JPH11180757A - Fiber-reinforced lightweight cellular concrete - Google Patents

Fiber-reinforced lightweight cellular concrete

Info

Publication number
JPH11180757A
JPH11180757A JP35105397A JP35105397A JPH11180757A JP H11180757 A JPH11180757 A JP H11180757A JP 35105397 A JP35105397 A JP 35105397A JP 35105397 A JP35105397 A JP 35105397A JP H11180757 A JPH11180757 A JP H11180757A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing
para
concrete
alc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35105397A
Other languages
Japanese (ja)
Other versions
JP3433081B2 (en
Inventor
Haruo Shigeno
治雄 滋野
Sadamitsu Murayama
定光 村山
Yukikage Matsui
亨景 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP35105397A priority Critical patent/JP3433081B2/en
Publication of JPH11180757A publication Critical patent/JPH11180757A/en
Application granted granted Critical
Publication of JP3433081B2 publication Critical patent/JP3433081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0691Polyamides; Polyaramides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Abstract

PROBLEM TO BE SOLVED: To improve the effect of fiber reinforcement on the concrete (ALC (autoclaved lightweight concrete)) cured under conditions of high temp. and high pressure and also to enhance mechanical properties such as flexural strength of this concrete. SOLUTION: This concrete is produced by using powdery siliceous raw material, powdery calcareous raw material and cement as the main raw materials and mixing reinforcing para-aramide short fiber into these main raw materials. In the concrete, the fiber reinforcing para-aramide short fiber used has a fiber length that is >=2 times as long as the average cell diameter in the concrete and also <=50 mm. Of this fiber reinforcing para-aramide short fiber, the ratio of the amount of such short fiber that it has at least two ring-shaped projecting parts independent to each other, e.g. DL1, DL2 and DL3 in the figure, in the length direction, the maximum diameter of each of which projecting parts DL1, DL2 and D13 is >=1.1 times as long as the average diameter of small diameter parts DS1, DS2, DS3 and DS4 for connecting the projecting parts DL1, DL2 and DL3 to each other, to the total amount of the fiber reinforcing para-aramide short fiber is >=30 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、曲げ強度及び曲げ
靭性に優れた軽量気泡コンクリートに関する。
The present invention relates to a lightweight cellular concrete excellent in bending strength and bending toughness.

【0002】[0002]

【従来の技術】軽量気泡コンクリート(以下ALCと略
称することがある)は、珪石等の珪酸質原料、石灰等の
石灰質原料及びセメント等の混合物材料に、水を適当な
割合で混合し、次いで発泡させ半可塑状とした後、オー
トクレーブにて高温高圧下で養生(通常は水蒸気による
高温高圧養生法が適用される)を行い、トバモライト結
晶を成長させて製造されている。
2. Description of the Related Art Light-weight cellular concrete (hereinafter sometimes referred to as ALC) is prepared by mixing water in a suitable material such as a silicate-based material such as silica stone, a calcareous material such as lime, and cement. After foaming to make it semi-plastic, it is cured in an autoclave under high temperature and high pressure (normally, a high temperature and high pressure curing method using steam is applied) to grow tobermorite crystals.

【0003】そして、発泡させるために使用する起泡剤
としては、通常、アルミニウム金属粉末を用いるのが一
般的であるが、界面活性剤を用い混練中に起泡させるミ
ックスフォーム法や、予め気泡を作製して混合するプレ
フォーム法等も最近では採用されている。
As a foaming agent used for foaming, aluminum metal powder is generally used. In general, a foaming agent is used during the kneading using a surfactant, or a foaming agent is used in advance. In recent years, a preform method of producing and mixing the same has been adopted.

【0004】このようにして製造されたALCは、多数
の気泡を有するため、低比重で水よりも軽いという特徴
を有している反面、非常に脆く、曲げ強度、曲げ靭性、
耐衝撃性等に劣るという欠点がある。そのため、オート
クレーブ養生後の製品だけでなく、オートクレーブ養生
前の発泡成型品(グリーンケーキ)の強度も非常に弱い
ために、製造工程においても、割れや欠けが生じ易く問
題となっている。
[0004] The ALC produced in this manner has a characteristic that it has a low specific gravity and is lighter than water because it has a large number of air bubbles, but is very brittle and has a bending strength, a bending toughness,
There is a disadvantage that it is inferior in impact resistance and the like. Therefore, not only the product after the autoclave curing but also the strength of the foam molded product (green cake) before the autoclave curing is very weak, so that there is a problem that cracks and chips are easily generated in the manufacturing process.

【0005】通常のセメントモルタルやコンクリートに
おいては、補強用繊維を混合することにより、機械的特
性、特に、引張強度、曲げ強度、靱性等が大幅に向上す
ることが広く知られており、繊維補強セメントモルタ
ル、繊維補強コンクリート材料として、既に実用化され
ている。
It is widely known that the mixing of reinforcing fibers in ordinary cement mortars and concretes greatly improves mechanical properties, especially tensile strength, bending strength, toughness, etc. It has already been put to practical use as a cement mortar and fiber reinforced concrete material.

【0006】軽量気泡コンクリートにおいても、前記欠
点を改善する目的で、セメントモルタルやコンクリート
の場合と同様に繊維を混入して補強する方法が提示され
ている。具体的には、特開昭56−37266号公報、
特開昭56−84362号公報、特開昭57−1745
8号公報に開示されており、それぞれメタ系アラミド繊
維、ステンレス繊維、アスベスト繊維を使用することが
提案されている。
[0006] For lightweight cellular concrete, a method has been proposed in which fibers are mixed and reinforced as in the case of cement mortar or concrete in order to improve the above-mentioned disadvantages. Specifically, JP-A-56-37266 discloses
JP-A-56-84362, JP-A-57-1745
No. 8 discloses the use of meta-aramid fiber, stainless steel fiber, and asbestos fiber, respectively.

【0007】しかしながら、ALCは、オートクレーブ
中高温高圧下で養生されるため、メタ系アラミド繊維で
は熱及びアルカリにより繊維が劣化して十分な補強効果
が得られないという問題があり、またステンレス繊維で
は、たとえ防錆処理が施されていても長期的には錆によ
り補強効果が低下するという問題がある。さらに、アス
ベスト繊維は、その発癌性の問題から現在では使用困難
である。
However, ALC is cured under high temperature and high pressure in an autoclave. Therefore, there is a problem that the meta-aramid fiber deteriorates due to heat and alkali and cannot obtain a sufficient reinforcing effect. However, there is a problem that the rust reduces the reinforcing effect in the long term even if rust prevention treatment is performed. Furthermore, asbestos fibers are currently difficult to use due to their carcinogenic problems.

