JPH11180790A - Carbon material for sliding and its production - Google Patents

Carbon material for sliding and its production

Info

Publication number
JPH11180790A
JPH11180790A JP9350902A JP35090297A JPH11180790A JP H11180790 A JPH11180790 A JP H11180790A JP 9350902 A JP9350902 A JP 9350902A JP 35090297 A JP35090297 A JP 35090297A JP H11180790 A JPH11180790 A JP H11180790A
Authority
JP
Japan
Prior art keywords
carbon material
sliding
graphite
impregnated
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9350902A
Other languages
Japanese (ja)
Other versions
JP4209484B2 (en
Inventor
Hiromitsu Inoue
弘光 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP35090297A priority Critical patent/JP4209484B2/en
Publication of JPH11180790A publication Critical patent/JPH11180790A/en
Application granted granted Critical
Publication of JP4209484B2 publication Critical patent/JP4209484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mechanical Sealing (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a carbon material for sliding into which a resin or metal is impregnated. SOLUTION: The carbon material has >=1.80 g/cm<3> bulk density, <=0.02 μm average pore radius, <=5 mm<3> /g cumulative pore volume and <=1 mass% water absorption at the ordinary temp. Three natural graphites different from one another in physical properties (preferably two earthy graphites and flake graphite and the earthy graphites are particularly earthy graphite having <=4% volatile matter content and 10-20 μm average particle diameter and earthy graphite having <=2% volatile matter content and 5-10 μm average particle diameter) are blended as carbonaceous starting materials, kneaded with a binder, comminuted and classified. The resultant powder of <=250 μm particle diameter is compacted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は摺動用炭素材及びそ
の製造方法に関し、特にメカニカルシールやロータリー
ジョイントシール等のシール材や各種軸受材として用い
るのに適した樹脂含浸質又は金属含浸質の摺動用炭素材
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding carbon material and a method for producing the same, and more particularly to a resin-impregnated or metal-impregnated sliding material suitable for use as a seal material such as a mechanical seal or a rotary joint seal or various bearing materials. The present invention relates to a working carbon material and a method for producing the same.

【0002】炭素質材料は一般に、自己潤滑性,耐熱
性,耐薬品性等に優れた性質を有している。この点に着
目して、炭素質材料を所定形状に成形した後焼結してな
る焼結炭素材が、メカニカルシール材や軸受材等の摺動
部材として使用されている。特に、一般の金属摺動材で
は使用できない高温雰囲気内や化学薬品液内をはじめ、
潤滑材の使用を嫌う分野で広く用いられている。さら
に、メカニカルシール材や軸受材等の摺動部における密
封条件、つまり摩耗に強くて気密性の良い状態をできる
だけ長時間保持したいとの要求が厳しくなるにつれて、
摺動用炭素材自体の摺動性能の向上が求められるように
なり、そのような要求に応えられる材料の一つとして樹
脂又は金属含浸質の炭素材が有力視されている。なお、
以下の説明では、主に樹脂含浸質の摺動用炭素材で代表
的に説明し、また樹脂含浸質の摺動用炭素材を以下単に
「含浸質炭素材」と略記することがある。
[0002] Carbonaceous materials generally have excellent properties such as self-lubricating properties, heat resistance and chemical resistance. Focusing on this point, a sintered carbon material formed by molding a carbonaceous material into a predetermined shape and then sintering the same is used as a sliding member such as a mechanical seal material or a bearing material. Especially in high temperature atmospheres and chemical liquids that cannot be used with general metal sliding materials,
Widely used in fields that dislike the use of lubricants. Furthermore, as the sealing conditions in sliding parts such as mechanical seal materials and bearing materials, that is, the demand for maintaining a state of strong abrasion and good airtightness as long as possible, becomes more severe,
As the sliding performance of the sliding carbon material itself is required to be improved, a resin or a metal-impregnated carbon material is considered to be promising as one of the materials that can meet such a demand. In addition,
In the following description, a resin-impregnated sliding carbon material will be mainly described as a typical example, and a resin-impregnated sliding carbon material may be simply abbreviated as “impregnated carbon material” below.

【0003】ところで、かかる含浸質炭素材からなる製
品としてのシール材や軸受材を得るには、炭素質原料を
焼結してなるブロック状の焼結炭素材をまず粗加工した
後、ブロック素材全体に樹脂を均質に含浸する。樹脂を
含浸する目的は、従来では、一般に人造黒鉛と天然黒鉛
の2種類を配合してなる炭素質原料を使用し、これと結
合材との混練物の粉砕品として100メッシュ程度の比
較的粒度の大きいものを成形し焼成しているため、焼成
終了後の焼結炭素材自体の組織の緻密度もそれに応じて
あまり高くないため、これを補うべく緻密度を高めるこ
とが狙いである。
In order to obtain a sealing material or a bearing material as a product made of such impregnated carbon material, a block-shaped sintered carbon material obtained by sintering a carbonaceous material is first roughened, and then a block material is obtained. The resin is uniformly impregnated throughout. Conventionally, the purpose of impregnating the resin is to use a carbonaceous raw material generally prepared by mixing two types of artificial graphite and natural graphite, and to obtain a relatively fine particle of about 100 mesh as a pulverized product of a kneaded product of this and a binder. Since the sintered carbon material itself is formed and fired, the density of the structure of the sintered carbon material itself after the firing is not so high correspondingly. Therefore, the aim is to increase the density to compensate for this.

