JPH11179391A - Method and apparatus for treating organic waste water - Google Patents

Method and apparatus for treating organic waste water

Info

Publication number
JPH11179391A
JPH11179391A JP36594297A JP36594297A JPH11179391A JP H11179391 A JPH11179391 A JP H11179391A JP 36594297 A JP36594297 A JP 36594297A JP 36594297 A JP36594297 A JP 36594297A JP H11179391 A JPH11179391 A JP H11179391A
Authority
JP
Japan
Prior art keywords
treatment
sludge
alkali
treatment step
pulse discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36594297A
Other languages
Japanese (ja)
Inventor
Koichi Kiriyama
光市 桐山
Kazuo Yamauchi
和雄 山内
Shinta Kunitomo
新太 國友
Akira Watanabe
昭 渡辺
Nobukazu Kobata
信和 木幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP36594297A priority Critical patent/JPH11179391A/en
Publication of JPH11179391A publication Critical patent/JPH11179391A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46175Electrical pulses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method for aerobic biotreatment of org. waste water which hardly generates excess sludge by a simple treating means. SOLUTION: In a method wherein after an org. waste water 5 is treated by an aerobic biotreatment 1, a part of the sludge obtd. is treated by solubilization treatment 3 and is returned to the aerobic biotreatment process 1 and is treated there, the solubilization treatment 3 is performed either by a pulse discharge treatment process 4 or by an acidic oxidation treatment process using an acidic oxidizer and an alkali treatment process using an alkali agent and the pulse discharge treatment process and as the acidic oxidizer and the alkali agent, an acidic oxidized water and an alkaline water obtd. by membrane electrolysis of a salt water can be used and the acidic oxidation treatment process and the alkali treatment process are provided in parallel or in series and they comprises respectively of a single or a plurality of processes, and a pulse discharge treatment process can be provided before or after these series of acid and alkali treatment processes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性汚水の処理
方法に係り、特に、有機性汚水を好気性生物処理して得
られる余剰汚泥を可溶化する処理方法に関する。
The present invention relates to a method for treating organic wastewater, and more particularly to a method for solubilizing excess sludge obtained by treating organic wastewater with an aerobic organism.

【0002】[0002]

【従来の技術】従来、有機性汚水の好気性生物処理(活
性汚泥法、生物学的硝化脱窒素法など)の最大の問題点
は水質を浄化する工程に存在するのではなく、むしろ汚
泥処理工程にある。すなわち、好気性生物処理方法は、
余剰活性汚泥の発生量が非常に多い点に最大の問題点が
ある。余剰活性汚泥は、現在脱水後埋立てあるいは焼却
処分されているが、多大の経費と設備を必要としてい
た。従来の活性汚泥法の余剰汚泥の発生量は、数多くの
実験あるいは実績により、除去BOD当り、0.6〜
0.8(kgSS/kgBOD)程度となることが良く
知られている。
2. Description of the Related Art Conventionally, the biggest problem of aerobic biological treatment of organic wastewater (activated sludge method, biological nitrification denitrification method, etc.) does not exist in the process of purifying water, but rather sludge treatment. In the process. That is, the aerobic biological treatment method,
The biggest problem is that the amount of surplus activated sludge generated is very large. Excess activated sludge is currently landfilled or incinerated after dehydration, but requires a great deal of cost and equipment. The amount of surplus sludge generated by the conventional activated sludge method can be reduced to 0.6 to
It is well known that it is about 0.8 (kgSS / kgBOD).

【0003】その上、余剰汚泥は、質的にも難脱水性で
あるため、益々汚泥処理が困難になっている。このよう
な、余剰汚泥を減少するために、従来余剰汚泥の可溶化
処理方法として、アルカリ剤を添加して処理する方法
(特開平2−227190号公報参照)、一方にアルカ
リ剤、片方に酸を添加して処理する方法(特開平2−2
93095号公報)等が知られていたが、これらの処理
方法でも余剰汚泥はある程度減少するものの、より以上
の減容化方法が望まれていた。
[0003] In addition, excess sludge is hardly dehydrated in quality, so that sludge treatment becomes more and more difficult. In order to reduce such excess sludge, a conventional method of solubilizing excess sludge is to add an alkaline agent and treat it (see JP-A-2-227190). (Japanese Unexamined Patent Publication No. 2-2)
93095) is known, but even with these treatment methods, although the excess sludge is reduced to some extent, a further volume reduction method has been desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、簡単な処理手段により余剰汚泥のほとんど発
生しない、有機性汚水の好気性生物処理方法を提供する
ことを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an aerobic biological treatment method for organic sewage in which excess sludge is hardly generated by a simple treatment means in view of the above prior art.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、有機性汚水を好気性生物処理した後、
得られる汚泥の一部を可溶化処理して前記好気性生物処
理工程に戻して処理する方法において、前記可溶化処理
をパルス放電処理で行うこととしたものである。また、
本発明では、有機性汚水を好気性生物処理した後、得ら
れる汚泥の一部を可溶化処理して前記好気性生物処理工
程に戻して処理する方法において、前記可溶化処理を酸
性酸化剤を用いる酸性酸化処理工程及びアルカリ剤を用
いるアルカリ処理工程とパルス放電処理工程とで行うこ
ととしたものである。前記処理方法において、用いる酸
性酸化剤及びアルカリ剤は、塩水を隔膜電解して得られ
た酸性酸化水及びアルカリ水であるのがよい。
In order to solve the above-mentioned problems, according to the present invention, an organic sewage is subjected to an aerobic biological treatment.
In the method of solubilizing a part of the obtained sludge and returning it to the aerobic biological treatment step, the solubilization treatment is performed by a pulse discharge treatment. Also,
In the present invention, the organic sewage is subjected to an aerobic biological treatment, and then a part of the obtained sludge is solubilized and returned to the aerobic biological treatment step, wherein the acidic oxidizing agent is treated with an acidic oxidizing agent. The acid oxidation treatment step, the alkali treatment step using an alkali agent, and the pulse discharge treatment step are performed. In the treatment method, the acidic oxidizing agent and the alkaline agent used are preferably acidic oxidizing water and alkaline water obtained by subjecting salt water to diaphragm electrolysis.