【0008】一方、特開昭58−151363号公報号
公報には、芳香族ポリエーテルアミド繊維を混入したセ
メントコンクリートが開示されているが、上記セメント
コンクリートは自然(常温)養生が前提であり、熱及び
アルカリによる繊維の劣化の問題は認識されていない。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 58-151363 discloses a cement concrete mixed with an aromatic polyetheramide fiber, but the cement concrete is premised on natural (normal temperature) curing. The problem of fiber degradation due to heat and alkali is not recognized.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来法
の欠点を解消し、高温高圧下で養生されるALCの繊維
補強効果を向上させ、曲げ強度などの機械的特性の向上
したALCを提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional method, improves the fiber reinforcing effect of ALC cured under high temperature and pressure, and improves the ALC with improved mechanical properties such as bending strength. The task is to provide.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討した結果、粉末状の珪酸質
原料、石灰質原料及びセメントを主原料とするALC原
料に、補強用繊維として、特定の繊維長及び形状を有す
るパラ系アラミド短繊維を混入するとき、所望のALC
が得られることを究明した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a powdery siliceous raw material, calcareous raw material and ALC raw material mainly composed of cement are used for reinforcement. When a para-aramid short fiber having a specific fiber length and shape is mixed as a fiber, a desired ALC is used.
Was obtained.

【0011】かくして本発明によれば、(1)粉末状の
珪酸質原料、石灰質原料及びセメントを主原料とし、こ
れらに補強用パラアラミド短繊維を混入させてなる軽量
気泡コンクリートにおいて、該補強用パラアラミド短繊
維は、該軽量気泡コンクリート中の平均気泡径の2倍以
上、50mm以下の繊維長を有し、そしてこの補強用パ
ラアラミド短繊維中で、その長さ方向に、互いに独立し
た少なくとも2個の環状突起部を有し、各環状突起部の
最大径はこれらの環状突起部を繋ぐ細径部の平均直径の
1.1倍以上であるようなパラアラミド短繊維が30重
量%以上を占めることを特徴とする繊維補強軽量気泡コ
ンクリート、(2)環状突起部が、短繊維の両端部に存
在する前記(1)記載の繊維補強軽量気泡コンクリー
ト、及び(3)パラ系アラミド短繊維が、コポリパラフ
ェニレン・3,4’−オキシジフェニレン・テレフタラ
ミド短繊維である前記(1)又は(2)記載の繊維補強
軽量気泡コンクリートが提供される。
Thus, according to the present invention, there is provided (1) a lightweight aerated concrete comprising a powdery siliceous raw material, calcareous raw material and cement as main raw materials, and reinforcing para-aramid short fibers mixed therein; The short fibers have a fiber length of not less than twice the average cell diameter in the lightweight cellular concrete and not more than 50 mm, and in the reinforcing para-aramid short fibers, at least two independent fibers are provided in the length direction. Para-aramid short fibers having an annular projection and having a maximum diameter of 1.1 times or more the average diameter of the small diameter portion connecting these annular projections occupy 30% by weight or more. (2) The fiber-reinforced lightweight cellular concrete according to (1), wherein the annular protrusions are present at both ends of the short fiber; Aramid short fibers, co polyparaphenylene-3,4'-diphenylene-Terefutaramido said a short fiber (1) or (2) fiber reinforced lightweight concrete according is provided.

【0012】[0012]

【発明の実施の形態】本発明のALCを製造する際に混
合する補強用繊維は、パラ系アラミド繊維であり、ポリ
パラフェニレンテレフタラミド繊維、コポリパラフェニ
レン・3,4’−オキシジフェニレン・テレフタラミド
繊維等を挙げることできる。メタ系アラミド繊維では、
耐熱アルカリ性が十分でなく、目的とする補強効果が得
られない。なかでも、テレフタル酸を酸成分とし、パラ
フェニレンジアミン及び3,4’−オキシジフェニレン
ジアミンをアミン成分とするコポリパラフェニレン・
3,4’−オキシジフェニレン・テレフタラミド重合体
よりなる繊維が、良好な補強効果を示すので好ましい。
パラフェニレンジアミンと3,4’−オキシジフェニレ
ンジアミンの共重合モル比は1:3〜3:1、特に約
1:1が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The reinforcing fibers to be mixed when producing the ALC of the present invention are para-aramid fibers, such as polyparaphenylene terephthalamide fibers, copolyparaphenylene / 3,4'-oxydiphenylene. -Terephthalamide fibers and the like can be mentioned. In meta-aramid fiber,
The heat-resistant alkali resistance is not sufficient, and the desired reinforcing effect cannot be obtained. Among them, copolyparaphenylene containing terephthalic acid as an acid component and paraphenylenediamine and 3,4′-oxydiphenylenediamine as amine components.
Fibers made of a 3,4'-oxydiphenylene-terephthalamide polymer are preferred because they show a good reinforcing effect.
The copolymerization molar ratio of paraphenylenediamine to 3,4'-oxydiphenylenediamine is preferably 1: 3 to 3: 1, particularly preferably about 1: 1.

【0013】かかるパラ系アラミド繊維は、高温高圧下
強アルカリ性雰囲気中に長時間さらしても、その繊維物
性の劣化は殆ど認められない(飽和水蒸気中、150℃
で10時間処理したときの強力保持率が60%以上)の
で、ALCを製造する際によく採用される高温高圧下で
の水蒸気養生、例えば温度180℃、圧力10Kg/c
2の飽和水蒸気による養生においても高い強力保持率
を有する。
Even if such para-aramid fibers are exposed to a strong alkaline atmosphere at a high temperature and a high pressure for a long time, the fiber physical properties are hardly deteriorated (in a saturated steam at 150 ° C.).
(A strong retention rate of 60% or more when treated at 10 ° C. for 10 hours), so that steam curing under high temperature and high pressure, which is often employed in the production of ALC, for example, at a temperature of 180 ° C. and a pressure of 10 kg / c
It has a high strength retention even in curing with saturated steam of m 2 .

【0014】上記補強用繊維の繊維長は、ALCの平均
気泡径の2倍以上、50mm以下であることが必要であ
る。ここで、ALCの平均気泡径は、後述の曲げ試験用
試験片の圧縮方向断面に存在する気泡から求めた値であ
り、ALCの気泡が偏平である場合は、気泡の最大径と
最小径の平均値を平均気泡径とする。
The fiber length of the reinforcing fiber must be at least twice the average cell diameter of ALC and not more than 50 mm. Here, the average cell diameter of ALC is a value obtained from bubbles existing in a compression direction cross section of a test piece for bending test described later, and when the cells of ALC are flat, the maximum diameter and the minimum diameter of the bubbles are determined. The average value is defined as the average cell diameter.

