JPH11174498A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH11174498A
JPH11174498A JP9354158A JP35415897A JPH11174498A JP H11174498 A JPH11174498 A JP H11174498A JP 9354158 A JP9354158 A JP 9354158A JP 35415897 A JP35415897 A JP 35415897A JP H11174498 A JPH11174498 A JP H11174498A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
pixel portion
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9354158A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
裕幸 高橋
Akihiko Kanemoto
明彦 金本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9354158A priority Critical patent/JPH11174498A/en
Publication of JPH11174498A publication Critical patent/JPH11174498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflection liquid crystal display device which has high- speed response and enables bright display. SOLUTION: This liquid crystal display device consists of a liquid crystal cell which is formed by holding chiral neumatic liquid crystals 30 of positive dielectric anisotropy having a natural helix pitch within a range of 1 to 3 times the liquid crystal display thickness in pixel parts between a pair of transparent electrode substrates 21, 22 and is constituted to allow the selection of either one of two quasi stable states as the relaxation state after the occurrence of Frederics transition by impression of voltage, polarizing plates 41 to 42 which are disposed on both outer side of this liquid crystal cell and a reflection plate 51 which is disposed on the further outer side of the one polarizing plate 41. In such a case, the thickness of the liquid crystal layer in the non-pixel parts inclusive of the parts between the pixels is set smaller than the thickness of the liquid crystal display layer in the pixel parts, by which the helix angle of the liquid crystal molecules in an initial state (at the time of no impression of voltage) is varied between the pixel parts and the non-pixel parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、双安定性を有する
反射型液晶表示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bistable reflection type liquid crystal display device.

【0002】[0002]

【従来技術】高速応答性を有する液晶の動作方式とし
て、双安定性を有するBTN(Bistable Tw
isted Nematic、双安定ねじれネマティッ
ク)方式に関する多くの提案がこれまでになされてお
り、その中には走査電極群と信号電極群によって形成さ
れる画素を時分割駆動する液晶表示装置の提案も含まれ
ている。液晶分子の配向状態とそれに対応する光学的状
態に着目すると、画素部では駆動電圧パルスにより、
(初期ツイスト角−180°)のツイスト角を有する第
1の準安定状態と、(初期ツイスト角+180°)のツ
イスト角を有する第2の準安定状態のどちらかに変化
し、通常の偏光板角度配置ではそれぞれ明状態および暗
状態を示すが、画素間を含む非画素部には電圧が印加さ
れないために配向状態は初期ツイスト角のままであり、
暗状態と明状態の中間的な光学状態を示す。BTNを透
過型として用いる場合には該非画素部からの光抜けによ
るコントラスト低下を防ぐために、非画素部に遮光層を
形成したり、または非画素部の液晶層の厚みを画素部の
液晶層の厚みよりも大きくすることによって、配向状態
(ツイスト角)を上記第2の準安定状態と同様にして暗
状態にするという提案もなされている(特開平6−23
5920)が、反射型として用いる場合についての表示
の明るさの改善についての提案はまだない。
2. Description of the Related Art As an operation method of a liquid crystal having a high-speed response, a BTN (Bistable Twist) having bistability is used.
Many proposals have been made on an isotropic nematic (bistable torsion nematic) method, including a liquid crystal display device that drives a pixel formed by a scanning electrode group and a signal electrode group in a time-division manner. ing. Focusing on the alignment state of the liquid crystal molecules and the corresponding optical state, the driving voltage pulse in the pixel section
An ordinary polarizing plate that changes between a first metastable state having a twist angle of (initial twist angle -180 °) and a second metastable state having a twist angle of (initial twist angle + 180 °) The angle arrangement shows a bright state and a dark state, respectively, but since no voltage is applied to the non-pixel portion including between pixels, the alignment state remains at the initial twist angle,
It shows an optical state intermediate between a dark state and a bright state. When BTN is used as a transmissive type, a light shielding layer is formed in the non-pixel portion or the thickness of the liquid crystal layer in the non-pixel portion is reduced in order to prevent a decrease in contrast due to light leakage from the non-pixel portion. It has also been proposed that the orientation state (twist angle) be made darker by making the orientation state (twist angle) larger than the second metastable state (JP-A-6-23).
5920) has not yet been proposed for improving the display brightness when used as a reflection type.

【0003】[0003]

【発明が解決しようとする課題】本発明は、高速応答性
を有し、かつ明るい表示が可能な反射型の液晶表示装置
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a reflection type liquid crystal display device having a high-speed response and capable of displaying a bright image.

【0004】[0004]

