JPH11181534A - Method for removing remaining molten material in copper-making furnace - Google Patents

Method for removing remaining molten material in copper-making furnace

Info

Publication number
JPH11181534A
JPH11181534A JP34978697A JP34978697A JPH11181534A JP H11181534 A JPH11181534 A JP H11181534A JP 34978697 A JP34978697 A JP 34978697A JP 34978697 A JP34978697 A JP 34978697A JP H11181534 A JPH11181534 A JP H11181534A
Authority
JP
Japan
Prior art keywords
solution
furnace
molten material
oxygen
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34978697A
Other languages
Japanese (ja)
Other versions
JP3528553B2 (en
Inventor
Nozomi Hasegawa
望 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP34978697A priority Critical patent/JP3528553B2/en
Publication of JPH11181534A publication Critical patent/JPH11181534A/en
Application granted granted Critical
Publication of JP3528553B2 publication Critical patent/JP3528553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a removing method of a remaining molten material in a copper-making furnace, by which the remaining molten metal can easily be removed from a furnace bottom part, the demolishing in the furnace bottom and the changed laying work of brick on the furnace hearth can easily be executed, the drastic improvement of the furnace operating rate can be obtd., operator's working load can be reduced to a large extent and further, the inspection work in the furnace hearth can smoothly and surely be executed. SOLUTION: At the time of taking out the molten material from the furnace bottom part, oxygen is positively supplied onto the molten material remaining in the furnace bottom part by blowing the oxygen-enriched air through a lance 5b from the upper part of the molten material, and this molten material is oxidized or slagged and also, the molten material is effectively stirred and the temp. at each part of the molten material is uniformly raised and the molten material is taken out from the furnace bottom part as much as possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、定置型製銅炉の炉
修理に際して、炉床煉瓦の点検あるいは解体、積替を行
うために炉底部に残留している溶体を除去する製銅炉に
おける残留溶体の除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper furnace for removing a solution remaining at the bottom of a furnace for inspecting, disassembling and relocating a hearth brick at the time of furnace repair of a stationary copper furnace. The present invention relates to a method for removing a residual solution.

【0002】[0002]