【0015】ALCでは、マトリックス中に数多くの気
泡が存在し、効果的に繊維補強を行うためには、繊維が
気泡をまたいでマトリックスの補強を行う必要がある。
補強繊維の繊維長が、軽量気泡コンクリートの平均気泡
径の2倍未満であると、気泡をまたいで補強することが
できないため、ALCの機械的特性、すなわち、曲げ強
度、耐衝撃強度、靭性等を十分に高めることが困難とな
る。
In ALC, a large number of air bubbles are present in a matrix, and for effective fiber reinforcement, it is necessary for fibers to reinforce the matrix across the air bubbles.
If the fiber length of the reinforcing fiber is less than twice the average cell diameter of the lightweight cellular concrete, it cannot be reinforced across the cells, so the mechanical properties of ALC, that is, bending strength, impact strength, toughness, etc. Is difficult to sufficiently increase.

【0016】上記補強繊維の繊維長が長くなるほど、繊
維補強ALCの曲げ強度などの機械的特性は向上する
が、繊維長が50mmを越えると、ALC原料との混合
・撹拌の際、繊維同士が絡まり易くなり、繊維の分散状
態が著しく悪くなる結果、逆に補強効果が低下するため
不適当である。なお、軽量気泡コンクリートの平均気泡
径は、通常、0.2〜2.0mm程度である。
As the fiber length of the reinforcing fiber increases, the mechanical properties such as the bending strength of the fiber reinforced ALC improve. However, when the fiber length exceeds 50 mm, the fibers are mixed with each other when mixing and stirring with the ALC raw material. The fibers are apt to be entangled and the state of dispersion of the fibers is significantly deteriorated. The average cell diameter of the lightweight cellular concrete is usually about 0.2 to 2.0 mm.

【0017】さらに、本発明で用いる補強用短繊維中で
は、その長さ方向に、互いに独立した少なくとも2個の
環状突起部を有し、各環状突起部の最大径はこれらの環
状突起部を繋ぐ細径部の平均直径の1.1倍以上である
ようなパラアラミド短繊維が30重量%以上を占めるこ
とが必要である。
Further, the reinforcing short fiber used in the present invention has at least two annular projections independent from each other in the longitudinal direction, and the maximum diameter of each annular projection is determined by the maximum diameter of these annular projections. It is necessary that the para-aramid short fibers having an average diameter of 1.1 times or more of the connecting small diameter portion account for 30% by weight or more.

【0018】つまり、ALCには多数の気泡が存在し、
この気泡部分は補強されないため、通常のモルタル、コ
ンクリート等に比べ、繊維補強効果は小さい。従って、
ALCにおいて、十分な繊維補強効果を得るためには、
補強繊維とALCとの間の付着が非常に重要であり、補
強繊維とALCとの間を充分に接着させるには、少なく
とも2個の環状突起部を有し、各環状突起部の最大径が
これらの環状突起部を繋ぐ細径部の平均直径の1.1倍
以上であるようなパラアラミド短繊維を用いることが有
効である。即ち、一様な太さの短繊維と比較して、上記
の環状突起部を少なくとも2つ有する短繊維は、ALC
中での繊維の引き抜き抵抗が著しく増加するため、補強
効果が大きく向上する。
That is, there are many bubbles in ALC,
Since the bubble portion is not reinforced, the fiber reinforcing effect is smaller than that of ordinary mortar, concrete, or the like. Therefore,
In ALC, in order to obtain a sufficient fiber reinforcing effect,
The adhesion between the reinforcing fiber and the ALC is very important, and in order to sufficiently bond between the reinforcing fiber and the ALC, the reinforcing fiber has at least two annular projections, and the maximum diameter of each annular projection is It is effective to use a para-aramid short fiber having an average diameter of 1.1 times or more the small diameter portion connecting these annular projections. That is, compared with the short fiber having a uniform thickness, the short fiber having at least two annular protrusions described above is ALC
Since the pullout resistance of the fiber inside increases significantly, the reinforcing effect is greatly improved.

【0019】ここで、「最大径がこれらの環状突起部を
繋ぐ細径部の平均直径の1.1倍以上である」環状突起
部とは、図1において、DS1、DS2、DS3及びD
S4の平均直径の1.1倍以上の直径を有するDL1、
DL2及びDL3を意味する。
Here, the term "the maximum diameter is 1.1 times or more the average diameter of the small diameter portion connecting these annular projections" refers to DS1, DS2, DS3 and D in FIG.
DL1 having a diameter of 1.1 times or more the average diameter of S4,
Mean DL2 and DL3.

【0020】この時、環状突起部が存在していても、そ
の最大径が、環状突起部を繋ぐ細径部の平均直径の1.
1倍以上でない場合は、本発明で言う環状突起部には算
入されない。
At this time, even if there is an annular projection, the maximum diameter of the annular projection is 1.10 of the average diameter of the small diameter portion connecting the annular projections.
If it is not one or more times, it will not be included in the annular projection in the present invention.

【0021】また、本発明における短繊維は、その長さ
方向に2つ以上の環状突起部を有していればよいが、特
に、繊維の両端(図2参照)又はその近傍(図3参照)
に環状突起部を有していると、繊維の引き抜き抵抗が更
に大きくなり、良好な補強効果が得られるので好まし
い。ここで、両端の近傍とは、図3において、端部Eか
らの距離L1が短繊維の全長Lの20%以内の部分を意
味し、この部分に環状突起部DLが存在することが望ま
しい。
The short fiber according to the present invention may have at least two annular projections in its length direction. In particular, both ends of the fiber (see FIG. 2) or its vicinity (see FIG. 3). )
It is preferable to have an annular projection because the resistance to pulling out the fiber is further increased and a good reinforcing effect is obtained. Here, the vicinity of both ends means a portion where the distance L1 from the end portion E is within 20% of the total length L of the short fiber in FIG. 3, and it is desirable that the annular projection portion DL exists in this portion.

【0022】さらに、本発明においては、上述のような
環状突起部を少なくとも2つ有する短繊維が、補強用短
繊維全体の30重量%以上を占めていることが必要であ
る。該短繊維の量が30重量%未満では、十分な補強効
果が得られない。
Further, in the present invention, it is necessary that the short fibers having at least two annular projections as described above occupy 30% by weight or more of the whole reinforcing short fibers. If the amount of the short fibers is less than 30% by weight, a sufficient reinforcing effect cannot be obtained.