【課題を解決するための手段】本発明は、一対の透明電
極基板間に、画素部における液晶層厚の1倍から3倍の
範囲内にある自然ねじれピッチを有する誘電異方性が正
であるカイラルネマティック液晶を挾持し、電圧を印加
してフレデリクス転移を生じさせた後の緩和状態とし
て、二つの準安定配向状態のいずれか一方を選択できる
ように構成された液晶セルと該液晶セルの両外側に配設
された偏光板と、一方の偏光板よりもさらに外側に配設
された反射板からなる液晶表示装置であって、画素間を
含む非画素部における液晶層の厚みを、画素部における
液晶層の厚みよりも小さく設定することにより、初期状
態(電圧無印加時)における液晶分子のねじれ角を、画
素部と非画素部とで異ならせたことを特徴とする液晶表
示装置を提供することにより、前記課題を解決すること
ができた。
According to the present invention, a dielectric anisotropy having a natural twist pitch within a range of 1 to 3 times the thickness of a liquid crystal layer in a pixel portion is provided between a pair of transparent electrode substrates. A liquid crystal cell configured so that one of two metastable alignment states can be selected as a relaxed state after a certain chiral nematic liquid crystal is sandwiched and a voltage is applied to cause a Freedericksz transition, and a liquid crystal cell of the liquid crystal cell. A liquid crystal display device comprising a polarizing plate disposed on both outer sides and a reflecting plate disposed further outside than one of the polarizing plates, wherein a thickness of a liquid crystal layer in a non-pixel portion including a space between pixels is reduced. The liquid crystal display device is characterized in that the twist angle of liquid crystal molecules in the initial state (when no voltage is applied) is made different between the pixel portion and the non-pixel portion by setting the thickness to be smaller than the thickness of the liquid crystal layer in the pixel portion. To provide Accordingly, it was possible to solve the above problems.

【0005】以下に本発明の液晶表示装置の構成を、図
面に基づいて具体的に説明する。図1に、本発明にかか
るBTN(双安定ねじれネマティック)方式の液晶表示
素子の一構成例を示す。下基板11と上基板12間に液
晶層30が挾持されている。21と22は液晶層に電圧
を印加するための透明電極、31と32は液晶を配向さ
せるための配向膜である。41と42は偏光板、51は
反射板である。ここで用いる液晶層は、液晶層厚の1倍
から3倍の自然ピッチを有する誘電異方性が正のカイラ
ルネマティック液晶である。配向処理が施された配向膜
によって液晶は基板面からわずかに傾斜した方向に配向
させられる。この傾斜角は2°から30°程度が好まし
い。傾斜角が小さい場合には準安定動作が不安定になり
良好なスイッチングが困難になり、また、傾斜角が大き
すぎる場合には、表示特性の視野角依存性が大きくなる
という問題を生ずる。この図の構成では、初期状態にお
いて上下基板界面での液晶の傾きが逆となるように構成
されている。液晶の自然ねじれピッチpは液晶層厚dの
1倍から3倍の間に設定される。液晶層の複屈折と厚み
の積Δndは観察光の波長の略1/2以下、具体的に
は、0.20μm〜0.35μm、好ましくは0.22
μmから0.30μmの範囲であるように構成される。
また、一方の偏光板はその光透過軸が、基板界面での液
晶の配向方向と略45°(35°〜55°)の角度を成
すように配設され、もう一方の偏光板はその光透過軸が
他方の偏光板の光透過軸と基板界面での液晶の配向方向
を基準として対称になるように配設される。
Hereinafter, the structure of the liquid crystal display device of the present invention will be specifically described with reference to the drawings. FIG. 1 shows a configuration example of a liquid crystal display device of a BTN (Bistable Twisted Nematic) type according to the present invention. A liquid crystal layer 30 is sandwiched between the lower substrate 11 and the upper substrate 12. Reference numerals 21 and 22 denote transparent electrodes for applying a voltage to the liquid crystal layer, and reference numerals 31 and 32 denote alignment films for aligning the liquid crystal. 41 and 42 are polarizing plates, and 51 is a reflecting plate. The liquid crystal layer used here is a chiral nematic liquid crystal having a natural pitch of 1 to 3 times the thickness of the liquid crystal layer and a positive dielectric anisotropy. The liquid crystal is aligned in a direction slightly inclined from the substrate surface by the alignment film subjected to the alignment processing. This inclination angle is preferably about 2 ° to 30 °. If the tilt angle is small, the metastable operation becomes unstable, and good switching becomes difficult. If the tilt angle is too large, the viewing angle dependence of the display characteristics becomes large. In the configuration shown in this drawing, the tilt of the liquid crystal at the interface between the upper and lower substrates is reversed in the initial state. The natural twist pitch p of the liquid crystal is set between 1 and 3 times the liquid crystal layer thickness d. The product Δnd of the birefringence and the thickness of the liquid crystal layer is approximately 以下 or less of the wavelength of the observation light, specifically 0.20 μm to 0.35 μm, preferably 0.22 μm.
It is configured to be in the range of μm to 0.30 μm.
Further, one polarizing plate is disposed so that its light transmission axis forms an angle of approximately 45 ° (35 ° to 55 °) with the orientation direction of the liquid crystal at the interface between the substrates, and the other polarizing plate has the light transmitting axis. The transmission axis is arranged to be symmetric with the light transmission axis of the other polarizing plate with respect to the orientation direction of the liquid crystal at the interface between the substrates.

