JPH11176700A - Aluminium electrolytic capacitor and electrolytic soln. for driving the same - Google Patents

Aluminium electrolytic capacitor and electrolytic soln. for driving the same

Info

Publication number
JPH11176700A
JPH11176700A JP36236997A JP36236997A JPH11176700A JP H11176700 A JPH11176700 A JP H11176700A JP 36236997 A JP36236997 A JP 36236997A JP 36236997 A JP36236997 A JP 36236997A JP H11176700 A JPH11176700 A JP H11176700A
Authority
JP
Japan
Prior art keywords
acid
weight
electrolyte
electrolytic capacitor
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36236997A
Other languages
Japanese (ja)
Inventor
Hidemi Yamada
秀美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP36236997A priority Critical patent/JPH11176700A/en
Publication of JPH11176700A publication Critical patent/JPH11176700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress reduction of electrolyte conductivity and raises spark voltage by adding a swelling F mica grain in a specified grain size range to an electrolyte composed of a solvent and salute. SOLUTION: A swelling F mica grain in a grain size range of 1 nm-10 μm is added to an electrolyte composed of a non-protic solvent such as β- or γ- butyloluctone and γ-valeroluctone, or protic solvent such as ethylene glycol, ethylene glycol monoalkylether and ethylene glycol dialkylether, and a solute of aromatic carboxylic acid such as phthalic acid, benzoic acid, salicylic acid and resorcylic acid, aliphatic carboxylic acid such as maleic acid, citraconic acid and fumaric acid. This suppresses the reduction of the electrolyte conductivity and raises the spark voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電解コンデンサ駆動用電
解液を使用したアルミニウム電解コンデンサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum electrolytic capacitor using an electrolytic solution for driving an electrolytic capacitor.

【0002】[0002]

【従来の技術】アルミニウム電解コンデンサは、エッチ
ングされたアルミニウム箔の表面に電解酸化などによっ
て酸化被膜を形成したアルミニウム陽極箔とエッチング
されたアルミニウム陰極箔とをセパレータを介して巻回
したコンデンサ素子に電解コンデンサ駆動用電解液を含
浸し、これを有底の金属ケ−ス内に入れ開口部を絶縁性
の封口体で密封し、陽極箔および陰極箔にそれぞれ固着
された引出しリードを、それぞれ封口体の貫通孔から外
に引き出してなる構造を有する。
2. Description of the Related Art An aluminum electrolytic capacitor is an electrolytic capacitor formed by winding an aluminum anode foil having an oxide film formed on the surface of an etched aluminum foil by electrolytic oxidation or the like and an etched aluminum cathode foil through a separator. The capacitor driving electrolyte is impregnated, placed in a bottomed metal case, the opening is sealed with an insulating sealing body, and the lead leads fixed to the anode foil and the cathode foil are respectively sealed. Has a structure drawn out from the through hole.

【0003】アルミニウム電解コンデンサ(以下、「電
解コンデンサ」という)の火花電圧を高めるためには、
駆動用電解液(以下、「電解液」という)が大いに関係
があり、そのため溶媒および溶質からなる電解液に、硼
酸、リン酸、タングステン酸、ヘテロポリ酸などの無機
酸またはその塩やマンニット、ソルビットなどの多糖
類、シリコンオイル、ポリ塩化ビニルまたはこれらを混
合したものを添加していた。
In order to increase the spark voltage of an aluminum electrolytic capacitor (hereinafter referred to as "electrolytic capacitor"),
Driving electrolyte (hereinafter referred to as “electrolyte”) has a great relationship, and therefore, an electrolyte composed of a solvent and a solute includes an inorganic acid such as boric acid, phosphoric acid, tungstic acid, and a heteropoly acid or a salt thereof, mannite, Polysaccharides such as sorbitol, silicone oil, polyvinyl chloride, or a mixture thereof were added.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法では、電解コンデンサの諸特性(静電容量、ta
nδ、漏れ電流など)に悪影響を及ぼさずに、火花電圧
の向上を図ることは必ずしも十分には望めなかった。
However, according to these methods, various characteristics (capacitance, ta) of the electrolytic capacitor are required.
It was not always possible to sufficiently improve the spark voltage without adversely affecting nδ, leakage current, etc.).