【0023】本発明で使用する、上述のような長さ方向
に環状突起部を少なくとも2つ有する短繊維は、例え
ば、紡糸、延伸条件(例えば、紡糸時の吐出量、紡糸張
力、延伸倍率など)を間欠的に変更したり、短繊維に切
断する際に、張力を付与しながら切断し、切断時のスナ
ップバックを利用して環状突起部を形成させる等の方法
により容易に製造することができる。
The short fibers used in the present invention and having at least two annular projections in the longitudinal direction as described above may be prepared by, for example, spinning and drawing conditions (for example, discharge amount during spinning, spinning tension, draw ratio, etc.). ) Can be easily manufactured by intermittently changing or cutting into short fibers by cutting while applying tension and forming an annular projection using snapback at the time of cutting. it can.

【0024】また、補強用繊維の混合量は、ALC原料
であるマトリックス材料により最適値が存在し、特に限
定されるものではないが、補強用繊維の混合量が少なす
ぎると、補強効果は低下する傾向にあり、十分満足し得
る機械的特性が得難く、逆に多すぎると、ALCの原料
との混合・撹拌の際に繊維同士が絡まり合い易くなり、
ファイバーボールが形成され易くなり、分散状態が悪化
する結果、補強効果が低下するだけでなく、コスト高に
もなる。
The mixing amount of the reinforcing fibers has an optimum value depending on the matrix material as the ALC raw material, and is not particularly limited. However, if the mixing amount of the reinforcing fibers is too small, the reinforcing effect is reduced. It is difficult to obtain sufficiently satisfactory mechanical properties. On the contrary, if it is too large, the fibers tend to be entangled with each other at the time of mixing and stirring with the ALC raw material,
As a result, fiber balls are easily formed, and the dispersion state is deteriorated. As a result, not only the reinforcing effect is reduced, but also the cost is increased.

【0025】一般には、マトリックス材料固形分重量に
対して、繊維重量が0.05%〜3.0%であることが
好ましく、さらに好ましくは0.1〜2.0%、特に好
ましくは0.2〜1.0%である。
In general, the fiber weight is preferably 0.05% to 3.0%, more preferably 0.1% to 2.0%, particularly preferably 0.1% to 3.0% of the solid weight of the matrix material. 2 to 1.0%.

【0026】本発明のALCは、従来から知られている
ように、珪酸質原料、石灰質原料及びセメントを主原料
とし、これに起泡剤を混合して発泡させた後、オートク
レーブにて高温高圧下で養生を行い、トバモライト結晶
を成長させて製造される。
The ALC of the present invention comprises a siliceous raw material, a calcareous raw material and a cement as a main raw material, a foaming agent mixed with the main raw material, and foaming. It is produced by curing under the conditions and growing tobermorite crystals.

【0027】トバモライト結晶は、ALCの強度に大き
な影響を与え、高強度を得るうえで、この結晶が十分に
成長していることが必要である。トバモライト結晶を十
分に成長させるためには、オートクレーブにて高温高圧
下で水蒸気養生するのが適当であり、養生温度は150
℃〜220℃、好ましくは160℃〜200℃、最も好
ましくは170℃〜190℃である。また、養生の最適
時間は、養生温度によって異なるが、175℃の場合、
6時間〜20時間、好ましくは7時間〜15時間、最も
好ましくは8時間〜12時間である。
The tobermorite crystal has a great influence on the strength of ALC, and it is necessary that this crystal is sufficiently grown to obtain high strength. In order to sufficiently grow tobermorite crystals, it is appropriate to carry out steam curing under high temperature and high pressure in an autoclave.
C. to 220C, preferably 160C to 200C, most preferably 170C to 190C. The optimal curing time depends on the curing temperature, but at 175 ° C,
6 hours to 20 hours, preferably 7 hours to 15 hours, most preferably 8 hours to 12 hours.

【0028】ALCを繊維補強する場合、耐湿熱性が十
分優れた繊維を使用しても、養生条件下、すなわち、高
温高アルカリ性条件下にて、徐々に劣化するため、養生
温度は低い程、時間は短い程よい。従って、十分にトバ
モライト結晶が成長し、かつ、補強用繊維の劣化が最少
となるような養生条件が好ましい条件となる。
When ALC is fiber-reinforced, even if a fiber having sufficiently excellent wet heat resistance is used, the fiber gradually deteriorates under curing conditions, that is, under high temperature and high alkalinity conditions. The shorter the better. Therefore, the preferable curing condition is such that the tobermorite crystal grows sufficiently and the deterioration of the reinforcing fiber is minimized.

【0029】上記のように、高温高圧下で養生を行うこ
とにより、トバモライト結晶が徐々に成長するが、その
過程で、マトリックス中のCa(OH)2が徐々に減少
する。X線解折を行うと、養生時間の経過と共に、Ca
(OH)2の001面のピーク強度が減少し、トバモラ
イト結晶の002面のピーク強度が増加する。そして、
トバモライト結晶の002面のピーク強度が、Ca(O
H)2の001面のピーク強度の30%よりも大きくな
れば、十分に養生され、トバモライト結晶が十分に成長
しているものと判断することができ、この時、機械的特
性の優れたALCを得ることができる。なお、トバモラ
イト結晶の002面のピークは2θ=約7.8°、Ca
(OH)2のピークは2θ=約18.1°である。
As described above, by curing under high temperature and high pressure, tobermorite crystals gradually grow, but in the process, Ca (OH) 2 in the matrix gradually decreases. When the X-ray analysis is performed, the Ca
The peak intensity of the (001) 2 plane of (OH) 2 decreases, and the peak intensity of the 002 plane of the tobermorite crystal increases. And
The peak intensity of the 002 plane of the tobermorite crystal is Ca (O
If greater than 30% of the peak intensity of H) 2 001 side, is sufficiently cured it can be determined that the tobermorite crystals grow well and this time, excellent mechanical properties ALC Can be obtained. The peak of the 002 plane of the tobermorite crystal was 2θ = about 7.8 °, Ca
The peak of (OH) 2 is at 2θ = about 18.1 °.

【0030】ここで、ALCの主原料の一つである珪酸
質原料としては、珪石、珪砂、高炉スラグ、フライアッ
シュ等を使用することができる。
Here, as the siliceous raw material which is one of the main raw materials of ALC, silica stone, silica sand, blast furnace slag, fly ash and the like can be used.

【0031】この際、珪酸質原料の平均粒径を10μm
以下とすると、養生中の反応速度が増大し、オートクレ
ーブ養生条件(温度、時間)を緩和することが可能とな
るので、繊維の劣化が著しく軽減され、より大きな補強
効果が得られるので好ましい。
At this time, the average particle size of the siliceous raw material is 10 μm
When the content is below, the reaction rate during curing increases, and the conditions (temperature and time) for curing the autoclave can be relaxed. Therefore, deterioration of fibers is remarkably reduced, and a larger reinforcing effect is obtained, which is preferable.