【0006】次に、BTNのスイッチング動作に関し
て、駆動波形と配向状態および光学的状態、そしてd/
p(液晶層厚/液晶の自然ねじれピッチ)の関係につい
て説明する。駆動波形としては、フレデリクス転移を生
じさせるための電圧パルス(以下、リセットパルスと呼
ぶ)と、それに続く、2つの準安定状態のうちの一方を
選択するための電圧パルス(以下、2ndパルスと呼
ぶ)が印加される。リセットパルスは、初期状態と2つ
の準安定状態の間のしきい値(Vth)以上の電圧パル
スであり、2ndパルスは、2つの準安定状態の間の臨
界値(Vc)を基準として選択される電圧パルスであ
る。2ndパルス電圧が臨界値以下の場合、リセット状
態(液晶分子の配列はホメオトロピック状態)からの急
激な緩和により生じるバックフローのため、液晶分子は
初期状態からさらに180°多くねじれた準安定状態と
なる。すなわち、図1に示した素子構成では初期状態が
略180°であるので、略360°ねじれた準安定状態
となり、偏光板の配置では暗状態となる。一方、2nd
パルスのつまり略360°ねじれの準安定状態になり、
ここに示した一般的な素子構成および偏光板の配置では
暗状態になる。一方、2ndパルスの波高値がしきい値
以上の場合は、前記バックフローが抑制されるため、液
晶分子はねじれが初期状態より180°小さい、つまり
図1に示した素子構成では略0°の準安定状態になり、
また、偏光板の配置では明状態になる。一方、2ndパ
ルスの波高値がしきい値以上の場合は、前記バックフロ
ーが抑制されるため、液晶分子はねじれが初期状態より
180°小さい、つまり略0°の準安定状態になり、こ
こに示した一般的な素子構成および偏光板の配置では明
状態になる。
Next, regarding the switching operation of the BTN, the driving waveform, the orientation state and the optical state, and d /
The relationship of p (liquid crystal layer thickness / natural twist pitch of liquid crystal) will be described. The driving waveform includes a voltage pulse (hereinafter, referred to as a reset pulse) for causing Freedericksz transition, and a voltage pulse (hereinafter, referred to as a second pulse) for selecting one of two metastable states. ) Is applied. The reset pulse is a voltage pulse equal to or higher than a threshold value (Vth) between the initial state and the two metastable states, and the second pulse is selected based on a threshold value (Vc) between the two metastable states. Voltage pulse. When the 2nd pulse voltage is equal to or lower than the critical value, the liquid crystal molecules are turned into a metastable state twisted by 180 ° more from the initial state due to a backflow caused by a sudden relaxation from the reset state (the arrangement of the liquid crystal molecules is a homeotropic state). Become. That is, in the element configuration shown in FIG. 1, since the initial state is about 180 °, the element is in a metastable state twisted by about 360 ° and becomes a dark state when the polarizing plate is arranged. On the other hand, 2nd
It becomes a metastable state with a pulse of about 360 ° twist,
With the general element configuration and the arrangement of the polarizing plates shown here, a dark state occurs. On the other hand, when the peak value of the second pulse is equal to or larger than the threshold value, the backflow is suppressed, so that the liquid crystal molecules are twisted by 180 ° smaller than the initial state, that is, approximately 0 ° in the element configuration shown in FIG. Becomes a metastable state,
In addition, the arrangement of the polarizing plate results in a bright state. On the other hand, when the peak value of the second pulse is equal to or larger than the threshold value, the backflow is suppressed, and the liquid crystal molecules are in a metastable state in which the twist is smaller than the initial state by 180 °, that is, approximately 0 °. In the general element configuration and the arrangement of the polarizing plates shown in the drawing, the light state is obtained.

【0007】図2に、フレデリクス転移後に選択される
準安定状態に関する、d/pと2ndパルス波高値の関
係をモデル的に示した。リセットパルス条件および2n
dパルス幅を固定した場合、フレデリクス転移後に選択
される準安定状態は、d/pおよび印加する波形条件に
大きく依存する。d/pについては、あるd/p値を境
界としてd/pが大きい方の領域で略360°ねじれの
準安定状態、d/pが小さい方の領域で略0°の準安定
状態となり、その境界d/p値は2ndパルス波高値に
よって図2のような変化を示す。したがって図2で液晶
セルのd/p値が前記d/p境界値を示すラインとの交
点を臨界値として、2ndパルス波高値をその臨界値よ
りも大きい電圧にすれば略0°の準安定状態、臨界値よ
りも小さい電圧にすれば略360°ねじれの準安定状態
が得られ、2つの準安定状態を任意に選択することがで
きる。
FIG. 2 schematically shows the relationship between d / p and the 2nd pulse peak value in a metastable state selected after the Freedericksz transition. Reset pulse condition and 2n
When the d-pulse width is fixed, the metastable state selected after the Freedericks transition largely depends on d / p and the applied waveform condition. With respect to d / p, a metastable state of approximately 360 ° twist in a region where d / p is larger and a metastable state of approximately 0 ° in a region where d / p is smaller with a certain d / p value as a boundary, The boundary d / p value changes as shown in FIG. 2 depending on the peak value of the second pulse. Therefore, if the d / p value of the liquid crystal cell in FIG. 2 is defined as the critical value at the intersection with the line indicating the d / p boundary value, the second pulse peak value is set to a voltage larger than the critical value, so that the metastable state becomes approximately 0 °. If the state and the voltage are smaller than the critical value, a metastable state with a twist of approximately 360 ° is obtained, and the two metastable states can be arbitrarily selected.