【0004】そして、含浸処理が終了すれば、製品とし
ての寸法出しのための仕上げ加工を行うが、加工後の含
浸質炭素材を直ちに製品摺動材として使用することはで
きない。なぜならば、仕上げ加工時の表面相の切削が原
因で、加工面には比較的粗い開気孔が多数生じ、しかも
組織内と外部が連通しやすい構造体が形成され、このよ
うな構造体の素材(含浸質炭素材)をそのままシール材
や軸受材等の摺動材に使用すると、使用時に液漏れ等の
事故が発生しやすくなるからである。そこで、仕上げ加
工が終了した含浸質炭素材に対して再び樹脂の含浸を行
って、製品としての摺動部材に要求される使用時の機械
的強度,耐摩耗性及び気密性等を発揮させるに十分な程
度にまで組織の再緻密化を行っている。
[0004] When the impregnation process is completed, a finishing process for dimensioning as a product is performed, but the impregnated carbon material after the process cannot be used immediately as a product sliding material. This is because, due to the cutting of the surface phase at the time of finishing, a relatively large number of relatively open pores are formed on the machined surface, and a structure that easily communicates with the inside and outside of the tissue is formed. If the (impregnated carbon material) is used as it is for a sliding material such as a sealing material or a bearing material, an accident such as liquid leakage is likely to occur during use. Therefore, the impregnated carbon material that has been finished is impregnated with resin again so that the sliding member as a product can exhibit the required mechanical strength, wear resistance, airtightness, and the like during use. The organization has been re-densified to a sufficient degree.

【0005】[0005]

【発明が解決しようとする課題】上記したように、従来
の仕上げ加工前におけるブロック状の含浸質炭素材(い
わゆるブロック素材)の場合には、加工後に再含浸を行
なって組織の緻密度のレベルを回復(再上昇)しければ
製品化できない性状のものであった。このため、素材か
ら製品までの一貫生産を行うメーカーの場合、同じ含浸
作業の繰り返しに要する時間と費用が無駄になっている
という事情がある。また、一貫メーカーでなく、最終製
品化の工程のみを行うメーカーの場合、素材メーカーか
らブロック素材としての含浸質炭素材を仕入れて必要な
寸法出しを行うだけでは製品化できず、引き続き独自の
設備で再含浸を行うか、素材メーカーにリターンバック
して再含浸を行わせた後、最終製品化を果たしている。
従って、仕上げ加工メーカー,素材メーカー共に再含浸
の作業に煩わされる結果、その分生産性が悪影響を受け
ており、ひいては製品たるシール材や軸受材等のコスト
上昇を招くという問題があった。
As described above, in the case of a block-shaped impregnated carbon material (so-called block material) before the conventional finishing processing, the impregnated carbon material is re-impregnated after the processing to obtain the level of the fineness of the structure. Was not able to be commercialized if it was recovered (re-raised). For this reason, in the case of a manufacturer that performs integrated production from a material to a product, there is a situation that the time and cost required for repeating the same impregnation work are wasted. In addition, if the manufacturer is not an integrated manufacturer but only performs the final product production process, it cannot be commercialized simply by purchasing the impregnated carbon material as a block material from the material manufacturer and setting the required dimensions. After reimpregnation, or after returning to the material maker for reimpregnation, the final product is achieved.
Accordingly, both the finishing maker and the material maker are troubled by the re-impregnation work, and as a result, the productivity is adversely affected, and there is a problem that the cost of the sealing material, the bearing material, and the like as products is increased.

【0006】本発明は、上記の事情に鑑みてなされたも
のであり、その目的は、仕上げ加工終了時点の段階で素
材全体の緻密度が改善されたものとすることにより、そ
の分だけ機械的強度,耐摩耗性及び気密性の向上を可能
とし、その結果として再含浸を行わずにそのまま製品と
して使用しても十分な摺動性能を発揮することができる
ようなブロック素材としての含浸質炭素材そのものを提
供し、また、そのような含浸質炭素材の製造に適した方
法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the denseness of the entire material at the stage at the time of finishing processing, so that the mechanical property is increased accordingly. Impregnated carbon as a block material that can improve strength, abrasion resistance and airtightness, and consequently exhibit sufficient sliding performance even when used as a product without re-impregnation An object of the present invention is to provide a raw material itself and a method suitable for producing such an impregnated carbon material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成し得た本
発明に係る摺動用炭素材とは、嵩密度が1.80g/c
3 以上,平均ポア半径が0.02μm以下,累積気孔
容積が5mm3 /g以下,吸水率(常温)が1mass
%以下の物性を有することを特徴とする。これにより、
樹脂含侵を終了し、仕上げ加工前の含浸質炭素材(ブロ
ック素材)として、その組織構造を従来型含浸質炭素材
に比べてはるかに緻密なものに改質し得たものである。
従って、仕上げ加工を行っても、素材全体の緻密度改善
に伴って付与された機械的強度,耐摩耗性及び気密性の
上昇分は素材全体として保持される。
The sliding carbon material according to the present invention, which has achieved the above object, has a bulk density of 1.80 g / c.
m 3 or more, average pore radius of 0.02 μm or less, cumulative pore volume of 5 mm 3 / g or less, water absorption (normal temperature) of 1 mass
% Or less. This allows
The impregnated carbon material (block material) after the resin impregnation has been completed and the structure of the impregnated carbon material (block material) has been modified to a much denser structure than that of the conventional impregnated carbon material.
Therefore, even if the finishing is performed, the increase in mechanical strength, wear resistance, and airtightness provided with the improvement in the density of the entire material is maintained as the entire material.

【0008】従って、このような含浸質炭素材(ブロッ
ク素材)を仕上げ加工したものを直ちに製品摺動部材と
して使用しても、従来のように使用時に摺動部から流体
が漏れ出すということはなく、安定した気密性を十分保
持しうる摺動部材とすることができる。そればかりか、
摺動性能そのものが従来の再含浸質炭素材に比べてより
優れた摺動部材とすることができる。この結果、従来の
ような組織の再緻密化を行って必要な摺動性能を付与す
るための再含浸作業を不要とし、その分生産性の向上、
ひいては製品たるシール材や軸受材等の摺動部材の製造
コスト低減化を図ることができる。
Therefore, even if such impregnated carbon material (block material) is finished and processed and immediately used as a product sliding member, fluid does not leak from the sliding portion at the time of use as in the prior art. In addition, a sliding member that can sufficiently maintain stable airtightness can be obtained. Not only that,
It is possible to provide a sliding member having better sliding performance than the conventional re-impregnated carbon material. As a result, it is not necessary to perform re-impregnation work for imparting necessary sliding performance by performing re-densification of the structure as in the related art, thereby improving productivity,
As a result, it is possible to reduce the manufacturing cost of sliding members such as sealing materials and bearing materials as products.