【0006】前記酸性酸化処理工程及びアルカリ処理工
程が、並列に、或いは直列に設けられ、それぞれ単独又
は複数の工程から成り、かつこの一連の酸・アルカリ処
理工程の前、或いは後にパルス放電処理工程を設けるこ
とができる。前記単独又は複数の工程から成る酸性酸化
処理工程及びアルカリ処理工程では、パルス放電処理工
程は単独又は複数のアルカリ処理工程の後に導入される
のが良く、また、前記複数の工程から成る酸性酸化処理
工程及びアルカリ処理工程では、該工程の前段の工程に
酸性酸化剤又はアルカリ剤を全量導入するとともに、被
処理汚泥を各段の工程に分配して導入するのが良い。ま
た、前記可溶化処理した汚泥は、好気性生物処理工程に
戻す前に前曝気工程を設けて曝気処理して残留塩素を揮
発除去するのが良く、さらに、該汚泥の一部は、再度可
溶化処理する工程に戻して処理することにより、より分
解性は向上する。
The acidic oxidation treatment step and the alkali treatment step are provided in parallel or in series, each consisting of one or more steps, and before or after the series of acid / alkali treatment steps. Can be provided. In the acid oxidation treatment step and the alkali treatment step comprising the single or plural steps, the pulse discharge treatment step may be introduced after the single or plural alkali treatment steps, and the acid oxidation treatment step comprising the plural steps In the step and the alkali treatment step, it is preferable to introduce the entire amount of the acidic oxidizing agent or the alkaline agent into the step preceding the step, and to distribute and introduce the sludge to be treated into the steps in each step. Before returning to the aerobic biological treatment step, the solubilized sludge may be provided with a pre-aeration step to perform aeration treatment to volatilize and remove residual chlorine. Degradability is further improved by returning to the step of solubilizing treatment.

【0007】なお、可溶化処理で酸性酸化処理工程及び
アルカリ処理工程で処理した汚泥は、これらを混合する
ことにより中性に戻すが、万一pHが中性域を外れた場
合は、酸性酸化水又はアルカリ水を用いて中性に戻すの
が良い。さらに、本発明では、好気性生物処理槽と汚泥
分離装置を順次設け、分離した汚泥の一部を可溶化する
可溶化手段を有する有機性汚水の処理装置において、該
可溶化手段がパルス放電手段であり、該パルス放電によ
る可溶化汚泥を前記好気性生物処理槽に導入するように
接続したものである。また、好気性生物処理槽と汚泥分
離装置を順次設け、分離した汚泥の一部を可溶化する可
溶化手段を有する有機性汚水の処理装置において、該可
溶化手段が酸性酸化剤を用いる酸性酸化処理槽及びアル
カリ剤を用いるアルカリ処理槽と、パルス放電手段とか
らなり、可溶化した汚泥を前記好気性生物処理槽に導入
するように接続したものである。
[0007] The sludge treated in the acid oxidation treatment step and the alkali treatment step in the solubilization treatment is returned to neutrality by mixing them. However, if the pH is out of the neutral range, the acid sludge treatment is carried out. It is better to return to neutrality using water or alkaline water. Further, in the present invention, in an organic sewage treatment apparatus having an aerobic biological treatment tank and a sludge separation device sequentially provided with a solubilization means for solubilizing a part of the separated sludge, the solubilization means is a pulse discharge means. The solubilized sludge by the pulse discharge is connected so as to be introduced into the aerobic biological treatment tank. Further, in an organic sewage treatment apparatus having an aerobic biological treatment tank and a sludge separating device sequentially provided with a solubilizing means for solubilizing a part of the separated sludge, the solubilizing means may use an acidic oxidizing agent. It comprises a treatment tank, an alkaline treatment tank using an alkali agent, and pulse discharge means, and is connected so as to introduce the solubilized sludge into the aerobic biological treatment tank.

【0008】[0008]

【発明の実施の形態】次に図面を用いて本発明を詳細に
説明する。図1に、本発明の処理方法の汚泥減容化プロ
セスのフローの一例を示す。図1においては、有機性汚
水5を、好気性生物処理槽1で処理し、沈殿槽2で固液
分離して処理水6と汚泥7、8を得る排水処理工程で処
理し、発生した汚泥の一部を返送汚泥7として生物処理
槽1に循環すると共に、他部8を可溶化工程3に導入し
て、汚泥を可溶化及び分解処理を行った後、排水処理工
程の生物処理槽1に返送9して、溶解性有機物及び汚泥
分の生物分解を行っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a flow of a sludge volume reduction process of the treatment method of the present invention. In FIG. 1, an organic wastewater 5 is treated in an aerobic biological treatment tank 1, and solid-liquid separated in a sedimentation tank 2 to be treated in a wastewater treatment step of obtaining treated water 6 and sludge 7, 8. Is recycled to the biological treatment tank 1 as returned sludge 7, and the other part 8 is introduced into the solubilization step 3 to solubilize and decompose the sludge. To biodegrade the soluble organic matter and sludge.