【0008】次に、初期状態つまり電圧が印加されてい
ない状態における配向状態および光学的状態とd/pの
関係について説明する。我々の種々の液晶材料を用いた
検討によれば、上で説明した、初期状態における配向状
態が略180°ねじれである構成においては、d/p<
0.3においてはねじれ角が略0°の配向状態で光学的
には明状態、d/p>0.8においてはねじれ角が略3
60°の配向状態で光学的には暗状態が得られ、0.3
≦d/p≦0.8においては略180°の配向状態で前
述の明状態および暗状態の中間的な状態(どちらかとい
うと暗状態に近い)が得られることがわかっている。図
2を用いて上で説明した2つの準安定状態の選択は、最
後者の、初期状態において略180°の配向状態を有す
るd/p範囲内(多くの場合は0.45〜0.75)で
行われることになるので、表示装置における画素間を含
む非画素部も前述のd/p範囲内の値に設定され、光学
的には暗状態に近く、つまり反射型においては反射率が
小さい暗い状態になってしまう。本発明においては、表
示装置の非画素部における液晶層の厚みを、画素部にお
ける液晶層の厚みよりも小さくし、d/p<0.3を満
たすように設定することにより、非画素部の配向状態を
常にねじれ角が略0°の状態(光学的には明状態)に保
ち、明るい反射型液晶表示装置を得ることができる。
Next, the relationship between the alignment state and the optical state in the initial state, that is, the state where no voltage is applied, and d / p will be described. According to our study using various liquid crystal materials, in the above-described configuration in which the alignment state in the initial state is approximately 180 ° twist, d / p <
At 0.3, the torsion angle is approximately 0 ° and the optically bright state is attained. At d / p> 0.8, the torsion angle is approximately 3 °.
An optically dark state is obtained at a 60 ° alignment state, and 0.3
It is known that in the case of ≦ d / p ≦ 0.8, an intermediate state between the above-described bright state and dark state (rather close to a dark state) can be obtained in an orientation state of about 180 °. The choice of the two metastable states described above with reference to FIG. 2 is in the last, d / p range with an orientation state of approximately 180 ° in the initial state (often between 0.45 and 0.75 ), The non-pixel portion including between pixels in the display device is also set to a value within the above-described d / p range, and is optically close to a dark state, that is, the reflectance is low in the reflection type. It becomes a small dark state. In the present invention, the thickness of the liquid crystal layer in the non-pixel portion of the display device is set to be smaller than the thickness of the liquid crystal layer in the pixel portion so as to satisfy d / p <0.3. The alignment state is always kept at a state where the twist angle is substantially 0 ° (optically bright state), and a bright reflective liquid crystal display device can be obtained.

【0009】非画素部における液晶層の厚みを画素部に
おける液晶層の厚みよりも小さくする手段としては、少
なくとも一方の基板の透明電極上の“両基板が重ね合わ
せられて形成される画素”以外の部分に、所定の厚みを
有しかつ透明性が高い(透過率の損失が少ない)絶縁性
の構造物を設ければよい。該構造物の1例を、図3に示
す。具体的には基板1にフォトリソ法で透明電極2を形
成する場合に使用するフォトマスクを用い、予め基板1
上に所定の厚みで塗布した光硬化性樹脂材料(例えばア
クリル系材料)層に前記フォトマスクを用いて透明電極
部分2以外の部分が硬化するように露光を行なった後
に、未硬化部分を除去すればよい。光硬化性樹脂材料と
してはモノアクリレート、あるいはジアクリレート、あ
るいは両者の混合物に重合開始剤を所定の濃度で添加し
たものを用いることができる。露光光源としては高圧水
銀灯やメタルハライドランプ等が用いられ、10mJ〜
1J程度の露光量で露光すればよい。未硬化部分は適当
な有機溶媒による洗浄で除去可能である。
Means for reducing the thickness of the liquid crystal layer in the non-pixel portion to be smaller than the thickness of the liquid crystal layer in the pixel portion include means other than "pixels formed by overlapping both substrates" on the transparent electrode of at least one of the substrates. In this portion, an insulating structure having a predetermined thickness and high transparency (less loss of transmittance) may be provided. One example of the structure is shown in FIG. Specifically, using a photomask used for forming the transparent electrode 2 on the substrate 1 by a photolithography method,
After exposing the photocurable resin material (for example, an acrylic material) layer applied thereon with a predetermined thickness so that portions other than the transparent electrode portion 2 are cured using the photomask, the uncured portion is removed. do it. As the photocurable resin material, monoacrylate, diacrylate, or a mixture of both, to which a polymerization initiator is added at a predetermined concentration can be used. A high-pressure mercury lamp, a metal halide lamp, or the like is used as an exposure light source.
Exposure may be performed with an exposure amount of about 1 J. The uncured portions can be removed by washing with a suitable organic solvent.

【0010】該絶縁性透明性構造物6は一方の基板1の
みに形成(一方の基板1に、両方の基板用の2つのフォ
トマスクを用いてそれぞれ露光を行なう)してもよい
し、両基板1それぞれにその基板1用のフォトマスクを
用いて露光を行なって透明性構造物6を形成してもよ
い。ただし後者の(両基板1それぞれに透明性構造物6
を形成する)場合は、画素部における液晶層の厚みの設
定値が、非画素部における液晶層の厚みの設定値の2倍
以下であることが必要である。そうでない場合は前者
(一方の基板のみに透明性構造物6を形成)の方法を用
いることになる。このようにして所定の厚みの透明性構
造物6を形成した基板1上には配向膜3が形成されて配
向処理が施され、スペーサを介して両基板1を重ね合わ
せて接着され、さらに乾燥後に液晶材料が注入されるこ
とにより液晶セルが完成する。この液晶セルの両側に偏
光板を所定の角度配置で配設し、さらに一方の偏光板の
外側に反射板を設けることにより液晶表示装置が完成す
る。
The insulating transparent structure 6 may be formed only on one substrate 1 (one substrate 1 is exposed using two photomasks for both substrates, respectively), or both may be formed. The transparent structure 6 may be formed by exposing each substrate 1 using a photomask for the substrate 1. However, in the latter case, the transparent structure 6
Is formed), it is necessary that the set value of the thickness of the liquid crystal layer in the pixel portion is not more than twice the set value of the thickness of the liquid crystal layer in the non-pixel portion. Otherwise, the former method (the transparent structure 6 is formed only on one substrate) is used. An alignment film 3 is formed on the substrate 1 on which the transparent structure 6 having a predetermined thickness has been formed as described above, an alignment process is performed, the two substrates 1 are overlapped and bonded via a spacer, and further dried. The liquid crystal material is injected later to complete the liquid crystal cell. By arranging polarizing plates on both sides of the liquid crystal cell at a predetermined angle and further providing a reflecting plate outside one of the polarizing plates, a liquid crystal display device is completed.