【0009】また、上記目的を達成し得た本発明に係る
摺動用炭素材の製造方法とは、炭素質原料と結合材の混
練物を粉砕・分級した後成形し、次いで焼成,樹脂含浸
の各処理を順次行って樹脂含浸質の摺動用炭素材を製造
する方法において、前記炭素質原料は物性の相異なる3
種類の天然黒鉛を配合したものであり、この炭素質原料
と結合材の混練物の粉砕品を分級して、粒径が250μ
m以下となるように粒度調整したものを成形処理するこ
とを基本的特徴とする。
The method for producing a sliding carbon material according to the present invention, which has achieved the above object, comprises the steps of pulverizing and classifying a kneaded material of a carbonaceous raw material and a binder, forming the mixture, and then firing and impregnating the resin. In the method of sequentially performing each process to produce a resin-impregnated sliding carbon material, the carbonaceous raw materials may have different physical properties.
A mixture of the carbonaceous raw materials and the binder is classified into pulverized products having a particle size of 250 μm.
It is a basic feature that a material whose particle size has been adjusted to be not more than m is subjected to molding treatment.

【0010】この方法によれば、骨材たる炭素質原料の
粒度配合調整及び成形前の原料(炭素質原料と結合材の
混練粉砕品)の粒度調整という比較的簡単な調整作業だ
けで、一層緻密化された組織構造の焼結炭素材を得るこ
とができる。従って、その緻密化の進んだ焼結炭素材に
樹脂を含浸することにより、その含浸質炭素材そのもの
も全体として従来型含浸質炭素材に比べはるかに緻密質
であり、この結果、機械的強度,耐摩耗性及び気密性に
優れ、以後、再含浸を行わずにそのまま製品摺動材とし
て使用しても、従来材に比べ少なくとも同等以上の摺動
性能を十分に発揮することができるようなブロック素材
としての含浸質炭素材を得ることができる。
According to this method, a relatively simple adjustment operation of adjusting the particle size of the carbonaceous raw material as the aggregate and the particle size of the raw material (kneaded and crushed product of the carbonaceous raw material and the binder) before molding can be further achieved. A sintered carbon material having a densified structure can be obtained. Therefore, by impregnating the resin into the densified sintered carbon material, the impregnated carbon material itself is much denser than the conventional impregnated carbon material as a whole, and as a result, the mechanical strength Excellent in abrasion resistance and airtightness. Even if it is used as a product sliding material without re-impregnation, it can exhibit at least the same or better sliding performance than conventional materials. An impregnated carbon material as a block material can be obtained.

【0011】以下、本発明を詳しく説明する。 (1)本発明者は、まず、従来型の含浸質炭素材におい
て問題とされていた仕上げ加工後の再含浸作業を必要と
する点は、仕上げ加工前の素材ブロック、つまり含浸質
炭素材ブロックの状態でより緻密質なものが得られるな
らば、加工後に再含浸を行わずにそのまま製品摺動材と
して使用しても摺動時の気密性を十分維持できるはずで
あると考えた。さらにそのような一層の緻密質の含浸質
炭素材ブロックを得るためには、骨材の種類と粒度配合
の調整や成形前の原料(炭素質原料と結合材の混練粉砕
品)の粒度調整を適切に制御することが有効な解決手段
となるはずと考え、その考えを基に適切な制御手法を見
い出すべく鋭意実験検討を重ねた。
Hereinafter, the present invention will be described in detail. (1) The inventor of the present invention firstly needs a re-impregnation work after finishing, which has been a problem in the conventional impregnated carbon material, because the material block before finishing, that is, the impregnated carbon material block It was thought that if a denser material could be obtained in the above condition, the airtightness at the time of sliding could be sufficiently maintained even if the material was used as a product sliding material without re-impregnation after processing. Further, in order to obtain such a denser impregnated carbonaceous material block, it is necessary to adjust the type of aggregate and the particle size composition and to adjust the particle size of the raw material (kneaded and crushed product of the carbonaceous raw material and the binder) before molding. We thought that proper control would be an effective solution, and based on that idea, we worked diligently to find an appropriate control method.

【0012】その結果、最終的に、上記目的を達成し得
る物の発明として、「嵩密度が1.80g/cm3
上,平均ポア半径が0.02μm以下,累積気孔容積が
5mm 3 /g以下,吸水率(常温)が1mass%以下
の樹脂又は金属含浸質の摺動用炭素材」との特有の構成
を採用し得たものである。また、その物の製造方法の発
明として、「骨材たる炭素質原料と結合材の混練物を粉
砕・分級した後成形し、次いで焼成,樹脂含浸の各処理
を順次行って含浸質炭素材を製造する方法において、前
記炭素質原料は物性の相異なる3種類の天然黒鉛を配合
したものであり、この炭素質原料と結合材の混練物の粉
砕品を分級して、粒径が250μm以下となるように粒
度調整したものを成形処理する」という特有の構成を採
用し得たものである。
As a result, the above object can be finally achieved.
As an invention of a material having a bulk density of 1.80 g / cmThreeLess than
Above, the average pore radius is less than 0.02μm and the cumulative pore volume is
5mm Three/ G or less, water absorption (normal temperature) is 1 mass% or less
Configuration of "Sliding carbon material of resin or metal impregnated material"
Can be adopted. In addition, the development of a manufacturing method
According to the report, “The kneaded mixture of carbonaceous raw material and binder
After crushing and classifying, molding, then firing, resin impregnation
Are sequentially performed to produce the impregnated carbon material,
The carbonaceous material contains three types of natural graphite with different physical properties
Powder of the kneaded material of the carbonaceous raw material and the binder.
Classify the crushed product and reduce the particle size to 250 μm or less.
Process the product with the adjusted degree).
It could be used.