【0009】可溶化工程3に導入された汚泥8は、パル
ス電源より発せられるパルス放電4による衝撃波を受け
可溶化処理される。パルス放電4の操作条件は、パルス
電圧60kV以下、パルス電流25kA以下、パルス幅
0.1〜400マイクロ秒、パルス回数100Hz以下
とする。パルス放電処理の態様は、図1に示されるよう
に、汚泥8の流路に直角に或いは並行に然るべき間隔を
置いて設備されたるパルス放電端より発せられるパルス
放電によるもので、図2に示されるように、汚泥8を貯
留せしめる槽において汚泥8をポンプ循環し、当該循環
用配管内にパルス放電端を挿入する方法でもよい。非定
常高圧なので沿面放電を防ぐため、パルス放電端の内、
大気中に存在する部分には絶縁物にリブを組み込む必要
があるが、針状、半球状、平板状等のパルス放電端の形
状についてはこれを限定するものではない。
The sludge 8 introduced into the solubilization step 3 is subjected to a solubilization treatment by receiving a shock wave by a pulse discharge 4 generated from a pulse power source. The operating conditions for the pulse discharge 4 are a pulse voltage of 60 kV or less, a pulse current of 25 kA or less, a pulse width of 0.1 to 400 microseconds, and a pulse frequency of 100 Hz or less. The mode of the pulse discharge treatment is, as shown in FIG. 1, a pulse discharge generated from a pulse discharge end provided at an appropriate interval perpendicularly or parallel to the flow path of the sludge 8, and is shown in FIG. 2. As described above, a method in which the sludge 8 is pump-circulated in a tank for storing the sludge 8 and a pulse discharge end is inserted into the circulation pipe may be used. Since it is unsteady high pressure, to prevent creeping discharge,
It is necessary to incorporate a rib into an insulator in a portion existing in the atmosphere, but the shape of the pulse discharge end such as a needle, a hemisphere, and a flat plate is not limited thereto.

【0010】次に図3に本発明の処理方法の酸・アルカ
リ処理工程を併用する汚泥減容化プロセスのフローの一
例を示す。図3においては、発生した汚泥の他部8をパ
ルス放電処理工程と酸・アルカリ処理工程とを併用した
可溶化工程3に導入して、汚泥を可溶化及び分解処理を
行った後、排水処理工程の生物処理槽1に返送9して、
溶解性有機物及び汚泥分の生物分解を行っている。可溶
化工程3に導入された汚泥8は、並列で複数(2槽づ
つ)設けられたアルカリ処理工程15、15′と酸化処
理工程14、14′にそれぞれ導入され、海水又は塩素
イオンを含む各種の塩水を隔膜電解して得られたアルカ
リ水24及び酸性酸化水23と接触させることにより可
溶化及び電化分解処理を行っている。そして、アルカリ
処理工程では15′の後、酸化処理工程終了汚泥と混合
する前にパルス放電処理4が導入される。
Next, FIG. 3 shows an example of a flow of a sludge volume reduction process using the acid / alkali treatment step of the treatment method of the present invention. In FIG. 3, the other part 8 of the generated sludge is introduced into a solubilization step 3 in which a pulse discharge treatment step and an acid / alkali treatment step are used in combination, solubilized and decomposed, and then drainage treatment is performed. Return to the biological treatment tank 1 of the process 9
Biodegradation of soluble organic matter and sludge. The sludge 8 introduced into the solubilization step 3 is introduced into a plurality (two tanks) of alkali treatment steps 15 and 15 ′ and oxidation treatment steps 14 and 14 ′, which are provided in parallel. Is brought into contact with alkaline water 24 and acidic oxidized water 23 obtained by subjecting the salt water to diaphragm electrolysis treatment. In the alkali treatment step, a pulse discharge treatment 4 is introduced after 15 'and before mixing with the sludge after the oxidation treatment step.

【0011】パルス放電の操作条件は、パルス電圧60
kV以下、パルス電流25kA以下、パルス間隔0.1
〜400マイクロ秒、パルス回数100Hz以下とす
る。パルス放電処理の態様は、図1に示されるように、
汚泥aの流路に直角に或いは並行に然るべき間隔を置い
て設備されたるパルス放電端より発せられるパルス放電
によるもので、図2に示されるように、汚泥aを貯留せ
しめる槽において汚泥aをポンプ循環し、当該循環用配
管内にパルス放電端を挿入する方法でもよい。非定常高
圧なので沿面放電を防ぐため、パルス放電端には絶縁部
にリブを組み込む必要があるが、針状、半球状、平板状
等のパルス放電端の形状についてはこれを限定するもの
ではない。
The operating conditions of the pulse discharge are as follows.
kV or less, pulse current 25 kA or less, pulse interval 0.1
400400 microseconds and the number of pulses is 100 Hz or less. The mode of the pulse discharge process is as shown in FIG.
This is due to pulse discharge generated from a pulse discharge end provided at an appropriate interval perpendicularly or parallel to the flow path of sludge a. As shown in FIG. 2, sludge a is pumped in a tank for storing sludge a. It may be a method of circulating and inserting a pulse discharge end into the circulation pipe. Since it is an unsteady high pressure, it is necessary to incorporate a rib in the insulating part at the pulse discharge end to prevent creeping discharge, but the shape of the pulse discharge end such as a needle shape, a hemispherical shape, a flat plate shape is not limited. .