【従来の技術】例えば、銅精鉱の連続製錬方法において
硫化金属鉱を精錬する場合には、図1に示すように、ま
ず、溶錬炉1において銅精鉱を溶融して、硫化銅及び硫
化鉄を主成分とするカワMと、原料中の脈石や溶剤や酸
化鉄等を主成分とするカラミSとを生成し、次いで、分
離炉2においてカラミSとカワMとを分離し、続いて、
製銅炉3においてカワMを酸化させて粗銅Cとし、さら
に、精製炉4において上記粗銅Cを精製して、より銅品
位の高い精製銅を生成するようにしている。そして、上
記溶錬炉1と製銅炉3には、二重管構造を有するランス
5a,5bがこれらの炉の天井を挿通して昇降自在に設
けられており、これらのランス5a,5bを介して銅精
鉱、酸素富化空気、溶剤、冷剤等が各炉内に供給されて
いる。また、上記分離炉2は例えば電極6を備えた電気
炉である。そして、これらの溶錬炉1、分離炉2及び製
銅炉3は、この順に高低差が付けられていると共に、溶
体の流路である樋7a,7bによって連絡されている。
2. Description of the Related Art For example, when refining metal sulfide ore in a continuous copper smelting method, as shown in FIG. And kawa M mainly composed of iron sulfide and karmic S mainly composed of gangue, solvent, iron oxide and the like in the raw material, and then the karami S and kawa M are separated in the separation furnace 2. ,continue,
The copper M is oxidized in the copper making furnace 3 to obtain crude copper C, and the crude copper C is refined in the refining furnace 4 to produce refined copper with higher copper quality. The smelting furnace 1 and the copper making furnace 3 are provided with lances 5a and 5b having a double tube structure so as to be able to move up and down through the ceiling of these furnaces. Copper concentrate, oxygen-enriched air, solvents, coolant, etc. are supplied into each furnace via the furnace. The separation furnace 2 is, for example, an electric furnace provided with the electrodes 6. The smelting furnace 1, the separation furnace 2, and the copper making furnace 3 are provided with a height difference in this order, and are connected by gutters 7a and 7b, which are flow paths of the solution.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記溶錬炉
1あるいは製銅炉3のような製錬炉には、炉修理の際に
炉底部に残留している溶体を抜き出すために底抜き装置
が設置されている(例えば、特願平2−314680号
参照)。しかしながら、この底抜き装置を使用しても、
完全に炉内部の溶体を抜き出すことは難しいという問題
があった。そして、従来、炉底部に残留して抜き出せな
い溶体については、この溶体を冷却固化させた後、作業
員の人手に頼って機械的な手段により除去していた。こ
の場合、残留溶体が粗銅である製銅炉3にあっては、簡
単に残留溶体を除去することが難しく、ジェットランス
によって残留溶体を溶断して除去するようにしている
が、この作業は時間がかかり、労力を要すると共に、作
業環境が悪く作業員に負担がかかるという問題があっ
た。また、上記製銅炉3においては、上記残留溶体を炉
床から簡単に引き離すことができないから、炉床状態の
点検を行うことができないという不満があった。本発明
は、上記事情に鑑みてなされたもので、その目的とする
ところは、残留溶体を容易に炉底部から除去することが
できて、炉床の解体、炉床煉瓦の積替作業を簡単に行う
ことができて、炉操業率の大幅な向上を図ることができ
ると共に、作業員にかかる負担を大幅に低減することが
できる一方、炉床の点検作業を円滑にかつ確実に行うこ
とができる製銅炉における残留溶体の除去方法を提供す
ることにある。
In a smelting furnace such as the smelting furnace 1 or the copper making furnace 3 described above, a bottom removing device is provided for extracting the solution remaining in the furnace bottom during furnace repair. (See, for example, Japanese Patent Application No. 2-314680). However, even if this bottoming device is used,
There was a problem that it was difficult to completely extract the solution inside the furnace. Conventionally, a solution remaining at the bottom of the furnace and unable to be extracted has been cooled and solidified, and then removed by mechanical means relying on manual labor of an operator. In this case, in the copper making furnace 3 in which the residual solution is blister copper, it is difficult to easily remove the residual solution, and the residual solution is blown and removed by a jet lance. However, there is a problem that the work environment is poor and a burden is imposed on a worker. Further, in the copper making furnace 3, there was a complaint that the state of the hearth could not be checked because the residual solution could not be easily separated from the hearth. The present invention has been made in view of the above circumstances. It is an object of the present invention to easily remove a residual solution from a furnace bottom, and to easily disassemble a hearth and reload a hearth brick. Can significantly improve the furnace operation rate and greatly reduce the burden on workers, while ensuring that furnace hearth inspection work can be performed smoothly and reliably. It is an object of the present invention to provide a method of removing a residual solution in a copper making furnace.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1は、炉