【0013】(2)本発明の含浸質炭素材の製造方法で
は、まず炭素質原料として物性の相異なる3種類の天然
黒鉛を配合したものからなる骨材に結合材を添加して、
ロール等の手段により均一に混練する。3種類の天然黒
鉛のうち、2種類を土状黒鉛とし残部を鱗状黒鉛とする
配合構成、特に2種類の土状黒鉛を、揮発分が4%以
下,平均粒径が10〜20μmの物性を有する土状黒鉛
(以下「第1土状黒鉛」という。)と揮発分が2%以
下,平均粒径が5〜10μmの物性を有する土状黒鉛
(以下「第2土状黒鉛」という。)で構成することによ
り、含浸質炭素材の強度面及び組織の緻密度面での一層
の改善を期待することができる。
(2) In the method for producing an impregnated carbon material of the present invention, first, a binder is added to an aggregate made of a mixture of three types of natural graphite having different physical properties as a carbonaceous raw material.
Knead uniformly by means such as a roll. Of the three types of natural graphite, two types of earth graphite and the balance of scale graphite are used as the balance. In particular, two types of earth graphite are used to obtain physical properties having a volatile content of 4% or less and an average particle size of 10 to 20 μm. Earth graphite (hereinafter referred to as "first earth graphite") and earth graphite having a volatile content of 2% or less and an average particle size of 5 to 10 m (hereinafter referred to as "second earth graphite"). With this configuration, further improvement in the strength of the impregnated carbon material and the denseness of the structure can be expected.

【0014】また、第1土状黒鉛と第2土状黒鉛の配合
割合としては、それぞれ30〜70重量%及び70〜3
0重量%とすべきである。いずれの土状黒鉛も、前記範
囲を逸脱すると緻密性改善の効果が現れにくくなる点を
考慮したものである。また、結合材としては、ピッチ
類,樹脂等が挙げられるが、開気孔の均一化という点で
ピッチ類の使用が望ましい。得られた混練物は、粉砕し
た後分級し、粒径が250μm以下に相当する粉砕品だ
けを用いて金型成形しブロック化する。なお、成形に用
いる粉砕品の粒径が大きくなるにつれて、開気孔径の増
大及び開気孔の不均一度の増加による悪影響が生じやす
くなるため、180μm以下とすることがより望まし
い。
The mixing ratio of the first earth graphite and the second earth graphite is 30 to 70% by weight and 70 to 3% by weight, respectively.
It should be 0% by weight. In any of the ground graphites, it is considered that the effect of improving the compactness becomes difficult to appear if the above range is not satisfied. Further, examples of the binder include pitches, resins, and the like, and the use of pitches is desirable in terms of uniforming open pores. The obtained kneaded material is pulverized and then classified, and is molded into a block by using only a pulverized product having a particle size of 250 μm or less. In addition, as the particle size of the pulverized product used for molding increases, an adverse effect due to an increase in the diameter of the open pores and an increase in the nonuniformity of the open pores is likely to occur.

【0015】次に、ブロック化された混練物を約100
0℃で40時間かけて焼成することにより、焼結炭素材
(ブロック素材)となす。こうして得られた焼結炭素材
は、従来の焼結炭素材に比べてはるかに緻密質のもので
ある。そして、この焼結炭素材は、上述の骨材について
の特有の粒度配合調整及び成形前の原料(骨材と結合材
の混練粉砕品)についての特有の粒度調整という従来製
法には見られない制御手段、しかも比較的簡単な調整作
業を中心とする制御手段を採用することにより得ること
ができる。
Next, the blocked kneaded material is added to about 100
By sintering at 0 ° C. for 40 hours, a sintered carbon material (block material) is formed. The sintered carbon material thus obtained is much denser than the conventional sintered carbon material. And this sintered carbon material is not seen in the conventional manufacturing method of adjusting the specific particle size of the above-mentioned aggregate and adjusting the specific particle size of the raw material (kneaded and crushed product of the aggregate and the binder) before molding. It can be obtained by employing a control means, and a control means centering on a relatively simple adjustment operation.

【0016】この後、素材ブロックを目的の摺動部材製
品に近い形状に粗加工した後、常法に従って素材ブロッ
クの全体に熱硬化性樹脂を含浸する。熱硬化性樹脂とし
て特別の限定はないが、フラン樹脂,フェノール樹脂等
は、耐熱性,耐蝕性を有し、しかも含浸性に優れている
点で推奨できるものである。熱硬化性樹脂を含浸したも
のを加熱処理し、樹脂の硬化を完結させることによっ
て、製品に近い形状の含浸質炭素材が得られるが、得ら
れた含浸質炭素材も、従来型含浸質炭素材に比べて一層
緻密質のものとなっている。
Thereafter, the raw material block is roughly processed into a shape close to the intended sliding member product, and the entire raw material block is impregnated with a thermosetting resin according to a conventional method. Although there is no particular limitation on the thermosetting resin, furan resin, phenol resin and the like can be recommended because they have heat resistance, corrosion resistance and excellent impregnation. The impregnated carbon material impregnated with the thermosetting resin is subjected to heat treatment to complete the curing of the resin, so that an impregnated carbon material having a shape close to the product can be obtained. It is more dense than the material.

【0017】そして、最後に必要な寸法出しのための仕
上げ加工を行うが、加工後の含浸質炭素材も、その組織
構造が従来の仕上げ加工後における含浸質炭素材に比べ
てはるかに緻密質であり、この結果、機械的強度,耐摩
耗性及び気密性等の点で従来材以上に優れたものとする
ことができる。従って、仕上げ加工後の含浸質炭素材を
そのまま製品のシール材や軸受材等の摺動部材として使
用しても、従来材に比べ少なくとも同等以上の摺動性能
を十分に発揮させることができる。従って、従来のよう
な組織の再緻密化を行うための再含浸作業を不要とし、
その分生産性の向上、ひいては製品たるシール材や軸受
材等に要する製造コストの低減化を図ることができる。
[0017] Finally, the finishing process for obtaining the required dimensions is performed. The texture structure of the impregnated carbon material after the processing is much denser than that of the impregnated carbon material after the conventional finishing process. As a result, mechanical strength, wear resistance, airtightness and the like can be made superior to conventional materials. Therefore, even if the impregnated carbon material after finishing is used as it is as a sliding member such as a sealing material or a bearing material of a product, it can sufficiently exhibit at least the same or higher sliding performance as compared with the conventional material. Therefore, the conventional re-impregnation work for re-densifying the structure is unnecessary,
The productivity can be improved accordingly, and the manufacturing costs required for the sealing material, bearing material and the like as products can be reduced.