【0012】塩水の隔膜電解は、隔膜21によって陽極
19を有する陽極室17と陰極18を有する陰極室20
によって仕切られた隔膜電解装置16を用いて行い、該
装置16の陽極室17と陰極室18に塩水22を導入す
る。陽極室17では、陽極でH+ が生成し、酸性になる
と共に、塩水中のCl- より塩素系酸化剤(HClO、
Cl2 、Cl・等)が発生し、酸性酸化水23を得、陰
極室18では、陰極でOH- が生成しアルカリ性にな
り、アルカリ水24を得て、酸性酸化水23を酸化槽1
4に、アルカリ水24をアルカリ槽15にそれぞれ導入
して可溶化処理に用いる。また、アルカリ処理工程と酸
化処理工程はそれぞれ処理槽を2段に設け、それぞれに
導入された汚泥12、13の一部は、第2アルカリ槽1
5′と第2酸化槽14′にそれぞれ分流して導入する。
そして、第2アルカリ処理槽15′の後に続いてパルス
放電処理を受ける。
In the membrane electrolysis of salt water, an anode chamber 17 having an anode 19 and a cathode chamber 20 having a cathode 18 are formed by a diaphragm 21.
This is performed using a diaphragm electrolysis device 16 partitioned by the above-described method, and salt water 22 is introduced into an anode chamber 17 and a cathode chamber 18 of the device 16. In the anode chamber 17, the H + generated at the anode, it becomes acidic, Cl in saline - than chlorine-based oxidizing agent (HClO,
Cl 2, Cl · etc.) occurs and obtain an acidic oxide water 23, the cathode compartment 18, the cathode in OH - is the generated alkaline, to obtain alkaline water 24, oxidation vessel 1 acidic oxide water 23
4, alkaline water 24 is introduced into the alkaline tank 15 and used for solubilization. In addition, the alkali treatment step and the oxidation treatment step are each provided with a treatment tank in two stages, and a part of the sludges 12 and 13 introduced into each of the treatment tanks is provided in the second alkali tank 1.
5 'and the second oxidation tank 14' are separately introduced.
Then, after the second alkali treatment tank 15 ', a pulse discharge treatment is performed.

【0013】次に、これらの槽の作用を説明する。ま
ず、第1アルカリ槽は、隔膜電解により生成したアルカ
リを汚泥に反応させ、強アルカリ条件下で汚泥菌体の破
壊及び細胞内液の溶出による汚泥の可溶化処理を行い、
第2アルカリ槽は、第1アルカリ槽からの余剰アルカリ
を利用して、汚泥の減容化を進行させる。更に続いてパ
ルス放電処理することにより、第1アルカリ槽にて十分
に破壊されなかった汚泥菌体が破壊され、汚泥の減容化
を一段と進んだものにする。次に、第1酸化槽は、隔膜
電解により生成した酸、酸化剤を汚泥に反応させ強酸条
件下で汚泥菌体の酸化分解処理を行う、第2酸化槽は、
第1酸化槽からの余剰の酸、酸化剤を利用して、汚泥の
酸化分解を進行させる。なお、図3では、アルカリ処理
及び酸性酸化処理を並列でそれぞれ2系列で行っている
が、各々の処理は、単一槽(第1アルカリ槽と第1酸化
槽のみ)でも良いし、それぞれ2槽以上の系列で行って
もよい。
Next, the operation of these tanks will be described. First, the first alkali tank reacts the sludge with the alkali generated by the membrane electrolysis, and performs a solubilization treatment of the sludge by destruction of the sludge cells and elution of the intracellular solution under strong alkali conditions,
The second alkaline tank utilizes excess alkali from the first alkaline tank to promote sludge volume reduction. Furthermore, by performing the pulse discharge treatment, the sludge cells that have not been sufficiently destroyed in the first alkaline tank are destroyed, thereby further reducing the volume of the sludge. Next, the first oxidation tank reacts the acid and oxidizing agent generated by the membrane electrolysis with the sludge to perform oxidative decomposition treatment of the sludge cells under strong acid conditions.
The excess acid and oxidizing agent from the first oxidation tank are used to promote oxidative decomposition of sludge. In FIG. 3, the alkali treatment and the acidic oxidation treatment are performed in two lines each in parallel. However, each treatment may be performed in a single tank (only the first alkali tank and the first oxidation tank), or in each case. It may be performed in a series of tanks or more.

【0014】図4に、本発明の処理方法の別の概略フロ
ー工程図を示す。図4では酸性酸化処理工程及びアルカ
リ処理工程から成る一連の酸・アルカリ処理の後にパル
ス放電処理工程4を設けている。また、図5では、パル
ス放電処理工程4の後に、酸性酸化処理工程及びアルカ
リ工程から成る一連の酸・アルカリ処理工程を設けてい
る。図6においては、有機性汚水5は生物処理槽1に入
る前に調整槽11に導入されて曝気処理される。また、
可溶化工程3からの可溶化汚泥9は、前曝気槽10で曝
気処理され、可溶化処理に用いた電解水中の残留塩素を
揮発除去した後に、生物処理槽1に導入している。な
お、前曝気槽10の替りに、可溶化汚泥9を調整槽11
に導入して、曝気処理して残留塩素を除去することがで
きる。図7に、可溶化汚泥9の一部を、可溶化工程3に
循環する概略フロー工程図を示す。このように、可溶化
汚泥の一部を循環処理することにより、更に汚泥の分解
性を向上することができる。
FIG. 4 shows another schematic flow chart of the processing method of the present invention. In FIG. 4, a pulse discharge treatment step 4 is provided after a series of acid / alkali treatments including an acid oxidation treatment step and an alkali treatment step. In FIG. 5, a series of acid / alkali treatment steps including an acid oxidation treatment step and an alkali step are provided after the pulse discharge treatment step 4. In FIG. 6, the organic wastewater 5 is introduced into the adjusting tank 11 and aerated before entering the biological treatment tank 1. Also,
The solubilized sludge 9 from the solubilization step 3 is introduced into the biological treatment tank 1 after being subjected to aeration treatment in the pre-aeration tank 10 to volatilize and remove residual chlorine in the electrolytic water used for the solubilization treatment. Note that instead of the pre-aeration tank 10, the solubilized sludge 9 was
And aeration treatment to remove residual chlorine. FIG. 7 shows a schematic flow chart for circulating a part of the solubilized sludge 9 to the solubilizing step 3. In this way, by circulating a part of the solubilized sludge, the sludge decomposability can be further improved.