床煉瓦の点検あるいは解体、積替を行う際に、炉底部に
残留している溶体を除去する製銅炉における残留溶体の
除去方法であって、上記溶体を上記炉底部から抜き出す
に際して、上記溶体の上方からランスによって酸素富化
空気を吹き付けるものである。これにより、炉底部に残
留している溶体に積極的に酸素を供給してこの溶体を酸
化、カラミ化すると共に、溶体を効果的に攪拌して溶体
各部の温度を均一に上昇させ溶体を炉底部からできるだ
け抜き出す。また、本発明の請求項2は、上記ランス高
さを溶体面から0.5〜2mに設定したものである。こ
のように設定したのは、ランス高さが0.5mよりも低
いと、スプラッシュによってランスが閉塞する恐れがあ
ると共に、炉床の点検作業だけを行う場合に、炉床煉瓦
を損傷する恐れがある一方、ランス高さが2mよりも高
いと、反応効率が低下して、十分な反応が得られずに溶
体が冷却固化してしまうからである。さらに、本発明の
請求項3は、上記ランスによって吹き付ける酸素富化空
気の酸素濃度を40〜70%に設定したものである。こ
のように設定したのは、酸素濃度が40%よりも低い
と、十分に反応せずに溶体が固化してしまう一方、酸素
濃度が70%よりも高いと、反応熱が高く、ランスが溶
損する恐れが大きいからである。さらにまた、本発明の
請求項4は、上記ランスによって吹き付ける酸素富化空
気の流速を130〜150Nm/sに設定したものであ
る。このように設定したのは、酸素富化空気の流速が1
30Nm/sよりも低いと、所要の反応効率を確保でき
なくなると共に、溶体を十分に攪拌することができない
一方、酸素富化空気の流速が150Nm/sよりも高い
と、スプラッシュによる冷却ジャケットの溶損を引き起
こす恐れがあると共に、炉床点検だけを行う場合に、炉
床を損傷する恐れがあるからである。また、本発明の請
求項5は、上記炉底部から溶体を抜き出すに際して、バ
ーナーにより炉内部を加熱するものである。これによ
り、炉内の雰囲気を暖めて溶体の酸化反応を促進すると
共に、炉壁に付着したスプラッシュを溶かして炉底部の
溶体中に落とす。なおまた、本発明の請求項6は、酸素
富化空気を溶体に吹き付けた後、この溶体を冷却固化さ
せて、この固化した溶体を破砕して除去するものであ
る。この場合、上記残留溶体が十分に酸化、カラミ化し
ているから、固化した溶体はもろくかつ破砕し易い。
Means for Solving the Problems A first aspect of the present invention is to remove a residual solution in a copper making furnace for removing a solution remaining in a furnace bottom when inspecting, dismantling, or transferring a hearth brick. A method for removing the solution from the furnace bottom by blowing oxygen-enriched air from above the solution with a lance. As a result, oxygen is positively supplied to the solution remaining at the bottom of the furnace to oxidize and calm the solution, and the solution is effectively stirred to uniformly raise the temperature of each part of the solution to cool the solution. Pull out as much as possible from the bottom. According to a second aspect of the present invention, the height of the lance is set to 0.5 to 2 m from the solution surface. The reason for this setting is that if the lance height is less than 0.5 m, the lance may be blocked by the splash, and the hearth brick may be damaged when only the hearth inspection is performed. On the other hand, when the lance height is higher than 2 m, the reaction efficiency is reduced, and the solution is cooled and solidified without obtaining a sufficient reaction. Furthermore, in the third aspect of the present invention, the oxygen concentration of the oxygen-enriched air blown by the lance is set to 40 to 70%. The reason for this setting is that when the oxygen concentration is lower than 40%, the solution does not react sufficiently and the solution solidifies. On the other hand, when the oxygen concentration is higher than 70%, the heat of reaction is high and the lance is melted. This is because there is a great risk of loss. Furthermore, in claim 4 of the present invention, the flow rate of the oxygen-enriched air blown by the lance is set to 130 to 150 Nm / s. The reason for this setting is that the flow rate of the oxygen-enriched air is 1
If it is lower than 30 Nm / s, the required reaction efficiency cannot be ensured, and the solution cannot be sufficiently stirred. On the other hand, if the flow rate of the oxygen-enriched air is higher than 150 Nm / s, the cooling jacket will not melt due to the splash. This is because there is a risk of causing damage and, if only the hearth inspection is performed, the hearth may be damaged. According to a fifth aspect of the present invention, when extracting the solution from the furnace bottom, the inside of the furnace is heated by a burner. Thereby, the atmosphere in the furnace is heated to accelerate the oxidation reaction of the solution, and the splash attached to the furnace wall is melted and dropped into the solution at the bottom of the furnace. According to a sixth aspect of the present invention, after the oxygen-enriched air is blown onto the solution, the solution is cooled and solidified, and the solidified solution is crushed and removed. In this case, since the residual solution is sufficiently oxidized and karmicified, the solidified solution is fragile and easily broken.