【0005】そこでシリカコロイド粒子(特開平4−5
8512号公報)、二酸化ジルコニウム(特開平4−1
45613号公報)、五酸化アンチモン(特開平4−1
45614号公報)、五酸化タンタル(特開平4−14
3615号公報)、二酸化チタン(特開平4−1456
16号公報)を添加することも提案されているが、火花
電圧を向上させる際に、電導度の低下をより防ぐことが
望まれていた。
Accordingly, silica colloid particles (Japanese Patent Laid-Open No.
No. 8512), zirconium dioxide (Japanese Unexamined Patent Publication No.
No. 45613), antimony pentoxide (Japanese Unexamined Patent Publication No.
No. 45614), tantalum pentoxide (Japanese Unexamined Patent Publication No.
No. 3615), titanium dioxide (Japanese Unexamined Patent Publication No.
No. 16) has also been proposed, but it has been desired to further prevent a decrease in electric conductivity when improving the spark voltage.

【0006】[0006]

【課題を解決するための手段】本発明は上述した課題に
鑑みなされたもので、火花電圧が高く電導度の高い優れ
た特性の中高圧用のアルミニウム電解コンデンサおよび
それ用のアルミニウム電解コンデンサ駆動用電解液を提
供するものである。すなわち、本発明は溶媒および溶質
からなる電解液に膨潤性フッ素雲母粒子を添加してなる
ことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems, and has an object to drive an aluminum electrolytic capacitor for driving a medium- and high-voltage aluminum electrolytic capacitor having a high sparking voltage, high conductivity, and excellent characteristics. An electrolyte is provided. That is, the present invention is characterized in that swellable fluoromica particles are added to an electrolytic solution comprising a solvent and a solute.

【0007】膨潤性フッ素雲母粒子は天然のものでも合
成のものでもよいが、不純物が少ない点から合成したも
のの方が好ましい。平均粒径は1nm〜10μmの範囲
であるのが好ましい。平均粒径が1nm〜10μmの膨
潤性フッ素雲母粒子は工業的に安価に得ることができ
る。
[0007] The swellable fluorine mica particles may be natural or synthetic, but those synthesized from the viewpoint of a small amount of impurities are preferred. The average particle size is preferably in the range of 1 nm to 10 μm. Swellable fluoromica particles having an average particle size of 1 nm to 10 μm can be obtained industrially at low cost.

【0008】膨潤性フッ素雲母粒子の添加量は0.05
〜20重量%が好ましく、添加量が0.05重量%未満
では火花電圧を上昇させる効果が小さく、また添加量が
20重量%を超えると電解液が凝固する危険がある。
The addition amount of the swellable fluoromica particles is 0.05
If the amount is less than 0.05% by weight, the effect of increasing the spark voltage is small, and if the amount exceeds 20% by weight, there is a risk that the electrolytic solution solidifies.

【0009】溶質としては有機酸または無機酸のアンモ
ニウム塩やアミン塩が好ましく、好ましい有機酸として
は、フタル酸、安息香酸、サリチル酸またはレゾルシル
酸などの芳香族カルボン酸や、マレイン酸、シトラコン
酸、フマル酸、マロン酸、ノナン酸などの脂肪族カルボ
ン酸が好ましいが、これに限定するものではない。
As the solute, an ammonium salt or an amine salt of an organic acid or an inorganic acid is preferred, and preferred organic acids are aromatic carboxylic acids such as phthalic acid, benzoic acid, salicylic acid or resorcylic acid, maleic acid, citraconic acid, and the like. Aliphatic carboxylic acids such as fumaric acid, malonic acid and nonanoic acid are preferred, but not limited thereto.

【0010】無機酸としては、硼酸、リン酸、珪酸など
があるが、これに限定するものではない。
Examples of the inorganic acid include, but are not limited to, boric acid, phosphoric acid, and silicic acid.

【0011】本発明の電解液は溶媒として非プロトン溶
媒またはプロトン溶媒を単独または混合して用いるのが
好ましく、非プロトン溶媒としてはβ−ブチロラクト
ン、γ−ブチロラクトン、γ−バレロラクトン、δ−バ
レロラクトン、γ−カプロラクトン、ε−カプロラクト
ン、γ−ヘプタラクトン、γ−ヒドロキシ−n−カプリ
ル酸ラクトン、γ−ノナラクトン、δ−デカラクトン、
γ−ウンデカラクトンなどのラクトン類が好ましいが、
ラクトン類にのみに限定するものではない。
The electrolytic solution of the present invention preferably uses an aprotic solvent or a protic solvent alone or as a mixture as a solvent. As the aprotic solvent, β-butyrolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone Γ-caprolactone, ε-caprolactone, γ-heptalactone, γ-hydroxy-n-caprylic acid lactone, γ-nonalactone, δ-decalactone,
Lactones such as γ-undecalactone are preferred,
It is not limited only to lactones.