【0018】なお、摺動部材の用途によっては、樹脂を
含浸する代わりに適当な金属、例えば鉛,銅,錫,ホワ
イトオメタル,バビットメタル等を含浸し、耐熱性や機
械的強度の一層の改善を図ることも可能である。
Depending on the use of the sliding member, instead of impregnating the resin, a suitable metal such as lead, copper, tin, white metal or babbit metal may be impregnated to further improve heat resistance and mechanical strength. Improvements can also be made.

【0019】[0019]

【実施例】次に、実施例により本発明を更に詳細に説明
する。 (実施例1)骨材として、揮発分が4%以下,平均粒径
が8〜12μmの第1土状黒鉛を45重量%、揮発分が
2%以下,平均粒径が6〜10μmの第2土状黒鉛を4
5重量%、鱗状黒鉛を10重量%配合したものを用意
し、これに結合材としてのピッチ類を添加してロール練
りした。得られた混練物を粉砕した後分級により粒度調
整して、粒径が250μmに相当する粉砕品を用いて室
温で金型成形してブロック化した。次に、ブロック化し
た混練物を1000℃で40時間かけて焼成し、外形1
20×厚み60(mm)のブロック状焼結炭素材を得
た。次に、このブロック焼結炭素材を後記の製品に近い
形状になるまで粗加工した後、常法に従ってフェノール
樹脂を含浸し、その後200℃で2時間保持する熱処理
を行ってフェノール樹脂を硬化させて含浸質の摺動用炭
素材を得た。そして、得られた摺動用炭素材に仕上げ加
工を施して、外形56×内径42×厚み26(mm)の
リング状のメカニカルシール材(製品)を得た。
Next, the present invention will be described in more detail by way of examples. (Example 1) As an aggregate, 45% by weight of a first earth graphite having a volatile content of 4% or less and an average particle size of 8 to 12 µm, a volatile material of 2% or less, and an average particle size of 6 to 10 µm. 2 earth graphite 4
A mixture containing 5% by weight and 10% by weight of scale graphite was prepared, and pitches as a binder were added thereto and kneaded with a roll. The obtained kneaded material was pulverized, adjusted for particle size by classification, and molded into a block at room temperature using a pulverized product having a particle size of 250 μm to form a block. Next, the kneaded material that has been blocked is fired at 1000 ° C. for 40 hours,
A block-shaped sintered carbon material of 20 × 60 (mm) was obtained. Next, the block sintered carbon material is roughly processed to a shape close to a product to be described later, then impregnated with a phenol resin according to a conventional method, and then subjected to a heat treatment at 200 ° C. for 2 hours to cure the phenol resin. Thus, an impregnated carbon material for sliding was obtained. Then, the obtained carbon material for sliding was subjected to a finishing process to obtain a ring-shaped mechanical seal material (product) having an outer diameter of 56 x inner diameter of 42 x thickness of 26 (mm).

【0020】得られた改良型のメカニカルシール材につ
いて、その物性,気密安定性(耐摩耗性能)を調べるた
めに以下の通り試験を行い、評価した。物性の結果につ
いては、製造条件と併せて表1に示す。但し、累積気孔
分布及び吸水率については、それぞれ図1,図2に示
し、また気密性については図3に示す。 〔物性試験〕改良型の摺動用炭素材について、嵩密
度,硬さ,曲げ強さ,圧縮強さ,弾性係数,熱膨張係
数,熱伝導率,耐熱温度,水銀圧入法による累積気孔分
布,常温水中浸漬での吸水率を測定した。 〔気密安定性(耐摩耗性能)の試験〕以下の条件
((イ)〜(ヘ))で摩耗試験を行い、その摩耗量で気
密安定性(持続性能)を評価した。 (イ)密封流体:水道水 (ロ)流体圧力:1176kPa (ハ)接触面圧力:1910kPa (ニ)平均周速:8.8m/s (ホ)相手材材質:WC (ヘ)試験時間:100時間
With respect to the improved mechanical seal material thus obtained, the following tests were conducted in order to examine its physical properties and hermetic stability (wear resistance), and the evaluation was performed. The results of the physical properties are shown in Table 1 together with the production conditions. However, the cumulative pore distribution and the water absorption are shown in FIGS. 1 and 2, respectively, and the airtightness is shown in FIG. [Physical properties test] For the improved sliding carbon material, the bulk density, hardness, bending strength, compressive strength, elastic modulus, coefficient of thermal expansion, thermal conductivity, heat resistant temperature, cumulative pore distribution by mercury intrusion method, room temperature The water absorption by immersion in water was measured. [Test of Airtight Stability (Abrasion Resistance Performance)] A wear test was performed under the following conditions ((a) to (f)), and the airtight stability (sustainability) was evaluated by the amount of wear. (A) Sealed fluid: tap water (b) Fluid pressure: 1176 kPa (c) Contact surface pressure: 1910 kPa (d) Average peripheral speed: 8.8 m / s (e) Mate material: WC (f) Test time: 100 time

【0021】(実施例2)実施例1と同一の骨材、同一
の結合材を使用するものの、骨材の配合割合として揮発
分が4%以下,平均粒径が8〜12μmの第1土状黒鉛
を63重量%、揮発分が2%以下,平均粒径が6〜10
μmの第2土状黒鉛を27重量%、鱗状黒鉛を10重量
%配合したものに変更する以外は、実施例1と同一の製
造条件で本発明に係る樹脂含浸質の摺動用炭素材を得
た。得られた改良型の摺動用炭素材について実施例1と
同様の試験を行った。その結果を実施例1と同様、表1
及び図1〜図3に併せて示す。
Example 2 Although the same aggregate and the same binder as in Example 1 were used, the first soil having a volatile content of 4% or less and an average particle size of 8 to 12 μm as the mixing ratio of the aggregate was used. 63% by weight of graphite, volatile matter 2% or less, average particle size 6-10
A resin-impregnated sliding carbon material according to the present invention was obtained under the same manufacturing conditions as in Example 1, except that the composition was changed to a composition in which 27% by weight of the second earth graphite of 27 μm and 10% by weight of scale graphite were blended. Was. The same test as in Example 1 was conducted on the obtained improved sliding carbon material. The results are shown in Table 1 as in Example 1.
And FIG. 1 to FIG.