【0005】[0005]

【発明の実施の形態】以下、図1を参照して、本発明の
実施の形態を説明する。製銅炉3の炉底部に形成された
底抜き口10から溶体を抜き出す作業に引き続き、通常
操業に使用している8本のランス5bのうち炉中心に比
較的近い2〜5本のランス5bをそのまま使用すると共
に、溶体面が低下していることに対応して上記各ランス
5bの高さを再調整し、これらのランス5bから通常操
業と同程度のガス流速及び通常より高めの酸素濃度で送
風し、炉底部に残留している溶体を酸化する。また、必
要に応じて、重油バーナーによる助燃(炉内雰囲気の加
熱)を行うが、この場合、フラックスの添加は不要であ
る。上記各ランス5bの高さは、溶体面から0.5〜2
mに設定されている。この理由は、ランス高さが0.5
mよりも低いと、ランス5bが溶体面に近づき過ぎるた
めに、スプラッシュによってランス5bが閉塞する恐れ
があると共に、炉床の点検だけを行う場合に、炉床煉瓦
が損傷する恐れがあるからである。また、ランス高さが
2mよりも高いと、反応効率が低下して、十分に溶体の
温度を上昇させることができず、溶体が冷却固化するか
らである。上記ランス5bによって吹き付ける酸素富化
空気の酸素濃度は、40〜70%に設定されている。こ
の理由は、酸素濃度が40%よりも低いと、十分に反応
せずに溶体が固化してしまう一方、酸素濃度が70%よ
りも高いと、反応熱が高く、ランス5bが溶損する恐れ
が大きいからである。上記ランス5bによって吹き付け
る酸素富化空気の流速は130〜150Nm/sに設定
されている。この理由は、酸素富化空気の流速が130
Nm/sよりも低いと、所要の反応効率を確保できなく
なると共に、溶体を十分に攪拌することができないから
であり、酸素富化空気の流速が150Nm/sよりも高
いと、スプラッシュによる冷却ジャケットの溶損を引き
起こす恐れがあると共に、炉床点検だけを行う場合に、
炉床を損傷する恐れがあるからである。
Embodiments of the present invention will be described below with reference to FIG. Following the operation of extracting the solution from the bottom opening 10 formed in the furnace bottom of the copper making furnace 3, two to five lances 5b relatively close to the furnace center among the eight lances 5b used in normal operation. Is used as it is, and the height of each of the lances 5b is readjusted in response to the lowering of the solution surface, and a gas flow rate similar to that in normal operation and an oxygen concentration higher than normal are obtained from these lances 5b. To oxidize the solution remaining at the bottom of the furnace. If necessary, auxiliary combustion (heating of the furnace atmosphere) using a heavy oil burner is performed, but in this case, addition of a flux is unnecessary. The height of each lance 5b is 0.5 to 2 from the solution surface.
m. This is because the lance height is 0.5
If it is lower than m, the lance 5b may be too close to the solution surface, so that the lance 5b may be closed by the splash, and the hearth brick may be damaged when only the hearth is inspected. is there. On the other hand, if the lance height is higher than 2 m, the reaction efficiency decreases, the temperature of the solution cannot be sufficiently increased, and the solution is cooled and solidified. The oxygen concentration of the oxygen-enriched air blown by the lance 5b is set to 40 to 70%. The reason is that if the oxygen concentration is lower than 40%, the solution does not react sufficiently and the solution solidifies, whereas if the oxygen concentration is higher than 70%, the reaction heat is high and the lance 5b may be melted. Because it is big. The flow rate of the oxygen-enriched air blown by the lance 5b is set to 130 to 150 Nm / s. This is because the flow rate of the oxygen-enriched air is 130