【0012】また、本発明においてはプロトン溶媒を用
いる場合にはグリコール類が好ましく、エチレングリコ
ール、エチレングリコールモノアルキルエーテル、エチ
レングリコールジアルキルエ−テル、プロピレングリコ
ール、ジエチレングリコール、ジエチレングリコールモ
ノアルキルエーテル、ジエチレングリコールジアルキル
エーテル、ポリエチレングリコール、グリセリンなどが
好ましいが、グリコ−ル類のみに限定するものではな
い。
In the present invention, when a protic solvent is used, glycols are preferred. Ethylene glycol, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, propylene glycol, diethylene glycol, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether , Polyethylene glycol, glycerin and the like are preferred, but not limited to glycols alone.

【0013】本発明に係る電解液において、溶媒中にお
ける溶質の含有量は、種々に選択し得るが、飽和溶液の
状態が最も電気伝導度が高く好適である。すなわち溶質
の含有量は電解液中1〜60重量%、好ましくは10〜
40重量%程度であり、60重量%を超えると溶解しな
くなる。
In the electrolytic solution according to the present invention, the content of the solute in the solvent can be variously selected, but the state of a saturated solution is most preferable because it has the highest electric conductivity. That is, the solute content is 1 to 60% by weight, preferably 10 to 10% by weight in the electrolytic solution.
It is about 40% by weight, and if it exceeds 60% by weight, it will not be dissolved.

【0014】本発明において、ラクトン類やグリコール
類を混合して用いる場合は、ラクトン類とグリコール類
の混合割合は重量比20対80から95対5程度が採用
される。
In the present invention, when a mixture of lactones and glycols is used, the mixing ratio of lactones and glycols is about 20:80 to 95: 5 by weight.

【0015】電解コンデンサの初期の損失角の正接(t
anδ)を改善するために、本発明に係る電解液にケト
ン類、ニトロ化合物またはその塩を0.1〜10重量
%、好ましくは0.1〜5重量%を添加してもよい。
The tangent (t) of the initial loss angle of the electrolytic capacitor
In order to improve an δ), a ketone, a nitro compound or a salt thereof may be added to the electrolyte solution according to the present invention in an amount of 0.1 to 10% by weight, preferably 0.1 to 5% by weight.

【0016】本発明に係る電解液のpHは必要に応じて
所望のpH調整剤を添加することにより4〜12、好ま
しくは4〜10に調整される。また、電解液中の水分の
存在は高温下では、アルミニウム箔の腐食の原因などと
なるので、出来るだけ存在しない方が望ましいが、4重
量%程度以下であれば特に不都合は生じない。
The pH of the electrolytic solution according to the present invention is adjusted to 4 to 12, preferably 4 to 10, by adding a desired pH adjuster as required. Further, the presence of water in the electrolytic solution at high temperatures causes corrosion of the aluminum foil. Therefore, it is desirable that the water is not present as much as possible. However, if it is about 4% by weight or less, no particular inconvenience occurs.

【0017】[0017]

【実施例】実施例として下記のような組成の実施例1、
2の電解液を作製し、また比較例として下記の比較例
1、2の電解液を作製した。実施例1、2に添加した膨
潤性フッ素雲母粒子は、コ−プケミカル株式会社製の製
品名「ソマシフ」である。なおpHは実施例1及び比較
例1では7.4、実施例2及び比較例2では6.9とし
た。
EXAMPLES Examples 1 and 2 have the following compositions.
2 was prepared, and the following comparative examples 1 and 2 were prepared as comparative examples. The swellable fluoromica particles added to Examples 1 and 2 are “Somasif” manufactured by Corp Chemical Co., Ltd. The pH was 7.4 in Example 1 and Comparative Example 1, and 6.9 in Example 2 and Comparative Example 2.

【0018】 〈実施例1〉 フタル酸トリエチルアンモニウム 17重量% γ−ブチロラクトン 64重量% エチレングリコール 15重量% 水 2重量% 膨潤性フッ素雲母粒子 2重量%Example 1 Triethylammonium phthalate 17% by weight γ-butyrolactone 64% by weight Ethylene glycol 15% by weight Water 2% by weight Swellable fluoromica particles 2% by weight

【0019】 〈実施例2〉 1,9ノナンジカルボン酸アンモニウム 13重量% 硼酸 2重量% マンニット 3重量% エチレングリコール 75重量% 水 3重量% 膨潤性フッ素雲母粒子 4重量%Example 2 Ammonium 1,9 nonanedicarboxylate 13% by weight Boric acid 2% by weight Mannit 3% by weight Ethylene glycol 75% by weight Water 3% by weight Swellable fluoromica particles 4% by weight