【0022】(実施例3)実施例1と同一の骨材、同一
の結合材を使用するものの、骨材の配合割合として揮発
分が4%以下,平均粒径が8〜12μmの第1土状黒鉛
を27重量%、揮発分が2%以下,平均粒径が6〜10
μmの第2土状黒鉛を63重量%、鱗状黒鉛を10重量
%配合したものに変更する以外は、実施例1と同一の製
造条件で本発明に係る樹脂含浸質の摺動用炭素材を得
た。得られた改良型の摺動用炭素材について実施例1と
同様の試験を行った。その結果を実施例1と同様、表1
及び図1〜図3に併せて示す。
Example 3 Although the same aggregate and the same binder as in Example 1 were used, the first soil having a volatile content of 4% or less and an average particle size of 8 to 12 μm as the mixing ratio of the aggregate was used. 27% by weight of graphite, volatile matter is 2% or less, average particle size is 6-10.
A resin-impregnated sliding carbon material according to the present invention was obtained under the same manufacturing conditions as in Example 1 except that the composition was changed to a composition in which 63% by weight of the second earth graphite of 63 μm and 10% by weight of scale graphite were blended. Was. The same test as in Example 1 was conducted on the obtained improved sliding carbon material. The results are shown in Table 1 as in Example 1.
And FIG. 1 to FIG.

【0023】(実施例4)実施例1と同一の骨材及び結
合材を使用し、かつ同一の製造条件でブロック状焼結炭
素材を得た後、同様の粗加工を施した。次に、常法に従
ってアンチモンの含浸処理を施して本発明に係る金属含
浸質の摺動用炭素材を得た。得られた摺動用炭素材を仕
上げ加工して、外形56×内径42×厚み26(mm)
のリング状メカニカルシール材(製品)を得た。得られ
た改良型の軸受材について、実施例1と同様の試験を行
った。その結果を表1及び図1〜図3に併せて示す。
Example 4 A block-shaped sintered carbon material was obtained using the same aggregate and binder as in Example 1 under the same manufacturing conditions, and then subjected to the same roughing. Next, antimony impregnation treatment was performed according to a conventional method to obtain a metal-impregnated sliding carbon material according to the present invention. The obtained sliding carbon material is finish-processed, and the outer shape 56 x inner diameter 42 x thickness 26 (mm)
A ring-shaped mechanical seal material (product) was obtained. The same test as in Example 1 was conducted on the obtained improved bearing material. The results are shown in Table 1 and FIGS.

【0024】(比較例1)従来の製法に従って、実施例
1と同一寸法のメカニカルシール材を得た。即ち、50
重量%の人造黒鉛と50重量%の土状黒鉛(揮発分が4
%以下,平均粒径が8〜12μm)からなる骨材に、結
合材としてフェノール樹脂を添加して混練した後、粉砕
・分級して平均粒径を300μmに調整した後、室温で
の金型成形、さらには1000℃での焼成を経て、ブロ
ック状の焼結炭素材を得た。次に、この焼結炭素材に対
して実施例1と同様の粗加工及び樹脂含浸熱処理(但
し、樹脂はフラン樹脂を使用)を実施した後、さらに目
的の製品形状に仕上げ加工して従来型の樹脂含浸質摺動
用炭素材を得た。得られた従来型の摺動用炭素材(仕上
げ加工終了時点での樹脂含浸質摺動用炭素材)につい
て、実施例1と同様の試験を行った。その結果を表1及
び図1〜図3に併せて示す。
Comparative Example 1 A mechanical seal material having the same dimensions as in Example 1 was obtained according to a conventional manufacturing method. That is, 50
Wt% artificial graphite and 50 wt% earth graphite (having a volatile content of 4%).
%, An average particle size of 8 to 12 μm), a phenol resin is added as a binder to the aggregate, and the mixture is kneaded, and then crushed and classified to adjust the average particle size to 300 μm. After molding and further firing at 1000 ° C., a block-shaped sintered carbon material was obtained. Next, after performing the same roughing and resin impregnation heat treatment (however, using a furan resin for the resin) as in Example 1, the sintered carbon material is further processed to a desired product shape, and the conventional carbon material is processed. To obtain a resin-impregnated carbon material for sliding. The same test as in Example 1 was performed on the obtained conventional sliding carbon material (the resin-impregnated sliding carbon material at the end of finishing). The results are shown in Table 1 and FIGS.

【0025】(比較例2)比較例1で得られた樹脂含浸
質摺動用炭素材に対し、再び樹脂含浸熱処理を施して再
緻密化された組織の含浸質炭素材を得た。この炭素材に
ついても、実施例1と同様の試験を行い、その結果を表
1及び図1〜図3に併せて示す。
Comparative Example 2 The resin-impregnated sliding carbon material obtained in Comparative Example 1 was subjected to a resin-impregnation heat treatment again to obtain a re-densified structure-impregnated carbon material. The same test as in Example 1 was performed on this carbon material, and the results are shown in Table 1 and FIGS.