【0011】[0011]

【実施例】実施例1 透明電極層(0.1μm厚)が形成された2枚のガラス
基板に、走査電極群用のフォトマスクおよび信号電極群
用のフォトマスクをそれぞれ用いてフォトリソ法によっ
て電極パターンを形成した(電極パターンは走査電極が
電極幅300μm、ピッチ330μmのストライプパタ
ーン、信号電極が電極幅90μm、ピッチ110μmの
ストライプパターン)。これらの基板上に、アクリル系
の光硬化樹脂材料(ジアクリレートに重合開始剤を3w
t%添加したもの)をスピンコートによって成膜し、高
圧水銀灯による露光後、未硬化部分をトルエンで除去し
た。これにより電極間部分に、電極面からの厚み0.9
μm(基板からの厚み1.0μm)の絶縁性透明構造物
が形成された。これらの基板上にさらに配向膜を形成し
た。該基板は、図3に示す断面構造を有するものであ
る。前記配向膜にラビングによる配向処理を行なった
後、2.2μmのビーズスペーサの散布、およびシール
剤の印刷を経て、両基板を配向処理方向が180°異な
る(反平行となる)ように重ね合わせて加熱乾燥した。
その後、メルク製のネマティック液晶ZLI−1557
(Δn=0.1147)に右回りねじれを誘起するメル
ク製のカイラル剤S−811を添加してねじれピッチ
(p)を4.4μmに調整した液晶組成物を減圧注入し
て封止し、液晶セルを完成させた。この液晶セルにおい
て、画素部のd/pは0.50、非画素部のd/pは
0.29である。そしてこの液晶セルを挟むように2枚
の偏光板(偏光度:99.5%)を配設した。一方の偏
光板はその透過軸が基板(どちらの基板でも同じ)の配
向処理の方向と45°の角度を成すように配置し、他方
の偏光板はその透過軸が、基板の配向処理方向に対して
先の偏光板の透過軸と対称になるように配置した。
EXAMPLE 1 On two glass substrates on which a transparent electrode layer (0.1 μm thick) was formed, electrodes were formed by a photolithography method using a photomask for a scanning electrode group and a photomask for a signal electrode group. A pattern was formed (the electrode pattern was a stripe pattern of a scanning electrode having an electrode width of 300 μm and a pitch of 330 μm, and the signal electrode being a stripe pattern of an electrode width of 90 μm and a pitch of 110 μm). On these substrates, an acrylic photocurable resin material (a diacrylate with a polymerization initiator of 3 w
t% added) was formed into a film by spin coating, and after exposure with a high-pressure mercury lamp, the uncured portion was removed with toluene. As a result, the thickness between the electrodes is 0.9
An insulating transparent structure of μm (1.0 μm in thickness from the substrate) was formed. An alignment film was further formed on these substrates. The substrate has a sectional structure shown in FIG. After performing an alignment treatment by rubbing on the alignment film, the two substrates are overlapped with each other through a dispersion of 2.2 μm bead spacers and printing of a sealant so that the alignment treatment directions are different by 180 ° (antiparallel). And dried by heating.
Then, nematic liquid crystal ZLI-1557 made by Merck was used.
(Δn = 0.1147), a liquid crystal composition having a twist pitch (p) adjusted to 4.4 μm by adding a Merck chiral agent S-811 that induces clockwise twist is injected under reduced pressure and sealed. The liquid crystal cell was completed. In this liquid crystal cell, d / p of the pixel portion is 0.50, and d / p of the non-pixel portion is 0.29. Then, two polarizing plates (polarization degree: 99.5%) were provided so as to sandwich the liquid crystal cell. One polarizing plate is arranged so that its transmission axis forms an angle of 45 ° with the direction of the alignment processing of the substrate (same for both substrates), and the other polarizing plate has its transmission axis aligned with the alignment processing direction of the substrate. On the other hand, it was arranged so as to be symmetrical with the transmission axis of the polarizing plate.