【0032】即ち、発泡コンクリートは、高温高圧下で
養生を行うことにより、強度に大きく影響を及ぼすトバ
モライト結晶が成長するが、平均粒径の小さな珪酸質原
料を用いた場合には、トバモライト結晶の成長速度が増
大するため、オートクレーブの養生温度、時間が緩和で
き、十分な強度を有する発泡コンクリートが得られる。
That is, when foamed concrete is cured under high temperature and high pressure, tobermorite crystals which greatly affect the strength grow, but when a siliceous raw material having a small average particle size is used, the tobermorite crystals are grown. Since the growth rate is increased, the curing temperature and time of the autoclave can be relaxed, and foam concrete having sufficient strength can be obtained.

【0033】また、ALCの他の主原料である石灰質原
料としては、生石灰、消石灰等を使用することができ
る。
As a calcareous raw material which is another main raw material of ALC, quick lime, slaked lime and the like can be used.

【0034】さらに、セメントとしては、水硬性である
限りどのようなセメントでも使用することができ、例え
ばポルトランドセメント、水硬性石灰、ローマン・セメ
ント、天然セメント等が好ましく例示される。なお、ポ
ルトランドセメントの中には数多くの種類があり、例え
ば普通ポルトランドセメント、中庸熱ポルトランドセメ
ント、早強ポルトランドセメント、低熱ポルトランドセ
メント等が例示されるが、本発明ではいずれのものも使
用することができる。
As the cement, any cement can be used as long as it is hydraulic. For example, Portland cement, hydraulic lime, Roman cement, natural cement and the like are preferable. In addition, there are many types of Portland cement, for example, ordinary Portland cement, moderate heat Portland cement, early-strength Portland cement, low-heat Portland cement, etc. are exemplified.In the present invention, any of them may be used. it can.

【0035】ALCに使用する起泡剤及び発泡方法は、
特に限定されるものではないが、例えば、アルミニウム
金属粉末を用いるアルミニウム発泡方式が一般的であ
る。また、前記のプレフォーム方式やミックスフォーム
方式では、界面活性剤等一般に用いられる起泡剤が用い
られる。
The foaming agent and foaming method used for ALC are as follows:
Although not particularly limited, for example, an aluminum foaming method using aluminum metal powder is generally used. In the preform system and the mix foam system, a commonly used foaming agent such as a surfactant is used.

【0036】繊維と原料配合物との混合・撹拌は、パド
ル状ミキサー、プロペラ状ミキサー、ポット状ミキサー
等通常使用される撹拌機が任意に使用できる。
For mixing and stirring of the fiber and the raw material mixture, a commonly used stirrer such as a paddle mixer, a propeller mixer, and a pot mixer can be used.

【0037】なお、補強用繊維を均一に分散させる目的
で、予め界面活性剤等の物質で繊維を表面処理するか、
又は必要に応じて原料配合物中に添加することもでき
る。
In order to uniformly disperse the reinforcing fibers, the fibers may be subjected to a surface treatment with a substance such as a surfactant in advance, or
Alternatively, it can be added to the raw material blend as needed.

【0038】発泡成形後の養生は、通常、オートクレー
ブ中飽和水蒸気圧条件下で約180℃×8〜15時間行
われるが、高温高圧養生が可能な装置であれば、特にこ
の方法に限定されるものではない。
Curing after foam molding is usually carried out in an autoclave under saturated steam pressure conditions at about 180 ° C. for 8 to 15 hours. However, any apparatus capable of curing at high temperature and high pressure is particularly limited to this method. Not something.

【0039】上記方法により得られた軽量気泡コンクリ
ートは0.4以上1.4未満の比重を有しており、曲げ
強度及び曲げ靭性に優れている。
The lightweight cellular concrete obtained by the above method has a specific gravity of 0.4 or more and less than 1.4, and is excellent in bending strength and bending toughness.

【0040】[0040]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、実施例で用いた試験片の作製方法、評価法は
下記のとおりである。
The present invention will be described below in detail with reference to examples. In addition, the manufacturing method and the evaluation method of the test piece used in the Example are as follows.

【0041】(1)試験片の作製方法 珪石、生石灰、セメント、石膏、アルミニウム粉末(発
泡剤)、補強用繊維及び水を、オムニミキサー(GAR
BRO社製、型式:OM−10−E、容量:10L)を
用いて、400rpmの撹拌速度で約3分間混練し、均
一なスラリーを得た。
(1) Method of preparing test piece Silica stone, quicklime, cement, gypsum, aluminum powder (foaming agent), reinforcing fiber and water were mixed with an omni mixer (GAR).
(BRO, model: OM-10-E, volume: 10 L) and kneaded at a stirring speed of 400 rpm for about 3 minutes to obtain a uniform slurry.

【0042】次いで、このスラリーを、型枠に打設し、
水が蒸発しない状態で、約40℃にて4時間保持して発
泡させた後、オートクレーブ養生(175℃×9時間)
を行って繊維補強ALCを得た。
Next, this slurry is poured into a mold,
In a state where water does not evaporate, the mixture is foamed by holding at about 40 ° C. for 4 hours, and then autoclaved (175 ° C. × 9 hours).
To obtain a fiber-reinforced ALC.

【0043】なお、ALC主原料の配合は、珪石を60
重量部、生石灰を19重量部、セメントを19重量部、
石膏を2重量部とし、この固形分に対して使用する水の
量を65重量%、補強用繊維の配合量をこの固形分重量
に対して1重量%とした。
The ALC main raw material was mixed with 60% silica.
Parts by weight, 19 parts by weight of quicklime, 19 parts by weight of cement,
Gypsum was 2 parts by weight, the amount of water used was 65% by weight based on the solid content, and the blending amount of reinforcing fibers was 1% by weight based on the weight of the solid content.

【0044】上記ALCの発泡方向のほぼ中央から、曲
げ強度測定時の圧縮方向が発泡方向となるようにして、
4cm×4cm×16cmのサンプルを切り出し試験片
とした。
From about the center of the foaming direction of the ALC, the compression direction at the time of measuring the bending strength is set to be the foaming direction.
A 4 cm × 4 cm × 16 cm sample was cut out to obtain a test piece.