【0020】 〈比較例1〉 フタル酸トリエチルアンモニウム 17.8重量% γ−ブチロラクトン 64.5重量% エチレングリコール 15.7重量% 水 2.0重量%Comparative Example 1 Triethylammonium phthalate 17.8% by weight γ-butyrolactone 64.5% by weight Ethylene glycol 15.7% by weight Water 2.0% by weight

【0021】 〈比較例2〉 1,9ノナンジカルボン酸アンモニウム 13.5重量% 硼酸 2.5重量% マンニット 3.5重量% エチレングリコール 77.5重量% 水 3.0重量%Comparative Example 2 Ammonium 1,9 nonanedicarboxylate 13.5% by weight Boric acid 2.5% by weight Mannit 3.5% by weight Ethylene glycol 77.5% by weight Water 3.0% by weight

【0022】実施例1、2および比較例1、2の電解液
の電気伝導度(μS/cm;液温40℃にて)および火
花電圧(V;液温105℃にて)を測定した。その結果
を表1に示す。
The electric conductivity (μS / cm; at a liquid temperature of 40 ° C.) and the spark voltage (V; at a liquid temperature of 105 ° C.) of the electrolyte solutions of Examples 1 and 2 and Comparative Examples 1 and 2 were measured. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】この結果から、実施例1の電解液は比較例
1の電解液に比べて、火花電圧が格段に高いことがわか
る。さらに実施例2の電解液も比較例2の電解液に比べ
て火花電圧が格段に高いことがわかる
From this result, it can be seen that the electrolyte of Example 1 has a significantly higher spark voltage than the electrolyte of Comparative Example 1. Furthermore, it can be seen that the electrolyte of Example 2 has a significantly higher spark voltage than the electrolyte of Comparative Example 2.

【0025】次に、実施例1の電解液と比較例1の電解
液を用いて定格100V680μF(製品サイズ;直径
18mm、軸長40mm)のJIS04形の電解コンデ
ンサを各々10個作製し、コンデンサ性能(静電容量C
(μF)、tanδ、漏れ電流LC(μA/1mi
n))を測定した。その平均値を表2に示す。
Next, using the electrolyte of Example 1 and the electrolyte of Comparative Example 1, 10 JIS04 type electrolytic capacitors rated at 100 V and 680 μF (product size; diameter: 18 mm, shaft length: 40 mm) were manufactured, and the capacitor performance was measured. (Capacitance C
(ΜF), tan δ, leakage current LC (μA / 1mi
n)) was measured. Table 2 shows the average value.

【0026】[0026]

【表2】 [Table 2]

【0027】また、実施例2の電解液と比較例2の電解
液を用いて定格450V120μF(製品サイズ;直径
18mm、軸長40mm)のJIS04形の電解コンデ
ンサを各々10個作製し、コンデンサの性能(静電容量
C(μF)、tanδ、漏れ電流LC(μA/1mi
n))を測定した。その平均値を表3に示す。
Also, using the electrolyte solution of Example 2 and the electrolyte solution of Comparative Example 2, ten JIS04 type electrolytic capacitors rated at 450 V and 120 μF (product size; diameter: 18 mm, shaft length: 40 mm) were manufactured, and the performance of the capacitors was measured. (Capacitance C (μF), tan δ, leakage current LC (μA / 1mi
n)) was measured. Table 3 shows the average value.

【0028】[0028]

【表3】 [Table 3]

【0029】比較例1、2の電解コンデンサは耐電圧が
不充分であったため、エ−ジング時にその全数が金属ケ
−スの底部に設けた安全弁が作動して製品化できなかっ
たのに対して、実施例1、2の電解コンデンサは耐電圧
が向上して製品化でき、膨潤性フッ素雲母粒子を添加し
ても静電容量、tanδ、漏れ電流などの諸特性に悪影
響が生じていないことがわかる。
Since the electrolytic capacitors of Comparative Examples 1 and 2 had insufficient withstand voltage, all of them could not be commercialized due to the operation of the safety valve provided at the bottom of the metal case during aging. Therefore, the electrolytic capacitors of Examples 1 and 2 have improved withstand voltage and can be commercialized, and the addition of swellable fluorine mica particles does not adversely affect various properties such as capacitance, tan δ, and leakage current. I understand.