【0015】[0015]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 図1の処理フローに示した実験装置(Run1)と、同
フローから可溶化工程を除いた実験装置(Run2)の
2系列を設けて、処理水質と汚泥発生量を比較した。R
un1において、可溶化工程には余剰汚泥量の4倍量を
導入し、電圧20kV、電流1kA、パルス幅125マ
イクロ秒、パルス回数20Hzにてパルス放電処理し
た。なお、実験はB食品会社の排水を原水(pH7.
2、BOD800mg/リットル、COD Mn 42
0mg/リットル、SS 95mg/リットル)とし
て、Run1とRun2の運転条件は可溶化工程を設け
る以外は同条件で運転した。
The present invention will be described below in more detail with reference to examples. Example 1 Two sets of an experimental apparatus (Run 1) shown in the processing flow of FIG. 1 and an experimental apparatus (Run 2) in which the solubilization step was removed from the flow were provided, and the quality of treated water and the amount of generated sludge were compared. R
In un1, a four-fold amount of excess sludge was introduced into the solubilization step, and a pulse discharge treatment was performed at a voltage of 20 kV, a current of 1 kA, a pulse width of 125 microseconds, and a pulse frequency of 20 Hz. In the experiment, wastewater from B food company was used as raw water (pH 7.
2, BOD 800mg / L, COD Mn 42
(0 mg / liter, SS 95 mg / liter), and run conditions of Run 1 and Run 2 were the same except that a solubilization step was provided.

【0016】表1に、導入汚泥とパルス放電処理汚泥の
性状を示す。
Table 1 shows the properties of the sludge introduced and the sludge treated by the pulse discharge.

【表1】 [Table 1]

【0017】実験結果を表2に示す。表2から、可溶化
工程を組み込んだRun1はRun2に比べて汚泥発生
量が著しく少なく、処理水質もほとんど差はなかった。
Table 2 shows the experimental results. From Table 2, it was found that Run1 incorporating the solubilization step produced significantly less sludge than Run2, and there was almost no difference in treated water quality.

【表2】 [Table 2]

【0018】実施例2 図3の処理フローに示した実験装置(Run3)と、同
フローから可溶化工程を除いた実験装置(Run4)の
2系列を設けて、処理水質と汚泥発生量を比較した。R
un3において、可溶化工程に導入する汚泥量は余剰汚
泥量の4倍量を導入し、アルカリ処理工程には、その2
/3量、酸化処理工程にはその1/3量をそれぞれ導入
した。また、第2アルカリ槽には、アルカリ処理工程に
導入される汚泥量の1/2量、第2酸化槽には、酸化処
理工程に導入される汚泥量の1/3量をそれぞれ導入し
た。各処理槽の滞留時間はいずれも4時間とした。本実
施例では塩水として海水の1/2の塩分濃度の食塩水を
用いた。また、食塩水の使用量は、余剰汚泥量と同量を
電解処理槽に通水した。アルカリ処理工程の後のパルス
放電処理は、電圧20kV、電流1kA、パルス間隔1
25マイクロ秒、パルス回数20Hzである。
Example 2 The experimental system (Run 3) shown in the processing flow of FIG. 3 and the experimental system (Run 4) in which the solubilization step was removed from the flow were provided to compare the treated water quality and the amount of sludge generated. did. R
In un3, the amount of sludge to be introduced into the solubilization step is four times the amount of excess sludge, and the amount of sludge is 2 times in the alkali treatment step.
量 amount and 1 / amount were introduced into the oxidation treatment step, respectively. In the second alkaline tank, 1 / of the amount of sludge introduced into the alkali treatment step was introduced, and in the second oxidation tank, 1 / of the amount of sludge introduced into the oxidation treatment step was introduced. The residence time in each treatment tank was 4 hours. In this embodiment, a salt solution having a salt concentration of 1/2 of seawater was used as the salt water. The amount of saline used was the same as the amount of excess sludge passed through the electrolytic treatment tank. The pulse discharge treatment after the alkali treatment step is performed at a voltage of 20 kV, a current of 1 kA, and a pulse interval of 1 kA.
25 microseconds, pulse frequency 20 Hz.

【0019】隔膜電解処理の条件と得られた電解水(ア
ルカリ水、酸性酸化水)の性状を表3、4にそれぞれ示
す。なお、実験はB食品会社の排水を原水(pH7.
2、BOD 800mg/リットル、COD Mn 4
20mg/リットル、SS 95mg/リットル)とし
て、Run3とRun4の運転条件は可溶化工程を設け
る以外は同条件で運転した。
Tables 3 and 4 show the conditions of the diaphragm electrolysis treatment and the properties of the obtained electrolyzed water (alkaline water and acidic oxidized water). In the experiment, wastewater from B food company was used as raw water (pH 7.
2, BOD 800mg / L, COD Mn 4
The run conditions of Run 3 and Run 4 were the same except that a solubilization step was provided.

【表3】 [Table 3]

【表4】 [Table 4]

【0020】表5に、導入汚泥と可溶化処理汚泥の性状
を示す。
Table 5 shows the properties of the introduced sludge and the solubilized sludge.

【表5】 [Table 5]

【0021】実験結果を表6に示す。表6から、パルス
放電処理工程を含む可溶化工程を組み込んだRun3
は、Run4に比べて汚泥発生量が著しく少なく、処理
水質もほとんど差はなかった。
Table 6 shows the experimental results. From Table 6, it can be seen that Run3 incorporating the solubilization step including the pulse discharge treatment step was used.
Showed significantly less sludge generation than Run4, and there was almost no difference in treated water quality.