【0026】[0026]

【表1】 [Table 1]

【0027】表1及び図1〜図3から明らかなように、
本発明の要件を満たす実施例1〜4はいずれも、従来例
(仕上げ加工終了時点での摺動用炭素材)に相当する比
較例1に比べて、組織の緻密度のレベルが非常に高く、
この結果、機械的強度,耐摩耗性及び気密性等の点では
るかに優れていることが分かる。また、従来例(再含浸
後の摺動用炭素材)に相当する比較例2と比べても、機
械的強度,耐摩耗性及び気密性等の面でより優れている
ことが分かる。
As is clear from Table 1 and FIGS.
All of Examples 1 to 4 satisfying the requirements of the present invention have a very high level of microstructure density as compared with Comparative Example 1 corresponding to a conventional example (sliding carbon material at the end of finishing).
As a result, it can be seen that the mechanical strength, wear resistance, airtightness and the like are far superior. Further, it can be seen that, in comparison with Comparative Example 2 corresponding to the conventional example (sliding carbon material after re-impregnation), mechanical strength, wear resistance, airtightness, and the like are more excellent.

【0028】[0028]

【発明の効果】以上説明したように、本発明の摺動用炭
素材は、改良型の樹脂又は金属含浸質の摺動用炭素材
(ブロック素材)として、その組織構造が従来型の含浸
質炭素材に比べてはるかに緻密化されており、この結
果、機械的強度,耐摩耗性及び気密性等に優れたもので
ある。従って、このようなブロック素材としての含浸質
炭素材を仕上げ加工したものをそのまま製品として使用
しても、従来材の場合に問題視されていた摺動時の液漏
れのおそれは全くなく、より確実かつ安定した摺動性能
を十分に発揮させることができる。この結果、従来のよ
うな組織の再緻密化を行って必要な摺動性能を付与する
ための再含浸作業を不要とし、その分生産性の向上、ひ
いては製品たるシール材や軸受材等の摺動部材に要する
製造コストの低減化を図ることができる。
As described above, the sliding carbon material of the present invention is an improved resin or metal-impregnated sliding carbon material (block material), and has a conventional structure of a conventional impregnated carbon material. It is much more densified than that of, and as a result, it is excellent in mechanical strength, wear resistance, airtightness and the like. Therefore, even if the finished material of the impregnated carbon material as such a block material is used as it is as a product, there is no danger of liquid leakage at the time of sliding which was regarded as a problem in the case of the conventional material, and The reliable and stable sliding performance can be sufficiently exhibited. As a result, the conventional re-densification of the structure and the re-impregnation work for providing the necessary sliding performance are not required, thereby improving the productivity and consequently the sliding of the sealing material and bearing material as products. The manufacturing cost required for the moving member can be reduced.

【0029】また、本発明に係る摺動用炭素材の製造方
法によれば、骨材たる炭素質原料の粒度配合調整及び成
形前の原料(炭素質原料と結合材の混練粉砕品)の粒度
調整という比較的簡単な調整作業だけで、一層緻密質の
焼結炭素材を得ることができ、引き続きその緻密質の焼
結炭素材に樹脂又は金属を含浸するだけで、従来の再含
浸を施した含浸質炭素材よりも一層緻密質で高強度かつ
耐摩耗性に優れた樹脂又は金属含浸質の摺動用炭素材を
得ることができる。
Further, according to the method for manufacturing a sliding carbon material according to the present invention, the particle size adjustment of the carbonaceous raw material as the aggregate and the particle size adjustment of the raw material (the kneaded and crushed product of the carbonaceous raw material and the binder) before molding are performed. With a relatively simple adjustment work, it is possible to obtain a more dense sintered carbon material, and then continuously impregnate the dense sintered carbon material with a resin or metal, and perform the conventional re-impregnation. A resin or metal-impregnated carbonaceous material for sliding can be obtained which is denser, higher in strength and more excellent in wear resistance than the impregnated carbon material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜4及び比較例1〜2について、水銀
圧入法により累積気孔分布を調べた結果を示すグラフで
ある。
FIG. 1 is a graph showing the results of examining the cumulative pore distribution of Examples 1 to 4 and Comparative Examples 1 and 2 by the mercury intrusion method.

【図2】実施例1〜4及び比較例1〜2について、常温
水中浸漬での吸水率を調べた結果を示すグラフである。
FIG. 2 is a graph showing the results of examining the water absorption of Examples 1-4 and Comparative Examples 1-2 when immersed in normal temperature water.