【0045】(2)曲げ強度測定方法 上記試験片を、水分率が10%±2%となるように調整
して、3点曲げ測定法にしたがって測定した。すなわ
ち、10トン用引張圧縮試験機(TOYO BALDW
IN社製、UNIVERSAL TESTING IN
STRUMENTMODEL UTM 10t)を用
い、支点間距離10cmの中心を2mm/分の速度で圧
縮し、応力の最高点より曲げ強度を求めた。
(2) Method of Measuring Bending Strength The test piece was adjusted so that the water content was 10% ± 2%, and measured according to a three-point bending measurement method. That is, a 10-ton tensile compression tester (TOYO BALDW)
UNIVERSAL TESTING IN
Using Strument Model UTM 10t), the center of the fulcrum distance of 10 cm was compressed at a speed of 2 mm / min, and the bending strength was determined from the highest point of the stress.

【0046】(3)比重の測定方法 上記曲げ試験に用いるための試験片(4cm×4cm×
16cm)を、60℃の乾燥機中に24時間入れ絶乾状
態とした後、試験片の質量を測定することにより、比重
(質量/体積)を求めた。
(3) Measurement method of specific gravity A test piece (4 cm × 4 cm ×
16 cm) was placed in a dryer at 60 ° C. for 24 hours to make it completely dry, and then the specific gravity (mass / volume) was determined by measuring the mass of the test piece.

【0047】[実施例1〜5、比較例1〜2]コポリパ
ラフェニレン・3,4’−オキシジフェニレン・テレフ
タラミド繊維(帝人(株)製「テクノーラT―20
0」)を、ロータリーカッターを用いて、表1に示す繊
維長となるように切断した。この際、繊維に張力を付与
して切断することにより、図2に示すように、両端に環
状突起部(その最大径が、細径部の平均直径の1.36
倍)を有する短繊維とした。
Examples 1 to 5 and Comparative Examples 1 and 2 Copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber ("Technola T-20" manufactured by Teijin Limited)
0 ") was cut using a rotary cutter so as to have a fiber length shown in Table 1. At this time, by applying tension to the fiber and cutting the fiber, as shown in FIG. 2, annular projections (the maximum diameter of which is 1.36 of the average diameter of the small diameter portion) are formed at both ends.
Times).

【0048】得られた短繊維(単糸繊度:1.5デニー
ル(単糸径:12μm)、強度:28.0g/de、伸
度:4.6%)を補強用繊維とし、上記繊維補強ALC
の試験片を得た。得られた繊維補強ALCの平均気泡径
は、0.8mmであった。また、X線回折強度比(トバ
モライト結晶の002面のピーク強度/Ca(OH)2
の001面のピーク強度)は、10.4であり、トバモ
ライト結晶が十分に成長しているものと判断された。得
られた試験片について、比重、曲げ強度を評価した結果
を表1に示す。
The obtained short fibers (single yarn fineness: 1.5 denier (single yarn diameter: 12 μm), strength: 28.0 g / de, elongation: 4.6%) were used as reinforcing fibers, and the above fiber reinforcement was performed. ALC
Was obtained. The average cell diameter of the obtained fiber-reinforced ALC was 0.8 mm. Further, the X-ray diffraction intensity ratio (peak intensity of 002 face of tobermorite crystal / Ca (OH) 2
Of the 001 plane) was 10.4, and it was determined that the tobermorite crystal was sufficiently grown. Table 1 shows the results of evaluating the specific gravity and bending strength of the obtained test pieces.

【0049】[0049]

【表1】 [Table 1]

【0050】表1から明らかなように、両端に環状突起
部を有し、繊維長がALCの平均気泡径(0.8mm)
の2倍(1.6mm)〜50mmであるパラ系アラミド
繊維を使用した場合(実施例1〜5)は、良好な補強効
果が得られたが、繊維長がALCの平均気泡径(0.8
mm)の2倍(1.6mm)未満の場合(比較例1)
は、補強効果が極めて小さく、50mmを越える場合
(比較例2)は、ALC原料への繊維の分散が困難とな
り、満足な補強効果は得られなかった。
As is evident from Table 1, the fiber has an annular protrusion at both ends, and the fiber length is ALC average cell diameter (0.8 mm).
In the case where para-aramid fibers having a diameter twice (1.6 mm) to 50 mm (Examples 1 to 5) were used, a good reinforcing effect was obtained, but the average cell diameter of the ALC fibers (0. 8
mm) (less than 1.6 mm) (Comparative Example 1)
In the case of (2), when the reinforcing effect was extremely small, and when it exceeded 50 mm (Comparative Example 2), it was difficult to disperse the fibers in the ALC raw material, and a satisfactory reinforcing effect was not obtained.

【0051】[実施例6、比較例3]実施例3におい
て、繊維を切断する際に繊維に付与する張力を変更する
ことにより、両端の環状突起部の最大径(細径部の平均
直径の何倍かで示す)を、表2に示すように変更した。
評価結果は、表2に示す通りであり、環状突起部の最大
径が細径部の平均直径の1.1倍を越える場合(実施例
6)は、良好な補強効果が得られたが、1.1倍未満の
場合(比較例3)は、十分な補強効果が得られなかっ
た。
Example 6, Comparative Example 3 In Example 3, the maximum diameter of the annular projections at both ends (the average diameter of the small diameter portion) was changed by changing the tension applied to the fiber when cutting the fiber. Was changed as shown in Table 2.
The evaluation results are as shown in Table 2. When the maximum diameter of the annular projection exceeds 1.1 times the average diameter of the small diameter portion (Example 6), a good reinforcing effect was obtained. When the ratio was less than 1.1 times (Comparative Example 3), a sufficient reinforcing effect was not obtained.

【0052】[0052]

【表2】 [Table 2]

【0053】[実施例7〜10、比較例4〜6]実施例
3において、コポリパラフェニレン・3,4’−オキシ
ジフェニレン・テレフタラミド繊維の紡糸、延伸条件を
間欠的に変更することにより、長さ方向に間欠的に環状
突起部を形成せしめた繊維を、12mmの繊維長に切断
して、表3に示すように、環状突起部の数及びその位置
の異なる補強用短繊維を得た。なお、環状突起部の最大
径は、細径部の平均直径の約1.3倍であり、短繊維の
単糸繊度、強度及び伸度は、実施例3とほぼ同一となる
ように調整した。なお、比較例4では、比較のために、
環状突起部を形成させない、長さ方向に均一な径を有す
る繊維を使用した。これらの補強用繊維を用いて、実施
例3と同様に試験片を作製し、比重、曲げ強度を評価し
た。
Examples 7 to 10 and Comparative Examples 4 to 6 In Example 3, the spinning and drawing conditions of copolyparaphenylene / 3,4'-oxydiphenylene / terephthalamide fiber were changed intermittently to The fiber in which the annular protrusions were intermittently formed in the length direction was cut into a fiber length of 12 mm, and as shown in Table 3, short reinforcing fibers having different numbers of annular protrusions and different positions were obtained. . The maximum diameter of the annular projection was about 1.3 times the average diameter of the small diameter portion, and the single fiber fineness, strength and elongation of the short fibers were adjusted to be almost the same as in Example 3. . In Comparative Example 4, for comparison,
Fibers having a uniform diameter in the length direction without forming an annular protrusion were used. Using these reinforcing fibers, test pieces were prepared in the same manner as in Example 3, and specific gravity and bending strength were evaluated.