【表6】 [Table 6]

【0022】実施例3 図5の処理フローに示した実験装置(Run5)と、同
フローから可溶化工程を除いた実験装置(Run6)の
2系列を設けて、処理水質と汚泥発生量を比較した。R
un5において、可溶化工程に導入する汚泥量は余剰汚
泥量の4倍量を導入し、先ず、電圧20kV、電流1.
2kA、パルス間隔100マイクロ秒、パルス回数20
Hzにてパルス放電処理し、アルカリ処理工程には、そ
の2/3量、酸化処理工程にはその1/3量をそれぞれ
導入した。また、第2アルカリ槽には、アルカリ処理工
程に導入される汚泥量の1/2量、第2酸化槽には、酸
化処理工程に導入される汚泥量の1/3量をそれぞれ導
入した。各処理槽の滞留時間はいずれも4時間とした。
本実施例では塩水として海水の1/2の塩分濃度の食塩
水を用いた。また、食塩水の使用量は、余剰汚泥量と同
量を電解処理槽に通水した。
Example 3 The experimental system (Run 5) shown in the processing flow of FIG. 5 and the experimental system (Run 6) in which the solubilization step was removed from the flow were provided to compare the quality of treated water and the amount of sludge generated. did. R
In un5, the amount of sludge to be introduced into the solubilization step is four times the amount of excess sludge. First, a voltage of 20 kV and a current of 1.
2 kA, pulse interval 100 microseconds, number of pulses 20
A pulse discharge treatment was performed at Hz, and 2/3 of the amount was introduced into the alkali treatment step, and 1/3 of the amount was introduced into the oxidation treatment step. In the second alkaline tank, 1 / of the amount of sludge introduced into the alkali treatment step was introduced, and in the second oxidation tank, 1 / of the amount of sludge introduced into the oxidation treatment step was introduced. The residence time in each treatment tank was 4 hours.
In this embodiment, a salt solution having a salt concentration of 1/2 of seawater was used as the salt water. The amount of saline used was the same as the amount of excess sludge passed through the electrolytic treatment tank.

【0023】隔膜電解処理の条件と得られた電解水(ア
ルカリ水、酸性酸化水)の性状を表7、8にそれぞれ示
す。なお、実験はB食品会社の排水を原水(pH7.
2、BOD 800mg/リットル、COD Mn 4
20mg/リットル、SS 95mg/リットル)とし
て、Run5とRun6の運転条件は可溶化工程を設け
る以外は同条件で運転した。
Tables 7 and 8 show the conditions of the diaphragm electrolysis treatment and the properties of the obtained electrolyzed water (alkaline water and acidic oxidized water). In the experiment, wastewater from B food company was used as raw water (pH 7.
2, BOD 800mg / L, COD Mn 4
The run conditions of Run 5 and Run 6 were the same except that a solubilization step was provided.

【表7】 [Table 7]

【表8】 [Table 8]

【0024】表9に、導入汚泥と可溶化処理汚泥の性状
を示す。
Table 9 shows the properties of the introduced sludge and the solubilized sludge.

【表9】 [Table 9]

【0025】実験結果を表10に示す。表10から、パ
ルス放電処理工程を含む可溶化工程を組み込んだRun
5はRun6に比べて汚泥発生量が著しく少なく、処理
水質もほとんど差はなかった。
Table 10 shows the experimental results. From Table 10, it can be seen that Run incorporating the solubilization step including the pulse discharge treatment step was incorporated.
Sample No. 5 produced much less sludge than Run No. 6, and there was almost no difference in treated water quality.

【表10】 [Table 10]

【0026】[0026]

【発明の効果】本発明によれば、パルス放電処理によ
り、余剰汚泥をほとんど分解でき、汚泥はほとんど発生
しない。また、本発明によれば、酸性酸化剤及びアルカ
リ剤とパルス放電処理を併用した処理により、より一層
可溶化処理を促進し、余剰汚泥をほとんど分解でき、汚
泥はほとんど発生せず、また、酸性酸化剤、アルカリ剤
として塩水の隔膜処理から得られる酸性酸化水、アルカ
リ水を用いることにより、安価に容易に得ることができ
る。
According to the present invention, surplus sludge can be almost completely decomposed by pulse discharge treatment, and almost no sludge is generated. Further, according to the present invention, the treatment using the pulse discharge treatment in combination with the acidic oxidizing agent and the alkali agent further promotes the solubilization treatment, can almost completely decompose excess sludge, hardly generates sludge, By using acidic oxidized water and alkaline water obtained from the membrane treatment of salt water as the oxidizing agent and the alkaline agent, it can be easily obtained at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理方法に用いる汚泥減容化プロセス
のフロー工程図。
FIG. 1 is a flow diagram of a sludge volume reduction process used in the treatment method of the present invention.

【図2】パルス放電処理の他の方法を示す説明図。FIG. 2 is an explanatory view showing another method of the pulse discharge processing.

【図3】本発明の処理方法に用いる他の汚泥減容化プロ
セスのフロー工程図。
FIG. 3 is a flow chart of another sludge volume reduction process used in the treatment method of the present invention.

【図4】本発明の処理方法に用いる他の汚泥減容化プロ
セスのフロー工程図。
FIG. 4 is a flow chart of another sludge reduction process used in the treatment method of the present invention.

【図5】本発明の処理方法に用いる他の汚泥減容化プロ
セスのフロー工程図。
FIG. 5 is a flow chart of another sludge volume reduction process used in the treatment method of the present invention.

【図6】本発明の処理方法の他の概略フロー工程図。FIG. 6 is another schematic flow chart of the processing method of the present invention.

【図7】本発明の処理方法の別の概略フロー工程図。FIG. 7 is another schematic flow chart of the processing method of the present invention.