【図3】実施例1〜4及び比較例1〜2についての耐摩
耗性試験の結果を示すグラフであり、(a)はカーボン
比摩耗量を基準としたもの、(b)は相手材比摩耗量を
基準としたものである。
FIGS. 3A and 3B are graphs showing the results of wear resistance tests on Examples 1 to 4 and Comparative Examples 1 and 2, wherein FIG. 3A is based on carbon specific wear, and FIG. It is based on the amount of wear.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 嵩密度が1.80g/cm3 以上,平均
ポア半径が0.02μm以下,累積気孔容積が5mm3
/g以下,吸水率(常温)が1mass%以下であるこ
とを特徴とする樹脂又は金属含浸質の摺動用炭素材。
1. A bulk density of 1.80 g / cm 3 or more, an average pore radius of 0.02 μm or less, and a cumulative pore volume of 5 mm 3
/ G or less and a water absorption (normal temperature) of 1 mass% or less.
【請求項2】 炭素質原料と結合材の混練物を粉砕・分
級した後成形し、次いで焼成,樹脂又は金属含浸の各処
理を順次行って樹脂又は金属含浸質の摺動用炭素材を製
造する方法において、前記炭素質原料は物性の相異なる
3種類の天然黒鉛を配合したものであり、この炭素質原
料と結合材の混練物の粉砕品を分級して、粒径が250
μm以下となるように粒度調整したものを成形処理する
ことを特徴とする摺動用炭素材の製造方法。
2. A kneaded product of a carbonaceous raw material and a binder is pulverized and classified, then molded, and then sequentially subjected to firing, resin or metal impregnation, to produce a resin or metal impregnated sliding carbon material. In the method, the carbonaceous raw material is a mixture of three kinds of natural graphite having different physical properties, and the kneaded material of the carbonaceous raw material and the binder is classified to have a particle size of 250.
A method for producing a carbon material for sliding, characterized in that a material having a particle size adjusted to be not more than μm is molded.
【請求項3】 上記3種類の天然黒鉛のうち、2種類は
土状黒鉛であり、他の1種類は鱗状黒鉛である請求項2
に記載の摺動用炭素材の製造方法。
3. The three kinds of natural graphite are two kinds of earth graphite, and the other one is scaly graphite.
3. The method for producing a carbon material for sliding according to item 1.
【請求項4】 上記2種類の土状黒鉛は、揮発分が4%
以下,平均粒径が10〜20μmの土状黒鉛及び揮発分
が2%以下,平均粒径が5〜10μmの土状黒鉛である
請求項3に記載の摺動用炭素材の製造方法。
4. The two types of earth graphite have a volatile content of 4%.
4. The method for producing a sliding carbon material according to claim 3, wherein the graphite is an earth graphite having an average particle diameter of 10 to 20 [mu] m and an earth graphite having a volatile content of 2% or less and an average particle diameter of 5 to 10 [mu] m.
【請求項5】 上記2種類の土状黒鉛の配合割合は、揮
発分が4%以下,平均粒径が10〜20μmの土状黒鉛
が30〜70重量%、揮発分が2%以下,平均粒径が5
〜10μmの土状黒鉛が70〜30重量%である請求項
4に記載の摺動用炭素材の製造方法。
5. The compounding ratio of said two types of earth graphite is as follows: volatile matter is 4% or less, earth graphite having an average particle size of 10 to 20 μm is 30 to 70% by weight, volatile matter is 2% or less, average Particle size is 5
The method for producing a sliding carbon material according to claim 4, wherein the amount of the ground graphite of 10 to 10 µm is 70 to 30% by weight.
【請求項6】 結合材がピッチ類である請求項2乃至請
求項5のいずれか一項に記載の摺動用炭素材の製造方
法。
6. The method for producing a sliding carbon material according to claim 2, wherein the binder is pitch.
JP35090297A 1997-12-19 1997-12-19 Sliding carbon material, sealing material using sliding carbon material, and manufacturing method of sliding carbon material Expired - Fee Related JP4209484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35090297A JP4209484B2 (en) 1997-12-19 1997-12-19 Sliding carbon material, sealing material using sliding carbon material, and manufacturing method of sliding carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35090297A JP4209484B2 (en) 1997-12-19 1997-12-19 Sliding carbon material, sealing material using sliding carbon material, and manufacturing method of sliding carbon material

Publications (2)

Publication Number Publication Date
JPH11180790A true JPH11180790A (en) 1999-07-06
JP4209484B2 JP4209484B2 (en) 2009-01-14

Family

ID=18413682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35090297A Expired - Fee Related JP4209484B2 (en) 1997-12-19 1997-12-19 Sliding carbon material, sealing material using sliding carbon material, and manufacturing method of sliding carbon material

Country Status (1)

Country Link
JP (1) JP4209484B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011538A (en) * 2002-06-07 2004-01-15 Tokyo Gas Co Ltd Absorption solution pump
JP2008128477A (en) * 2006-11-24 2008-06-05 Hitachi Appliances Inc Method of manufacturing bearing
JP2014133686A (en) * 2013-01-11 2014-07-24 Hiroshima Prefecture Method for manufacturing a carbon-based metal composite material
WO2014162692A1 (en) * 2013-04-01 2014-10-09 東洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011538A (en) * 2002-06-07 2004-01-15 Tokyo Gas Co Ltd Absorption solution pump
JP2008128477A (en) * 2006-11-24 2008-06-05 Hitachi Appliances Inc Method of manufacturing bearing
JP2014133686A (en) * 2013-01-11 2014-07-24 Hiroshima Prefecture Method for manufacturing a carbon-based metal composite material
WO2014162692A1 (en) * 2013-04-01 2014-10-09 東洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings
CN105074243A (en) * 2013-04-01 2015-11-18 东洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings
EP2982877A4 (en) * 2013-04-01 2016-11-16 Toyo Tanso Co Carbon material for bearings and sliding member formed of carbon material for bearings
JPWO2014162692A1 (en) * 2013-04-01 2017-02-16 東洋炭素株式会社 Carbon material for bearing and sliding member made of carbon material for bearing
US9902839B2 (en) 2013-04-01 2018-02-27 Toyo Tanso Co., Ltd. Carbon material for bearings and sliding member made of carbon material for bearings

Also Published As

Publication number Publication date
JP4209484B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP5566608B2 (en) Two-phase nanoporous glassy carbon material and method for producing the same
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
EP0218080B1 (en) Compositions for improving the stability of intercalated graphite structural members
EP0325388B1 (en) Method for producing a high-density sintered body of silicon carbide
US7163650B2 (en) Process for producing ceramic bearing components
JPH08143364A (en) Production of fiber reinforced silicon carbide composite ceramic molded body
JPH11180790A (en) Carbon material for sliding and its production
US4407988A (en) Method for preparing a wear-resistant composition containing fluorinated graphite, graphite fibers and PTFE
US7144545B2 (en) Process for the production of ceramic bearing components
US4342679A (en) Wear-resistant sintered composition having an empirical formula CF1.3 comprising graphite fibers, fluonnated graphite, and PTFE
WO2003006373A1 (en) Graphite fine powder, and production method and use thereof
KR100860499B1 (en) Pencil Lead Composition and Pencil Lead Manufacturing Thereby
JP4176184B2 (en) Sliding member for dry gas
KR102333227B1 (en) Method for manufacturing graphite composite and graphite composite manufactured thereby
JP2000331690A (en) Manufacture of separator for fuel cell
JPH0337108A (en) Isotropic carbon material
CN107540380A (en) The bearing material of porous SiC and its manufacture method of hole composition with three forms
JP4150954B2 (en) Metal-impregnated carbon sliding material and manufacturing method thereof
JPS6018696B2 (en) polytetrafluoroethylene composition
JPS61279653A (en) Ni-base composite material excellent in wear resistance and corrosion resistance and its production
JPH068266A (en) Spiral powder compression molded object and production tbereof
JPH1081847A (en) Production of pencil lead
JPH02186168A (en) Slidable member for mechanical seal and manufacture thereof
JPH0226818A (en) Carbonaceous material
JPH04119909A (en) Carbon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees