and liquid and gaseous materials containing hydrocarbons To process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040025031A (en) * 2002-09-18 2004-03-24 이종봉 Apparatus for reduction of fuel consumption and of exhaust gas generation
WO2006003705A1 (en) * 2004-07-02 2006-01-12 Tajiri, Yasuo Liquid fuel reformer
WO2006052054A1 (en) * 2004-11-12 2006-05-18 Bong Kyu Choi Multi-purpose liquid atomizer utilizing catalyst, turbulence, and collision
JP2007138915A (en) * 2005-11-21 2007-06-07 Shigenobu Fujimoto Energy excited state maintaining method of resonance molecule
JP2017517619A (en) * 2014-04-09 2017-06-29 エルイルマス,ジェンギス Maximized sufficient magnetic effects from improved next-generation devices to more efficiently move liquid and gaseous materials containing hydrogen and liquid and gaseous materials containing hydrocarbons To process
RU2671451C2 (en) * 2014-04-09 2018-10-31 Ченгиз ЭРИЙЛЬМАЗ Device for treatment of liquid and gaseous substances containing hydrogen and carbon

Similar Documents

Publication Publication Date Title
US4933151A (en) Device for magnetically treating hydrocarbon fuels
US20090065438A1 (en) Fluid magnetic treatment unit having moving or stationary magnets
CA2235885C (en) A high efficiency and environmental protection fuel-economizer
JPH11182363A (en) Fossil fuel magnetization and activation device due to magnetic field application
JPWO2006022013A1 (en) Engine magnetic processing apparatus and engine magnetic processing system
US6178953B1 (en) Magnetic fluid treatment apparatus for internal combustion engine and method thereof
JP2007521434A (en) Combustion gas preconditioning device
KR20110106927A (en) Liquid fuel processing device
JP2000227055A (en) Fuel activating device
RU2005113234A (en) MAGNETIC FUEL CONDITIONING DEVICE FOR DIESEL ENGINE
JP2822275B2 (en) Magnetic flux density amplifying device
JPH0357303B2 (en)
JPH07259666A (en) Magnetic structure for fuel system of automobile and magnetizing method for fluid piping
JP3136867U (en) Liquid fuel atomization processing equipment
JP2001065416A (en) Fuel consumption improving device for internal combustion engine
JP3030603U (en) Fuel reformer
CN216427212U (en) Fuel magnetizing treatment device
KR100249076B1 (en) Liquid magnetizer
WO1995001835A1 (en) Fluid activating apparatus
JPS6238865A (en) Fuel economizing device for internal combustion engine
JP3023699U (en) Harmful exhaust gas reduction device for internal combustion engine or boiler
JPH07308677A (en) Device for activating fluid
JP2002263656A (en) Apparatus for magnetically treating fluid
KR20000034888A (en) Device for activating fuel fluid
JPS6251749A (en) Fuel saving device for internal combustion engine