【符号の説明】[Explanation of symbols]

1:好気性生物処理槽、2:沈殿槽、3:可溶化工程、
4:パルス放電端、5:有機性汚水、6:処理水、7:
返送汚泥、8:余剰汚泥、9:可溶化汚泥、10:前曝
気槽、11:調整槽、12、13:余剰汚泥の一部、1
4:第1酸化槽、14′:第2酸化槽、15:第1アル
カリ槽、15′:第2アルカリ槽、16:隔膜電解装
置、17:陽極室、18:陰極室、19:陽極、20:
陰極、21:隔膜、22:塩水、23:酸性酸化水、2
4:アルカリ水
1: aerobic biological treatment tank, 2: sedimentation tank, 3: solubilization step,
4: pulse discharge end, 5: organic wastewater, 6: treated water, 7:
Returned sludge, 8: excess sludge, 9: solubilized sludge, 10: pre-aeration tank, 11: conditioning tank, 12, 13: part of excess sludge, 1
4: 1st oxidation tank, 14 ': 2nd oxidation tank, 15: 1st alkali tank, 15': 2nd alkali tank, 16: diaphragm electrolysis apparatus, 17: anode chamber, 18: cathode chamber, 19: anode, 20:
Cathode, 21: diaphragm, 22: salt water, 23: acidic oxidized water, 2
4: Alkaline water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 昭 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 木幡 信和 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Watanabe 4-2-1 Motofujisawa, Fujisawa City, Kanagawa Prefecture Inside Ebara Research Institute, Inc. No. 1 Inside EBARA Research Institute

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚水を好気性生物処理した後、得
られる汚泥の一部を可溶化処理して前記好気性生物処理
工程に戻して処理する方法において、前記可溶化処理を
パルス放電処理工程で行うことを特徴とする有機性汚水
の処理方法。
1. A method of treating an organic wastewater with an aerobic biological treatment and then solubilizing a part of the obtained sludge and returning the sludge to the aerobic biological treatment step, wherein the solubilizing treatment is a pulse discharge treatment. A method for treating organic wastewater, which is performed in a process.
【請求項2】 有機性汚水を好気性生物処理した後、得
られる汚泥の一部を可溶化処理して前記好気性生物処理
工程に戻して処理する方法において、前記可溶化処理を
酸性酸化剤を用いる酸性酸化処理工程及びアルカリ剤を
用いるアルカリ処理工程とパルス放電処理工程とで行う
ことを特徴とする有機性汚水の処理方法。
2. A method of treating an organic sewage with an aerobic biological treatment and then solubilizing a part of the obtained sludge and returning the sludge to the aerobic biological treatment step, wherein the solubilizing treatment is performed with an acidic oxidizing agent. A method for treating organic sewage, comprising a step of performing an acidic oxidation treatment step using an organic solvent, an alkali treatment step using an alkali agent, and a pulse discharge treatment step.
【請求項3】 前記酸性酸化剤及びアルカリ剤が、塩水
を隔膜電解して得られた酸性酸化水及びアルカリ水であ
ることを特徴とする請求項2に記載の有機性汚水の処理
方法。
3. The method for treating organic sewage according to claim 2, wherein the acidic oxidizing agent and the alkaline agent are acidic oxidized water and alkaline water obtained by subjecting salt water to diaphragm electrolysis.
【請求項4】 前記酸性酸化処理工程及びアルカリ処理
工程が、並列に、或いは直列に設けられ、かつこの一連
の酸・アルカリ処理工程の前、或いは後にパルス放電処
理工程が設けられることを特徴とする請求項2又は3に
記載の有機性汚水の処理方法。
4. The method according to claim 1, wherein the acid oxidation treatment step and the alkali treatment step are provided in parallel or in series, and a pulse discharge treatment step is provided before or after the series of acid / alkali treatment steps. The method for treating organic sewage according to claim 2 or 3.
【請求項5】 前記酸性酸化処理工程及びアルカリ処理
工程が、並列に設けられ、かつ、アルカリ処理工程とパ
ルス放電処理工程とが当該順序にて直列に設けられるこ
とを特徴とする請求項4に記載の有機性汚水の処理方
法。
5. The method according to claim 4, wherein the acidic oxidation treatment step and the alkali treatment step are provided in parallel, and the alkali treatment step and the pulse discharge treatment step are provided in series in this order. The method for treating organic sewage according to the above.
【請求項6】 前記酸性酸化処理工程及びアルカリ処理
工程が、それぞれ複数の工程から成ることを特徴とする
請求項4に記載の有機性汚水の処理方法。
6. The method for treating organic sewage according to claim 4, wherein the acid oxidation treatment step and the alkali treatment step each comprise a plurality of steps.
【請求項7】 前記複数の工程から成る酸性酸化処理工
程及びアルカリ処理工程では、パルス放電処理工程が複
数のアルカリ処理工程の後に導入されることを特徴とす
る請求項6に記載の有機性汚水の処理方法。
7. The organic sewage according to claim 6, wherein in the acid oxidation treatment step and the alkali treatment step comprising the plurality of steps, a pulse discharge treatment step is introduced after the plurality of alkali treatment steps. Processing method.
【請求項8】 前記複数の工程から成る酸性酸化処理工
程及びアルカリ処理工程では、該工程の前段の工程に酸
性酸化剤又はアルカリ剤を全量導入するとともに、被処
理汚泥を各段の工程に分配して導入することを特徴とす
る請求項6に記載の有機性汚水の処理方法。
8. In the acid oxidation treatment step and the alkali treatment step comprising the plurality of steps, the acid oxidizing agent or the alkali agent is introduced in its entirety into the preceding step, and the sludge to be treated is distributed to each step. The method for treating organic sewage according to claim 6, wherein the wastewater is introduced after being introduced.
【請求項9】 前記可溶化処理した汚泥は、好気性生物
処理工程に戻す前に、前曝気工程を設けて曝気処理する
ことを特徴とする請求項1〜8のいずれか1項に記載の
有機性汚水の処理方法。
9. The sludge subjected to solubilization treatment is subjected to an aeration treatment by providing a pre-aeration treatment before returning to the aerobic biological treatment treatment. Organic wastewater treatment method.
【請求項10】 前記可溶化処理した汚泥の一部は、可
溶化処理する工程に戻して再度処理することを特徴とす
る請求項1〜9のいずれか1項に記載の有機性汚水の処
理方法。
10. The organic wastewater treatment according to claim 1, wherein a part of the solubilized sludge is returned to the step of solubilization and treated again. Method.
【請求項11】 好気性生物処理槽と汚泥分離装置を順
次設け、分離した汚泥の一部を可溶化する可溶化手段を
有する有機性汚水の処理装置において、該可溶化手段が
パルス放電手段であり、該パルス放電による可溶化汚泥
を前記好気性生物処理槽に導入するように接続したこと
を特徴とする有機性汚水の処理装置。
11. An organic sewage treatment apparatus having an aerobic biological treatment tank and a sludge separation device sequentially provided with a solubilization means for solubilizing a part of the separated sludge, wherein the solubilization means is a pulse discharge means. An organic sewage treatment apparatus, wherein the apparatus is connected to introduce the solubilized sludge by the pulse discharge into the aerobic biological treatment tank.
【請求項12】 好気性生物処理槽と汚泥分離装置を順
次設け、分離した汚泥の一部を可溶化する可溶化手段を
有する有機性汚水の処理装置において、該可溶化手段が
酸性酸化剤を用いる酸性酸化処理槽及びアルカリ剤を用
いるアルカリ処理槽と、パルス放電手段とからなり、可
溶化した汚泥を前記好気性生物処理槽に導入するように
接続したことを特徴とする有機性汚水の処理装置。
12. An organic sewage treatment apparatus having an aerobic biological treatment tank and a sludge separation device sequentially provided with a solubilization means for solubilizing a part of the separated sludge, wherein the solubilization means uses an acidic oxidizing agent. An organic sewage treatment comprising an acidic oxidation treatment tank and an alkali treatment tank using an alkali agent, and a pulse discharge means, wherein the sludge solubilized is connected so as to be introduced into the aerobic biological treatment tank. apparatus.
JP36594297A 1997-12-24 1997-12-24 Method and apparatus for treating organic waste water Pending JPH11179391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36594297A JPH11179391A (en) 1997-12-24 1997-12-24 Method and apparatus for treating organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36594297A JPH11179391A (en) 1997-12-24 1997-12-24 Method and apparatus for treating organic waste water