【0012】この構成において、顕微分光光度計を用い
て電圧無印加の状態で画素部および非画素部の透過率を
測定したところ、画素部(180°ねじれの配向状態)
は5.3%、非画素部(略0°の準安定状態)は33.
0%であった。次に全画素が略0°の準安定状態(光学
的には明状態)になるような駆動波形による電圧パルス
を両基板の電極に印加して同様に測定したところ、画素
部が33.6%、非画素部は33.0%であった。この
状態でさらに測定スポット径を5mmにして表示装置の
中央部の透過率を測定したところ、33.2%であっ
た。この構成にさらに一方の偏光板の外側に拡散反射板
を配設して、全画素が略0°の準安定状態(光学的には
明状態)になるような駆動波形による電圧パルスを両基
板の電極に印加したところ、かなり明るい表示状態が認
識された。
In this configuration, when the transmittance of the pixel portion and the non-pixel portion was measured using a microspectrophotometer without applying a voltage, the pixel portion (180 ° twisted alignment state) was measured.
Is 5.3%, and the non-pixel portion (a metastable state at approximately 0 °) is 33.
It was 0%. Next, a voltage pulse having a drive waveform such that all the pixels were in a metastable state of about 0 ° (optically bright state) was applied to the electrodes of both substrates, and the measurement was similarly performed. %, And the non-pixel portion was 33.0%. In this state, when the measurement spot diameter was further set to 5 mm and the transmittance at the center of the display device was measured, it was 33.2%. In this configuration, a diffuse reflection plate is further provided outside one of the polarizing plates, and a voltage pulse having a drive waveform such that all pixels are in a metastable state (optically bright state) of approximately 0 ° is applied to both substrates. When applied to the electrodes, a considerably bright display state was recognized.

【0013】比較例1 基板上に形成された絶縁性透明構造物の厚みが、電極面
からの厚み0.6μm(基板からの厚み0.7μm)で
あること以外はすべて実施例1と同様にして液晶セルを
作製した。この液晶セルにおいて、画素部のd/pは
0.50、非画素部のd/pは0.36である。このセ
ルに対し、実施例1と同様に偏光板を配置して、顕微分
光光度計を用いて電圧無印加の状態で画素部および非画
素部の透過率を測定したところ、画素部(180°ねじ
れの配向状態)は5.3%、非画素部は5.1%であっ
た。次に全画素が略0°の準安定状態(光学的には明状
態)になるような駆動波形による電圧パルスを両基板の
電極に印加して同様に測定したところ、画素部が33.
3%、非画素部は5.1%であった。この状態でさらに
測定スポット径を5mmにして表示装置の中央部の透過
率を測定したところ、25.9%であった。この構成に
さらに一方の偏光板の外側に拡散反射板を配設して、全
画素が略0°の準安定状態(光学的には明状態)になる
ような駆動波形による電圧パルスを両基板の電極に印加
したところ、実施例1の場合よりかなり明るさが低下し
た表示状態が認識された。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the thickness of the insulating transparent structure formed on the substrate was 0.6 μm from the electrode surface (0.7 μm from the substrate). To produce a liquid crystal cell. In this liquid crystal cell, d / p of the pixel portion is 0.50, and d / p of the non-pixel portion is 0.36. A polarizing plate was disposed on this cell in the same manner as in Example 1, and the transmittance of the pixel portion and the non-pixel portion was measured using a microspectrophotometer without applying a voltage. The orientation of twist was 5.3%, and the non-pixel portion was 5.1%. Next, a voltage pulse having a drive waveform such that all the pixels were in a metastable state (optically bright state) of approximately 0 ° was applied to the electrodes of both substrates, and measurement was performed in the same manner.
3%, and the non-pixel portion was 5.1%. In this state, when the measurement spot diameter was further set to 5 mm and the transmittance at the center of the display device was measured, it was 25.9%. In this configuration, a diffuse reflection plate is further provided outside one of the polarizing plates, and a voltage pulse having a drive waveform such that all pixels are in a metastable state (optically bright state) of approximately 0 ° is applied to both substrates. When the voltage was applied to the electrodes, a display state in which the brightness was considerably lower than in the case of Example 1 was recognized.