If the flow rate of the oxygen-enriched air is higher than 150 Nm / s, the cooling jacket due to splash cannot be obtained if the flow rate of the oxygen-enriched air is higher than 150 Nm / s. When performing only hearth inspection,
This is because the hearth may be damaged.

【0006】このようにして、ランス5bを用いて溶体
に酸素富化空気を吹き付けると、該溶体が酸化、カラミ
化すると共に、溶体が攪拌されることにより、溶体各部
の温度が均一化して底抜き口10から溶体を抜き出し易
くなる。従って、従来に比べて炉底部に残留する溶体の
量を少なく抑制できる。次いで、この溶体の底抜き口1
0からの抜き出し作業が終わると、炉底部になおも残留
している溶体を冷却固化させて、この固化した溶体を破
砕して除去する。この場合、上記残留溶体が十分に酸
化、カラミ化しているから、固化した溶体はもろくかつ
破砕し易く、従って、作業員が簡単に除去することがで
きる。この結果、炉床の解体が短期間に行え、かつ炉床
煉瓦の積替が円滑に行える。例えば、従来、炉床解体に
20日程度必要であったのに対して、本発明の方法によ
れば、6〜7日(約1/3)の労力にて炉床の解体が可
能となった。また、炉床の解体、積替を行わずに、炉床
の点検だけを行う場合には、作業員が酸化、カラミ化し
た残留溶体を除去するだけで、炉床の状態を目視確認す
ることができる。この場合、残留溶体の除去が容易でか
つ炉床を損傷することがないので、炉床の修理等の余分
な作業を行うことなく、炉床状態の点検だけを確実に行
うことができる。
In this manner, when oxygen-enriched air is blown onto the solution using the lance 5b, the solution is oxidized and karmicized, and the solution is agitated, so that the temperature of each part of the solution is made uniform and the bottom of the solution becomes uniform. It becomes easier to extract the solution from the outlet 10. Therefore, the amount of the solution remaining in the furnace bottom can be suppressed smaller than in the conventional case. Then, the bottom opening 1 of this solution
When the extraction operation from zero is completed, the solution still remaining at the furnace bottom is cooled and solidified, and the solidified solution is crushed and removed. In this case, since the residual solution is sufficiently oxidized and karmicified, the solidified solution is fragile and easily crushed, so that an operator can easily remove it. As a result, the hearth can be dismantled in a short time and the hearth bricks can be smoothly transferred. For example, while the conventional method required about 20 days to disassemble the hearth, according to the method of the present invention, the hearth can be dismantled with 6 to 7 days (about 1/3) of labor. Was. In addition, when inspecting the hearth only without disassembling or relocating the hearth, the operator should visually check the state of the hearth simply by removing the oxidized and calcined residual solution. Can be. In this case, since the residual solution is easily removed and the hearth is not damaged, only the inspection of the hearth state can be reliably performed without performing extra work such as repair of the hearth.