【0054】結果は、表3に示す通りであり、補強用短
繊維が、その長さ方向に、環状突起部を少なくとも2つ
有している場合(実施例7〜10)は、良好な補強効果
を示し、特に、両端に環状突起部を有する場合(実施例
7、8)に顕著な補強効果を示した。
The results are as shown in Table 3. In the case where the reinforcing short fiber has at least two annular projections in its length direction (Examples 7 to 10), good reinforcement was obtained. An effect was exhibited, and in particular, a remarkable reinforcing effect was exhibited when annular projections were provided at both ends (Examples 7 and 8).

【0055】一方、環状突起部がない場合(比較例4)
あるいは環状突起部が1つだけの場合(比較例5、6)
は、補強効果が劣っていた。。
On the other hand, when there is no annular projection (Comparative Example 4)
Or when there is only one annular protrusion (Comparative Examples 5 and 6)
Had a poor reinforcing effect. .

【0056】[0056]

【表3】 [Table 3]

【0057】[実施例11〜12、比較例7]実施例3
の補強用短繊維(両端に環状突起部を有するもの)と比
較例4の補強用短繊維(環状突起部がない均一な径のも
の)とを、表4に示す割合で混合して使用し、その他の
条件は、実施例3と同様にして、試験片を作製し、比
重、曲げ強度を評価した。
[Examples 11 to 12, Comparative Example 7] Example 3
And the short fibers for reinforcement (having annular projections at both ends) and the short fibers for reinforcement of Comparative Example 4 (having a uniform diameter with no annular projections) were used by mixing at a ratio shown in Table 4. A test piece was prepared in the same manner as in Example 3 under the other conditions, and the specific gravity and the bending strength were evaluated.

【0058】結果は、表4に示す通りであり、環状突起
部を少なくとも2つ有している短繊維が補強用短繊維全
体の30重量%以上を占めている場合(実施例11、1
2)は、良好な補強効果が認められるが、30重量%未
満(比較例7)では、補強効果が劣っていた。
The results are as shown in Table 4, wherein the short fibers having at least two annular projections account for 30% by weight or more of the whole reinforcing short fibers (Examples 11 and 1).
In 2), a good reinforcing effect was recognized, but when it was less than 30% by weight (Comparative Example 7), the reinforcing effect was inferior.

【0059】[0059]

【表4】 [Table 4]

【0060】[実施例13、比較例8〜10]実施例3
において、コポリパラフェニレン・3,4’−オキシジ
フェニレン・テレフタラミド繊維に代えて、単糸繊度が
1.5デニールのポリパラフェニレンテレフタラアミド
(PPTA)繊維(東レ・デュポン・ケブラー株式会社
製、ケブラーK―29タイプ)、単糸繊度が6デニール
のポリエステル繊維(帝人株式会社製、テトロン)、単
糸繊度が1.6デニールのビニロン繊維(ユニチカ株式
会社製、MEWLON TYPE AA)、単糸繊度が
2.0デニールのメタ型アラミド繊維(帝人株式会社
製、コーネックス)それぞれ補強繊維として使用し、繊
維長及び配合量を表5に示す如く変更した以外は実施例
3と同様に実施した。なお、これらの短繊維は、切断時
に張力を付与して、両端に、細径部の平均直径の1.2
0〜1.35倍の最大径を有する環状突起部を形成させ
た。得られた試験片について、比重、曲げ強度を評価し
た結果を表5に示す。
Example 13 and Comparative Examples 8 to 10
In place of copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber, polyparaphenylene terephthalamide (PPTA) fiber having a single fiber fineness of 1.5 denier (manufactured by Toray DuPont Kevlar Co., Ltd. Kevlar K-29 type), polyester fiber with a single yarn fineness of 6 denier (Tetron, manufactured by Teijin Limited), vinylon fiber with a single yarn fineness of 1.6 denier (MEWLON TYPE AA, manufactured by Unitika Ltd.), single yarn fineness Was carried out in the same manner as in Example 3 except that 2.0 denier meta-type aramid fiber (manufactured by Teijin Limited, Conex) was used as a reinforcing fiber, and the fiber length and blending amount were changed as shown in Table 5. In addition, these short fibers give tension at the time of cutting, and the both ends have 1.2 mm of the average diameter of the small diameter portion.
An annular projection having a maximum diameter of 0 to 1.35 times was formed. Table 5 shows the results of evaluation of specific gravity and bending strength of the obtained test pieces.

【0061】[0061]

【表5】 [Table 5]

【0062】表5から明らかなように、補強用繊維とし
て、ポリエステル繊維(比較例9)、ビニロン繊維(比
較例9)、メタ型アラミド繊維(比較例10)を用いた
場合には、オートクレーブ養生の工程での耐湿熱性(1
50℃、飽和水蒸気中で10時間処理した後の強力保持
率)が55%以下と低く、繊維劣化が激しいため、補強
効果は殆ど認められなかった。
As is apparent from Table 5, when the polyester fibers (Comparative Example 9), vinylon fibers (Comparative Example 9), and meta-type aramid fibers (Comparative Example 10) were used as the reinforcing fibers, the autoclave curing was performed. Moisture and heat resistance in the process (1)
(Strength retention after treatment in saturated steam at 50 ° C. for 10 hours) was as low as 55% or less, and fiber deterioration was severe. Therefore, almost no reinforcing effect was observed.

【0063】これに対し、パラ系アラミド繊維であるP
PTA繊維を使用した場合(実施例13)は、コポリパ
ラフェニレン・3,4’−オキシジフェニレン・テレフ
タラミド短繊維を補強用繊維として用いた場合と同様
に、オートクレーブ養生の工程で繊維の劣化が殆どなく
なるため、機械的特性に優れたALCが得られる。
On the other hand, para-aramid fiber P
When PTA fiber was used (Example 13), the degradation of the fiber in the autoclave curing step was similar to the case where copolyparaphenylene / 3,4′-oxydiphenylene / terephthalamide short fiber was used as the reinforcing fiber. Since it is almost eliminated, an ALC having excellent mechanical properties can be obtained.