【0014】実施例2 実施例1と同様にして、透明電極層(0.1μm厚)が
形成された2枚のガラス基板に、走査電極群用のフォト
マスクおよび信号電極群用のフォトマスクをそれぞれ用
いてフォトリソ法によって電極パターンを形成した。こ
のうちの走査電極群用の基板にアクリル系の光硬化樹脂
材料(ジアクリレートに重合開始剤を3wt%添加した
もの)をスピンコートによって成膜し、2枚のフォトマ
スクを用いて順次露光を行なった後、未硬化部分をトル
エンで除去した。これにより両基板を重ね合わせて形成
される“画素”以外の部分に、電極面からの厚み1.1
μmの絶縁性透明構造物が形成された。断面構造を図4
に示す。この基板ともう一方の基板の両者に配向膜を形
成し、ラビングによる配向処理を行なった後、2.2μ
mのビーズスペーサの散布、およびシール剤の印刷を経
て、両基板を配向処理方向が180°異なる(反平行と
なる)ように重ね合わせて加熱乾燥した。その後は実施
例1と同様にして液晶セルを完成させた。この液晶セル
において、画素部のd/pは0.50、非画素部のd/
pは0.25である。そしてやはり実施例1と同様に偏
光板を配置し、顕微分光光度計を用いて電圧無印加の状
態で画素部および非画素部の透過率を測定したところ、
画素部(180°ねじれの配向状態)は5.2%、非画
素部(略0°の準安定状態)は33.1%であった。次
に全画素が略0°の準安定状態(光学的には明状態)に
なるような駆動波形による電圧パルスを両基板の電極に
印加して同様に測定したところ、画素部が33.5%、
非画素部は32.9%であった。この状態でさらに測定
スポット径を5mmにして表示装置の中央部の透過率を
測定したところ、33.1%であった。この構成にさら
に一方の偏光板の外側に拡散反射板を配設して、全画素
が略0°の準安定状態(光学的には明状態)になるよう
な駆動波形による電圧パルスを両基板の電極に印加した
ところ、実施例1と同様にかなり明るい表示状態が認識
された。
Example 2 In the same manner as in Example 1, a photomask for a scanning electrode group and a photomask for a signal electrode group were formed on two glass substrates on which a transparent electrode layer (0.1 μm thick) was formed. Each was used to form an electrode pattern by a photolithography method. An acrylic photocurable resin material (a material obtained by adding 3 wt% of a polymerization initiator to diacrylate) is formed on the substrate for the scanning electrode group by spin coating, and is sequentially exposed using two photomasks. After performing, the uncured portion was removed with toluene. As a result, the thickness 1.1 from the electrode surface is applied to a portion other than the “pixel” formed by overlapping the two substrates.
A μm insulating transparent structure was formed. Figure 4 shows the cross-sectional structure
Shown in After forming an alignment film on both the substrate and the other substrate and performing an alignment process by rubbing, 2.2 μm is formed.
After spraying the m bead spacers and printing the sealant, the two substrates were overlaid so that the alignment treatment directions differed by 180 ° (become antiparallel) and dried by heating. Thereafter, a liquid crystal cell was completed in the same manner as in Example 1. In this liquid crystal cell, d / p in the pixel portion is 0.50, and d / p in the non-pixel portion is
p is 0.25. Then, a polarizing plate was also arranged in the same manner as in Example 1, and the transmittance of the pixel portion and the non-pixel portion was measured using a microspectrophotometer with no voltage applied.
The pixel portion (180 ° twist alignment state) was 5.2%, and the non-pixel portion (substantially 0 ° metastable state) was 33.1%. Next, a voltage pulse having a drive waveform such that all the pixels were in a metastable state (optically bright state) of approximately 0 ° was applied to the electrodes of both substrates, and the same measurement was performed. %,
The non-pixel portion was 32.9%. In this state, when the measurement spot diameter was further set to 5 mm and the transmittance at the center of the display device was measured, it was 33.1%. In this configuration, a diffuse reflection plate is further provided outside one of the polarizing plates, and a voltage pulse having a drive waveform such that all pixels are in a metastable state (optically bright state) of approximately 0 ° is applied to both substrates. When the voltage was applied to the electrodes, a considerably bright display state was recognized as in Example 1.

【0015】[0015]

【効果】本発明によれば、高速応答性を有し、かつ明る
い表示が可能な反射型の液晶表示が可能となる。また、
本発明においては、表示装置の非画素部においてd/p
<0.3であればよいので、精密な厚みの制御が不要で
ある。
According to the present invention, it is possible to provide a reflective liquid crystal display having a high-speed response and a bright display. Also,
In the present invention, d / p is applied to the non-pixel portion of the display device.
Since it suffices to be <0.3, it is not necessary to precisely control the thickness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の液晶表示素子の構成を示す模式的断
面図である。
FIG. 1 is a schematic cross-sectional view illustrating a configuration of a liquid crystal display element of Example 1.

【図2】フレデリクス転移後に選択される準安定状態に
関するd/pと2ndパルス波高値の関係を示す図であ
る。
FIG. 2 is a diagram illustrating a relationship between d / p and a 2nd pulse peak value regarding a metastable state selected after the Freedericksz transition.

【図3】液晶セルの基板の部分的斜視図である。FIG. 3 is a partial perspective view of a substrate of a liquid crystal cell.

【図4】液晶セルの基板の他の態様の部分的斜視図であ
る。
FIG. 4 is a partial perspective view of another embodiment of the substrate of the liquid crystal cell.

【符号の説明】[Explanation of symbols]

1 基板 2 透明電極 3 配向膜 6 絶縁性構造物 11 下基板 12 上基板 21 透明電極 22 透明電極 30 液晶層 31 配向膜 32 配向膜 41 偏光板 42 偏光板 51 反射板 d 液晶層厚 p 液晶の自然ねじれピッチ DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent electrode 3 Alignment film 6 Insulating structure 11 Lower substrate 12 Upper substrate 21 Transparent electrode 22 Transparent electrode 30 Liquid crystal layer 31 Alignment film 32 Alignment film 41 Polarizer 42 Polarizer 51 Reflector d Liquid crystal layer thickness p Liquid crystal layer Natural twist pitch