Publications (1)

Publication Number Publication Date
JPH11179391A true JPH11179391A (en) 1999-07-06

Family

ID=18485516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36594297A Pending JPH11179391A (en) 1997-12-24 1997-12-24 Method and apparatus for treating organic waste water

Country Status (1)

Country Link
JP (1) JPH11179391A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035782A (en) * 2000-07-26 2002-02-05 Japan Organo Co Ltd Sludge treatment apparatus
EP1315676A1 (en) * 2000-07-10 2003-06-04 D-H20 L.L.C. Method for dewatering municipal waste-activated sludge using high electrical voltage
JP2007209889A (en) * 2006-02-09 2007-08-23 Es Technology Kk Surplus sludge treatment method
US7507341B2 (en) 1999-01-13 2009-03-24 Opencel Llc Method of and apparatus for converting biological materials into energy resources
US7572369B2 (en) 2007-02-16 2009-08-11 Opencel Llc System for supporting denitrification

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645382B2 (en) 1995-11-02 2010-01-12 Opencell Llc Apparatus for converting biological materials into energy resources
US7507341B2 (en) 1999-01-13 2009-03-24 Opencel Llc Method of and apparatus for converting biological materials into energy resources
EP1315676A1 (en) * 2000-07-10 2003-06-04 D-H20 L.L.C. Method for dewatering municipal waste-activated sludge using high electrical voltage
EP1315676A4 (en) * 2000-07-10 2008-04-09 Opencel Llc Method for dewatering municipal waste-activated sludge using high electrical voltage
JP2002035782A (en) * 2000-07-26 2002-02-05 Japan Organo Co Ltd Sludge treatment apparatus
JP4608057B2 (en) * 2000-07-26 2011-01-05 オルガノ株式会社 Sludge treatment apparatus and sludge treatment method
JP2007209889A (en) * 2006-02-09 2007-08-23 Es Technology Kk Surplus sludge treatment method
US7572369B2 (en) 2007-02-16 2009-08-11 Opencel Llc System for supporting denitrification
US7695621B2 (en) 2007-02-16 2010-04-13 Opencel Llc Method of supporting denitrification

Similar Documents

Publication Publication Date Title
JP2003126861A (en) Method and apparatus for water treatment
JPH11179391A (en) Method and apparatus for treating organic waste water
JP2004181329A (en) Wastewater treatment method and apparatus therefor
CN110963635A (en) Comprehensive treatment method of landfill leachate nanofiltration membrane trapped concentrated solution
JP2004181446A (en) Wastewater treatment method
JP2002361282A (en) Method and apparatus for treating organic waste water
JP3565308B2 (en) Organic wastewater treatment method and equipment
JP3627894B2 (en) Organic wastewater treatment method and equipment
JP3565304B2 (en) Organic wastewater treatment method and equipment
JP2001010808A (en) Formation of highly oxidative water and apparatus therefor
JP3470997B2 (en) Organic wastewater treatment method and apparatus
JP3400627B2 (en) Method for removing COD from water containing COD
JPH11253999A (en) Aerobic treatment of organic waste solution and apparatus therefor
JP2002177981A (en) Waste water treatment method and equipment
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JP3716516B2 (en) Method and apparatus for aerobic treatment of organic drainage
JP2002018446A (en) Method and apparatus for treating liquid
JPH11156399A (en) Treatment of organic sewage
JP2002254079A (en) Wastewater treatment process
US3458434A (en) Process for treating sewage
JP2003071487A (en) Method and apparatus for treating organic wastewater
JP2005270819A (en) Sludge treating method
JPH1133598A (en) Method for biological treatment of organic wastewater
JP3373138B2 (en) Organic wastewater treatment method and apparatus
JP2006142256A (en) Treating method of organic waste water