【0064】[0064]

【発明の効果】本発明の軽量気泡コンクリートは、補強
用繊維として特定の繊維長及び形状を有するパラアラミ
ド短繊維を用いているので、高温・高圧養生をおこなっ
ても繊維の劣化が小さく、しかも曲げ強度等の機械的特
性に優れており、例えば建築用の軽量材料等として工業
的に利用価値の高いものである。
The lightweight cellular concrete of the present invention uses para-aramid short fibers having a specific fiber length and shape as reinforcing fibers. It has excellent mechanical properties such as strength and is industrially highly useful, for example, as a lightweight material for construction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる補強用短繊維の形状を説明
するための拡大側面図である。
FIG. 1 is an enlarged side view for explaining the shape of a reinforcing short fiber used in the present invention.

【図2】本発明で用いられる補強用短繊維の一例を示す
拡大側面図である。
FIG. 2 is an enlarged side view showing an example of a reinforcing short fiber used in the present invention.

【図3】本発明で用いられる補強用短繊維の他の例を示
す拡大側面図である。
FIG. 3 is an enlarged side view showing another example of a reinforcing short fiber used in the present invention.

【符号の説明】[Explanation of symbols]

DL1、DL2、DL3、DL 環状突起部 Ds1、DS2、DS3、DS4 細径部 E 短繊維の端部 L1 端部から環状突起部までの距離 DL1, DL2, DL3, DL annular protrusion Ds1, DS2, DS3, DS4 small diameter portion E end of short fiber L1 distance from end to annular protrusion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粉末状の珪酸質原料、石灰質原料及びセ
メントを主原料とし、これらに補強用パラアラミド短繊
維を混入させてなる軽量気泡コンクリートにおいて、 該補強用パラアラミド短繊維は、該軽量気泡コンクリー
ト中の平均気泡径の2倍以上、50mm以下の繊維長を
有し、そしてこの補強用パラアラミド短繊維中で、その
長さ方向に、互いに独立した少なくとも2個の環状突起
部を有し、各環状突起部の最大径はこれらの環状突起部
を繋ぐ細径部の平均直径の1.1倍以上であるようなパ
ラアラミド短繊維が30重量%以上を占めることを特徴
とする繊維補強軽量気泡コンクリート。
1. A lightweight cellular concrete comprising a powdery siliceous raw material, calcareous raw material, and cement as main raw materials, and reinforcing para-aramid short fibers mixed therein, wherein the reinforcing para-aramid short fibers comprise the lightweight cellular concrete. Having a fiber length of not less than twice the average cell diameter in the medium and not more than 50 mm, and in the reinforcing para-aramid short fiber, in the length direction thereof, having at least two annular projections independent of each other; Fiber reinforced lightweight cellular concrete characterized in that para-aramid short fibers whose maximum diameter of the annular projections is 1.1 times or more the average diameter of the small diameter portions connecting these annular projections occupy 30% by weight or more. .
【請求項2】 環状環状突起部が、短繊維の両端に存在
する請求項1記載の繊維補強軽量気泡コンクリート。
2. The fiber-reinforced lightweight cellular concrete according to claim 1, wherein the annular annular projections are present at both ends of the short fiber.
【請求項3】 パラアラミド短繊維が、コポリパラフェ
ニレン・3,4’−オキシジフェニレン・テレフタラミ
ド短繊維である請求項1又は2記載の繊維補強軽量気泡
コンクリート。
3. The fiber-reinforced lightweight cellular concrete according to claim 1, wherein the para-aramid short fibers are copolyparaphenylene / 3,4′-oxydiphenylene / terephthalamide short fibers.
JP35105397A 1997-12-19 1997-12-19 Fiber reinforced lightweight cellular concrete Expired - Fee Related JP3433081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35105397A JP3433081B2 (en) 1997-12-19 1997-12-19 Fiber reinforced lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35105397A JP3433081B2 (en) 1997-12-19 1997-12-19 Fiber reinforced lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JPH11180757A true JPH11180757A (en) 1999-07-06
JP3433081B2 JP3433081B2 (en) 2003-08-04

Family

ID=18414731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35105397A Expired - Fee Related JP3433081B2 (en) 1997-12-19 1997-12-19 Fiber reinforced lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP3433081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328853A (en) * 2000-05-16 2001-11-27 Teijin Ltd Reinforcing material for concrete, etc.
US6407017B1 (en) * 1998-10-15 2002-06-18 Teijin Limited Wholly aromatic polyamide fiber synthetic paper sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407017B1 (en) * 1998-10-15 2002-06-18 Teijin Limited Wholly aromatic polyamide fiber synthetic paper sheet
JP2001328853A (en) * 2000-05-16 2001-11-27 Teijin Ltd Reinforcing material for concrete, etc.

Also Published As

Publication number Publication date
JP3433081B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
EP0261971B1 (en) Fiber-reinforced cement material and molded article comprising hardened product thereof
US5062897A (en) Carbon fiber-reinforced hydraulic composite material
JPH09295877A (en) Staple fiber-reinforced concrete
JP3433081B2 (en) Fiber reinforced lightweight cellular concrete
JP2000302522A (en) Production of fiber reinforced cement board
JP3883625B2 (en) Lightweight cellular concrete
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
JPH0465338A (en) Production of carbon fiber reinforced concrete or similar composition
WO1992011217A1 (en) Fibre-reinforced materials
RU2803561C1 (en) Raw mix for the production of fiber foam concrete
RU2235082C1 (en) Composition for preparing dispersed-reinforced foam concrete
JP2001058887A (en) Fiber-reinforced lightweight concrete
KR960006229B1 (en) Molding of calcium silicate having high strength and its manufacturing method
SU1636407A1 (en) Method of producing light concrete mix
JPH0569787B2 (en)
JPH05310454A (en) Production of light-weight concrete having low shrinkage
JP4137504B2 (en) Fiber reinforced cement molding
JPH11314977A (en) Lightweight concrete composition and its production
SU1276656A1 (en) Method of preparing light-weight concrete mix
JPH07233591A (en) Hydraulic compound material of carbon short fiber-chopped strand reinforced with carbon short fibers
JPH10279335A (en) Short fiber for reinforcement of aerated lightweight concrete
RU2120429C1 (en) Molding mixture for light polystyrene-concrete article making
CN117342847A (en) Environment-friendly water-resistant ultra-high-performance concrete material and preparation method thereof
JPH11292582A (en) Fibrous strand
JPS6143316B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110523

LAPS Cancellation because of no payment of annual fees