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一対の透明電極基板間に、画素部におけ
る液晶層厚の1倍から3倍の範囲内にある自然ねじれピ
ッチを有する誘電異方性が正であるカイラルネマティッ
ク液晶を挾持し、電圧を印加してフレデリクス転移を生
じさせた後の緩和状態として、二つの準安定配向状態の
いずれか一方を選択できるように構成された液晶セルと
該液晶セルの両外側に配設された偏光板と、一方の偏光
板よりもさらに外側に配設された反射板からなる液晶表
示装置であって、画素間を含む非画素部における液晶層
の厚みを、画素部における液晶層の厚みよりも小さく設
定することにより、初期状態(電圧無印加時)における
液晶分子のねじれ角を、画素部と非画素部とで異ならせ
たことを特徴とする液晶表示装置。
1. A chiral nematic liquid crystal having a positive natural dielectric anisotropy and having a natural twist pitch within a range of 1 to 3 times the thickness of a liquid crystal layer in a pixel portion, between a pair of transparent electrode substrates, A liquid crystal cell configured to be able to select one of two metastable alignment states as a relaxation state after applying a voltage to cause the Freedericksz transition, and polarized light disposed on both outer sides of the liquid crystal cell. A liquid crystal display device comprising a plate and a reflector disposed further outside of one of the polarizing plates, wherein the thickness of the liquid crystal layer in the non-pixel portion including between pixels is greater than the thickness of the liquid crystal layer in the pixel portion. A liquid crystal display device characterized in that the twist angle of liquid crystal molecules in an initial state (when no voltage is applied) is made different between a pixel portion and a non-pixel portion by setting a small value.
【請求項2】 非画素部における液晶層の厚み(d)と
液晶の自然ねじれピッチ(p)の比が、d/p<0.3
である請求項1記載の液晶表示装置。
2. The ratio of the thickness (d) of the liquid crystal layer in the non-pixel portion to the natural twist pitch (p) of the liquid crystal is d / p <0.3.
The liquid crystal display device according to claim 1, wherein
【請求項3】 一対の透明電極基板が、配向処理の方向
が略平行であって、基板との界面での液晶分子の傾きが
上下基板で略平行となるように配向処理が施されたもの
である請求項1または2記載の液晶表示装置。
3. A pair of transparent electrode substrates which have been subjected to an alignment process so that the directions of the alignment process are substantially parallel and the inclination of the liquid crystal molecules at the interface with the substrate is substantially parallel between the upper and lower substrates. 3. The liquid crystal display device according to claim 1, wherein
【請求項4】 基板面に対する液晶分子の傾きが、2〜
30°である請求項1、2または3記載の液晶表示装
置。
4. The tilt of liquid crystal molecules with respect to the substrate surface is 2 to 4.
4. The liquid crystal display device according to claim 1, wherein the angle is 30 [deg.].
【請求項5】 二つの準安定配向状態の一方が、厚み方
向への液晶分子のねじれ角が、初期状態における液晶分
子のねじれ角(以下、φとも言う。)+180°であ
り、他方が、φ−180°である請求項1、2、3また
は4記載の液晶表示装置。
5. In one of the two metastable alignment states, the twist angle of liquid crystal molecules in the thickness direction is the twist angle of liquid crystal molecules in the initial state (hereinafter also referred to as φ) + 180 °, and the other is: 5. The liquid crystal display device according to claim 1, wherein the angle is -180 [deg.].
【請求項6】 φが略180°である請求項5記載の液
晶表示装置。
6. The liquid crystal display device according to claim 5, wherein φ is approximately 180 °.
JP9354158A 1997-12-08 1997-12-08 Liquid crystal display device Pending JPH11174498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9354158A JPH11174498A (en) 1997-12-08 1997-12-08 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9354158A JPH11174498A (en) 1997-12-08 1997-12-08 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH11174498A true JPH11174498A (en) 1999-07-02

Family

ID=18435686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9354158A Pending JPH11174498A (en) 1997-12-08 1997-12-08 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH11174498A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066492A (en) * 2001-06-22 2003-03-05 Hewlett Packard Co <Hp> Bistable nematic liquid crystal device
JP2005501295A (en) * 2001-08-29 2005-01-13 ネモプティック Bistable nematic liquid crystal display device with improved optical mask
KR100787899B1 (en) * 2001-10-15 2007-12-27 샤프 가부시키가이샤 Substrate for reflective type liquid crystal display device and reflective type liquid crystal display device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066492A (en) * 2001-06-22 2003-03-05 Hewlett Packard Co <Hp> Bistable nematic liquid crystal device
JP4484422B2 (en) * 2001-06-22 2010-06-16 ヒューレット・パッカード・カンパニー Bistable nematic liquid crystal device
JP2005501295A (en) * 2001-08-29 2005-01-13 ネモプティック Bistable nematic liquid crystal display device with improved optical mask
KR100787899B1 (en) * 2001-10-15 2007-12-27 샤프 가부시키가이샤 Substrate for reflective type liquid crystal display device and reflective type liquid crystal display device using the same

Similar Documents

Publication Publication Date Title
JP4456655B2 (en) Method for forming optical λ / 4 layer for transflective liquid crystal display device
JPH0784252A (en) Liquid crystal display device
KR20010078377A (en) A liquid crystal display device
JP3982146B2 (en) LIQUID CRYSTAL DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING THE SAME
KR100255058B1 (en) Liquid crystal display apparatus having high wide visual angle and high contrast
JP3356273B2 (en) Liquid crystal display
JP2002014353A (en) Liquid crystal display device and method for manufacturing the same
JPH08166605A (en) Liquid crystal display device
JPH07333632A (en) Liquid crystal display device
JPH11174498A (en) Liquid crystal display device
JP3404467B2 (en) Liquid crystal display
JP3641907B2 (en) Liquid crystal display
JP2000214465A (en) Liquid crystal device and electronic equipment
JP3204256B2 (en) Liquid crystal element, method of manufacturing the same, liquid crystal display element and method of driving the same
JP3308863B2 (en) Liquid crystal display device
JPH07261169A (en) Liquid crystal display device
JPH01217315A (en) Liquid crystal display device
JP3210652B2 (en) Liquid crystal display panel manufacturing method
JP2653559B2 (en) Simple matrix liquid crystal display
JPH0784260A (en) Liquid crystal display panel
JP2000356791A (en) Liquid crystal display device
JP2007178496A (en) Liquid crystal display element
JP3074123B2 (en) Liquid crystal display device
JPH0829757A (en) Display element
JP3335119B2 (en) Reflective liquid crystal electro-optical device and projection display system using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323