【0030】[0030]

【発明の効果】本発明によれば、電解液の電導度の低下
を最小限に抑えつつ火花電圧を向上させることができ、
かつ電解コンデンサの静電容量、tanδ、漏れ電流な
どの諸特性に悪影響を与えることなく、耐電圧を向上さ
せることができる。
According to the present invention, it is possible to improve the spark voltage while minimizing the decrease in the conductivity of the electrolyte,
In addition, the withstand voltage can be improved without adversely affecting various characteristics such as the capacitance, tan δ, and leakage current of the electrolytic capacitor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】溶媒および溶質からなる電解液に膨潤性フ
ッ素雲母粒子を添加してなることを特徴とするアルミニ
ウム電解コンデンサ駆動用電解液。
1. An electrolytic solution for driving an aluminum electrolytic capacitor, comprising swellable fluorine mica particles added to an electrolytic solution comprising a solvent and a solute.
【請求項2】膨潤性フッ素雲母粒子の粒径が1nm〜1
0μmの範囲である請求項1に記載のアルミニウム電解
コンデンサ駆動用電解液。
2. The particle size of the swellable fluorine mica particles is from 1 nm to 1 nm.
2. The electrolytic solution for driving an aluminum electrolytic capacitor according to claim 1, which has a range of 0 μm.
【請求項3】溶媒および溶質からなる電解液に膨潤性フ
ッ素雲母粒子を添加してなるアルミニウム電解コンデン
サ駆動用電解液を使用することを特徴とするアルミニウ
ム電解コンデンサ。
3. An aluminum electrolytic capacitor characterized by using an electrolytic solution for driving an aluminum electrolytic capacitor obtained by adding swellable fluorine mica particles to an electrolytic solution comprising a solvent and a solute.
【請求項4】膨潤性フッ素雲母粒子の粒径が1nm〜1
0μmの範囲であるアルミニウム電解コンデンサ駆動用
電解液を使用することを特徴とする請求項3に記載のア
ルミニウム電解コンデンサ。
4. The swellable fluorine mica particles having a particle size of 1 nm to 1 nm.
The aluminum electrolytic capacitor according to claim 3, wherein an electrolytic solution for driving an aluminum electrolytic capacitor having a range of 0 µm is used.
JP36236997A 1997-12-12 1997-12-12 Aluminium electrolytic capacitor and electrolytic soln. for driving the same Pending JPH11176700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36236997A JPH11176700A (en) 1997-12-12 1997-12-12 Aluminium electrolytic capacitor and electrolytic soln. for driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36236997A JPH11176700A (en) 1997-12-12 1997-12-12 Aluminium electrolytic capacitor and electrolytic soln. for driving the same

Publications (1)

Publication Number Publication Date
JPH11176700A true JPH11176700A (en) 1999-07-02

Family

ID=18476676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36236997A Pending JPH11176700A (en) 1997-12-12 1997-12-12 Aluminium electrolytic capacitor and electrolytic soln. for driving the same

Country Status (1)

Country Link
JP (1) JPH11176700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103503A (en) * 2005-09-30 2007-04-19 Mitsubishi Chemicals Corp Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2012099527A (en) * 2010-10-29 2012-05-24 Univ Of Fukui Electrolyte for driving aluminum electrolytic capacitor and aluminum electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103503A (en) * 2005-09-30 2007-04-19 Mitsubishi Chemicals Corp Electrolyte for electrolytic capacitor and electrolytic capacitor
JP2012099527A (en) * 2010-10-29 2012-05-24 Univ Of Fukui Electrolyte for driving aluminum electrolytic capacitor and aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP3387144B2 (en) Electrolyte for electrolytic capacitors
JP6403006B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JPH11176700A (en) Aluminium electrolytic capacitor and electrolytic soln. for driving the same
EP0543311A2 (en) Electrolytic solution for electrolytic capacitor
JPS63226912A (en) Electrolyte for electrolytic capacitor
JP3729588B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP4123311B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3729587B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3869526B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPH06151250A (en) Electrolyte for electrolytic capacitor
JP3869525B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPH09148196A (en) Aluminium electrolytic capacitor and electrolyte for the aluminium electrolytic capacitor drive use
JPH0936002A (en) Electrolytic condenser
JPH11186108A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JP2000164470A (en) Aluminium electrolytic capacitor and electrolytte for aluminium electrolytic capacitor drive
JPH0722287A (en) Electrolyte for electrolytic capacitor
JP4653355B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2906206B2 (en) Aluminum electrolytic capacitor and electrolyte for driving aluminum electrolytic capacitor
JPH10233343A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JPH07220983A (en) Aluminum electrolytic capacitor and electrolyte for driving the same
JPH0351285B2 (en)
KR960013845B1 (en) Electrolytic composition field of al electrolytic condenser
JPH05144673A (en) Electrolytic solution for electrolytic capacitor
JP4699650B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH10233344A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it