【0007】[0007]

【発明の効果】本発明の請求項1は、炉床煉瓦の点検あ
るいは解体、積替を行う際に、炉底部に残留している溶
体を除去する製銅炉における残留溶体の除去方法であっ
て、上記溶体を上記炉底部から抜き出すに際して、上記
溶体の上方からランスによって酸素富化空気を吹き付け
るものであるから、炉底部に残留している溶体に積極的
に酸素を供給してこの溶体を酸化、カラミ化すると共
に、溶体を効果的に攪拌することにより、溶体各部の温
度を均一に上昇させ、かつ溶体の流動性を向上させて、
溶体を炉底部から容易に抜き出すことができる。また、
本発明の請求項2によれば、上記ランス高さを溶体面か
ら0.5〜2mに設定することにより、スプラッシュに
よってランスが閉塞するのを防ぐことができると共に、
炉床の点検作業だけを行う場合に、炉床煉瓦が損傷する
ことを防止することができる一方、十分な反応を行わせ
ることができて、溶体が冷却固化することを確実に防ぐ
ことができ溶体の酸化、カラミ化を円滑に実現できる。
さらに、本発明の請求項3によれば、上記ランスによっ
て吹き付ける酸素富化空気の酸素濃度を40〜70%に
設定したことにより、十分な反応熱が得られて溶体の固
化を防止することができる一方、ランスの溶損を防止す
ることができて円滑にかつ確実に反応を継続することが
できる。。さらにまた、本発明の請求項4によれば、上
記ランスによって吹き付ける酸素富化空気の流速を13
0〜150Nm/sに設定したことにより、所要の反応
効率を容易に維持することができると共に、溶体を十分
に攪拌することができる一方、スプラッシュによる冷却
ジャケットの溶損を防ぐことができ、かつ炉床点検だけ
を行う場合に、炉床を損傷することなく、炉底部内の溶
体を円滑に除去することができる。また、本発明の請求
項5によれば、上記炉底部から溶体を抜き出すに際し
て、バーナーにより炉内部を加熱することにより、炉内
の雰囲気を暖めて溶体の酸化反応を促進することがで
き、かつ炉内の反応を安定的に継続することができると
共に、炉壁に付着したスプラッシュを溶かして炉底部の
溶体中に落とすことができる一方、炉底部に残留する溶
体の温度を上昇させて溶体の流動性を向上させることが
できる。なおまた、本発明の請求項6は、酸素富化空気
を溶体に吹き付けた後、この溶体を冷却固化させて、こ
の固化した溶体を破砕して除去するものであるから、固
化した残留溶体が十分に酸化、カラミ化していることに
より、固化した溶体はもろくかつ破砕し易い。したがっ
て、この固化した溶体の炉底部からの除去作業を容易に
行うことができて、炉床を損傷することを確実に防止す
ることができると共に、炉床点検並びに炉床解体、積替
作業を円滑に行うことができて、作業時間の短縮、作業
人数の低減、操業率の向上、作業者の負担の軽減等の優
れた効果を奏することができる。
According to a first aspect of the present invention, there is provided a method for removing a residual solution in a copper making furnace for removing a solution remaining in a furnace bottom when inspecting, dismantling, or transshipping a hearth brick. Then, when extracting the solution from the furnace bottom, oxygen-enriched air is blown from above the solution by a lance, so that oxygen is actively supplied to the solution remaining in the furnace bottom to remove this solution. By oxidizing and karmicifying and effectively stirring the solution, the temperature of each part of the solution can be raised uniformly, and the fluidity of the solution can be improved.
The solution can be easily extracted from the furnace bottom. Also,
According to the second aspect of the present invention, by setting the lance height to 0.5 to 2 m from the solution surface, it is possible to prevent the lance from being closed by splash,
When only the hearth inspection work is performed, it is possible to prevent the hearth brick from being damaged, but it is also possible to cause a sufficient reaction and to surely prevent the solution from cooling and solidifying. Oxidation and lamination of the solution can be realized smoothly.
Further, according to the third aspect of the present invention, by setting the oxygen concentration of the oxygen-enriched air blown by the lance to 40 to 70%, sufficient heat of reaction can be obtained to prevent solidification of the solution. On the other hand, melting of the lance can be prevented, and the reaction can be smoothly and reliably continued. . Furthermore, according to claim 4 of the present invention, the flow rate of the oxygen-enriched air blown by the lance is set to 13
By setting the pressure to 0 to 150 Nm / s, the required reaction efficiency can be easily maintained, and the solution can be sufficiently stirred, while the cooling jacket can be prevented from being damaged by splash, and When only the hearth inspection is performed, the solution in the hearth can be smoothly removed without damaging the hearth. According to claim 5 of the present invention, when extracting the solution from the furnace bottom, by heating the inside of the furnace with a burner, it is possible to warm the atmosphere in the furnace and promote the oxidation reaction of the solution, and The reaction in the furnace can be stably continued, and the splash attached to the furnace wall can be melted and dropped into the solution at the furnace bottom, while the temperature of the solution remaining at the furnace bottom is raised to increase the temperature of the solution. Fluidity can be improved. According to a sixth aspect of the present invention, after the oxygen-enriched air is sprayed on the solution, the solution is cooled and solidified, and the solidified solution is crushed and removed. The solidified solution is fragile and easily crushed due to being sufficiently oxidized and karmicified. Therefore, the work of removing the solidified solution from the hearth can be easily performed, and the hearth can be reliably prevented from being damaged. In addition, the hearth inspection, hearth demolition, and transshipment work can be performed. It can be performed smoothly, and excellent effects such as shortening of work time, reduction of the number of workers, improvement of operation rate, and reduction of burden on workers can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 銅の連続精錬装置の一例を示す説明図であ
る。
FIG. 1 is an explanatory view showing an example of a continuous refining apparatus for copper.

【符号の説明】[Explanation of symbols]

C 粗銅 3 製銅炉 5b ランス 10 底抜き口 C Bronze 3 Copper making furnace 5b Lance 10 Bottom opening

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炉床煉瓦の点検あるいは解体、積替を行
う際に、炉底部に残留している溶体を除去する定置型製
銅炉における残留溶体の除去方法であって、上記溶体を
上記炉底部から抜き出すに際して、上記溶体の上方から
ランスによって酸素富化空気を吹き付けることを特徴と
する製銅炉における残留溶体の除去方法。
1. A method for removing a residual solution in a stationary copper making furnace for removing a solution remaining in a furnace bottom when inspecting, dismantling, or transshipping a hearth brick. A method for removing a residual solution in a copper making furnace, comprising blowing oxygen-enriched air from above the solution with a lance when extracting the solution from the furnace bottom.
【請求項2】 ランス高さを溶体面から0.5〜2mに
設定したことを特徴とする請求項1記載の製銅炉におけ
る残留溶体の除去方法。
2. The method according to claim 1, wherein the height of the lance is set to 0.5 to 2 m from the surface of the solution.
【請求項3】 ランスによって吹き付ける酸素富化空気
の酸素濃度を40〜70%に設定したことを特徴とする
請求項1または2記載の製銅炉における残留溶体の除去
方法。
3. The method for removing a residual solution in a copper making furnace according to claim 1, wherein the oxygen concentration of the oxygen-enriched air blown by the lance is set to 40 to 70%.
【請求項4】 ランスによって吹き付ける酸素富化空気
の流速を130〜150Nm/sに設定したことを特徴
とする請求項1、2または3記載の製銅炉における残留
溶体の除去方法。
4. The method for removing a residual solution in a copper making furnace according to claim 1, wherein the flow rate of the oxygen-enriched air blown by the lance is set to 130 to 150 Nm / s.
【請求項5】 炉底部から溶体を抜き出すに際して、バ
ーナーにより炉内部を加熱することを特徴とする請求項
1、2、3または4記載の製銅炉における残留溶体の除
去方法。
5. The method according to claim 1, wherein the inside of the furnace is heated by a burner when extracting the solution from the furnace bottom.
【請求項6】 酸素富化空気を溶体に吹き付けた後、こ
の溶体を冷却固化させて、この固化した溶体を破砕して
除去することを特徴とする請求項1、2、3、4または
5記載の製銅炉における残留溶体の除去方法。
6. The method according to claim 1, wherein after the oxygen-enriched air is blown onto the solution, the solution is cooled and solidified, and the solidified solution is crushed and removed. The method for removing a residual solution in a copper making furnace as described in the above.
JP34978697A 1997-12-18 1997-12-18 Removal method of residual solution in copper making furnace Expired - Lifetime JP3528553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34978697A JP3528553B2 (en) 1997-12-18 1997-12-18 Removal method of residual solution in copper making furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34978697A JP3528553B2 (en) 1997-12-18 1997-12-18 Removal method of residual solution in copper making furnace

Publications (2)

Publication Number Publication Date
JPH11181534A true JPH11181534A (en) 1999-07-06
JP3528553B2 JP3528553B2 (en) 2004-05-17

Family

ID=18406111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34978697A Expired - Lifetime JP3528553B2 (en) 1997-12-18 1997-12-18 Removal method of residual solution in copper making furnace

Country Status (1)

Country Link
JP (1) JP3528553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865603A (en) * 2010-06-07 2010-10-20 中国瑞林工程技术有限公司 Feeding method and equipment of anode refining furnace
CN106282597A (en) * 2016-08-19 2017-01-04 铜陵有色金属集团股份有限公司奥炉工程项目部 Low energy consumption type top blast stove and using method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865603A (en) * 2010-06-07 2010-10-20 中国瑞林工程技术有限公司 Feeding method and equipment of anode refining furnace
CN106282597A (en) * 2016-08-19 2017-01-04 铜陵有色金属集团股份有限公司奥炉工程项目部 Low energy consumption type top blast stove and using method thereof

Also Published As

Publication number Publication date
JP3528553B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
CA2055841C (en) Apparatus for continuous copper smelting
EP0487031A1 (en) Process for continuous copper smelting
JP5726614B2 (en) Refractory brick cooling structure and method for converter
AU2003281723B2 (en) Cooling element
CN108559855A (en) A kind of blister copper pyrogenic process continuous refining device
US7993467B2 (en) Apparatus for removing matte-sticking and method for using the apparatus
JPH11181534A (en) Method for removing remaining molten material in copper-making furnace
CN108425021A (en) A kind of blister copper pyrogenic process continuous refining process
JPH0324238A (en) Lead smelting method
US5380353A (en) Copper smelting apparatus
KR20060074986A (en) Skimmer paddle recoverable valuable metal from slag
JP5487606B2 (en) Method for suppressing adhesion of metal to the RH vacuum degassing tank canopy
KR102096128B1 (en) Metal recovery method
JP2544720Y2 (en) Tuyere structure of gas injection nozzle for molten metal container
CN103499215B (en) A kind of hot charging device of melting short slag and method
JP4337579B2 (en) Molten channel switching device
JPS63128111A (en) Method for treating molten steel in remaining ladle
JP2000146452A (en) Fixed smelting furnace
JP3724134B2 (en) Furnace split type converter
JPS6018430Y2 (en) Structure of siphon outlet of smelting furnace
CA1067001A (en) Converter treatment
JP2507866Y2 (en) Separate top furnace for liquid metal
RU2176060C2 (en) Unit for metal smelting from oxide-containing ores
Stefanescu Cast Iron Melting Furnaces
Sweetin et al. Start-Up of the Kidd Smelter: Early Operating Results

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term