JPH11174449A - Illuminator of reading light to spatial light modulation device - Google Patents

Illuminator of reading light to spatial light modulation device

Info

Publication number
JPH11174449A
JPH11174449A JP9362746A JP36274697A JPH11174449A JP H11174449 A JPH11174449 A JP H11174449A JP 9362746 A JP9362746 A JP 9362746A JP 36274697 A JP36274697 A JP 36274697A JP H11174449 A JPH11174449 A JP H11174449A
Authority
JP
Japan
Prior art keywords
light
polarization
polarizing plate
polarized
light modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9362746A
Other languages
Japanese (ja)
Other versions
JP3381773B2 (en
Inventor
Shintaro Nakagaki
新太郎 中垣
Tsutae Asakura
伝 浅倉
Fujiko Koyama
扶二子 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP36274697A priority Critical patent/JP3381773B2/en
Priority to US09/206,989 priority patent/US6049410A/en
Publication of JPH11174449A publication Critical patent/JPH11174449A/en
Application granted granted Critical
Publication of JP3381773B2 publication Critical patent/JP3381773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical configuration capable of radiating reading light polarized in all the same direction even if indefinitely polarized light from a light source side is of a conical luminous flux in an illuminator irradiating an optical modulating layer of a spatial light modulating device with the reading light in a diagonal direction. SOLUTION: A light modulation layer (liquid crystal layer: lighting area 5a) and a polarized light selecting element (polarizing plate 2') of a spatial light modulating device 1 are arranged in an optically parallel relation. If the polarizing plate is arranged orthogonal to the optical axis of the luminous flux of said indefinitely polarized light, the directions of the polarized light components transmitted become irregular, while according to the above arrangement, even if the indefinitely polarized light forms a conical luminous flux, only the polarized components having a same polarizing direction as the transmission axis of the polarizing plate 2' are transmitted and the lighting area 5a can be irradiated with reading light of all the same directions, and as a result, a modified image with a sharp contrast is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空間光変調装置に対
する読出し光の照明装置に係り、投写型表示装置やプロ
ジェクタや光情報処理装置等に適用され、高コントラス
トの変調光を得るための照明光学系の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reading light illuminating device for a spatial light modulator, and is applied to a projection display device, a projector, an optical information processing device and the like, and obtains a high contrast modulated light. Regarding system improvement.

【0002】[0002]

【従来の技術】最近、空間光変調装置として液晶パネル
を用いた投写型ディスプレイの開発が行われており、特
に、反射型液晶パネルを適用したものは、従来の透過型
液晶パネルによる場合の開口率が50%程度であったの
に対し、それを90%以上にできることから注目されて
おり、既に一部で実施化される状況にある。
2. Description of the Related Art Recently, a projection type display using a liquid crystal panel as a spatial light modulator has been developed. In particular, a reflection type liquid crystal panel is applied to an aperture in a conventional transmission type liquid crystal panel. Attention has been paid to the fact that the rate can be increased to 90% or more, while the rate was about 50%, and it is already being partially implemented.

【0003】そして、反射型液晶パネルを用いた投写型
ディスプレイにおける照明光学系と空間光変調部は図8
に示されるような模式的構成を有している。同図におい
て、1は空間光変調部、2は偏光板、3はインテグレー
タ、4はハロゲンランプやメタルハライドランプ等の光
源であり、空間光変調部1は、反射型液晶パネル5とガラ
ス基板6とカップリングプリズム7の積層構造になって
る。ここに、反射型液晶パネル5は、Si基板の上側に画
素単位でMOS-トランジスタとAl製の反射ミラー(画素電
極)を形成し、その基板と透明な共通電極との間に液晶
を挾装・封止した基本構造からなり、各反射ミラーと共
通電極の間の液晶をアクティブマトリクス方式で駆動す
ることにより、液晶層へ入射せしめられる読出し光を画
素単位で変調して反射させるようになっている。その場
合、反射型液晶パネル5では、MOS-トランジスタや接続
配線を反射ミラーの下側に設けることができ、画素を高
精細化してもMOS-トランジスタの大きさと関係なくパネ
ルのほぼ全面を反射面として使えるため、前記のように
大きな開口率を確保できる。
An illumination optical system and a spatial light modulator in a projection type display using a reflection type liquid crystal panel are shown in FIG.
Has a schematic configuration as shown in FIG. In the figure, 1 is a spatial light modulator, 2 is a polarizing plate, 3 is an integrator, 4 is a light source such as a halogen lamp or a metal halide lamp, and the spatial light modulator 1 is a reflective liquid crystal panel 5 and a glass substrate 6. The coupling prism 7 has a laminated structure. Here, in the reflection type liquid crystal panel 5, a MOS-transistor and a reflection mirror (pixel electrode) made of Al are formed in pixel units on the upper side of the Si substrate, and the liquid crystal is sandwiched between the substrate and the transparent common electrode. -Consisting of a sealed basic structure, the liquid crystal between each reflection mirror and the common electrode is driven by the active matrix method, so that the readout light incident on the liquid crystal layer is modulated and reflected in pixel units. I have. In that case, in the reflective liquid crystal panel 5, MOS-transistors and connection wiring can be provided below the reflective mirror, and even if the pixels are made finer, almost the entire surface of the panel is reflective regardless of the size of the MOS-transistor. Therefore, a large aperture ratio can be secured as described above.

【0004】一方、照明光学系については、光源4から
得られる不定偏光をインテグレータ3を介して偏光板2へ
入射させ、偏光板2によって不定偏光に含まれている一
方の偏光成分(ここではS偏光成分)のみを選択的に透過
させて空間光変調部1に入射させる構成になっている
が、偏光板2へ入射する不定偏光の光束の光軸は反射型
液晶パネル5の光変調層に相当する液晶層に立てた法線
と一定の角度θを有しており、偏光板2を透過したS偏
光成分の光束(読出し光)がカップリングプリズム7とガ
ラス基板6を介して前記の液晶層へ斜め方向(入射角:θ)
から入射するようになっている。尚、この場合には、カ
ップリングプリズム7の入射面7aが前記の光軸に対して
垂直な関係を有するように設定されており、またカップ
リングプリズム7とガラス基板6は同一屈折率のガラスを
用いているため、読出し光は屈折を受けずにそのまま液
晶層へ入射する。また、図示していないが、インテグレ
ータ3と偏光板2の間には、赤外光波長帯域の成分を除去
するためのコールドミラー等が介在する場合や、カラー
画像表示を行なう3板式投写型ディスプレイにおいては
予めR,G,Bの各色光に分離した後に光路を引き回して
各色に対応した液晶パネルに導光させる場合があるた
め、その間の光路は物理的に直線になっていないことが
多い。
On the other hand, with respect to the illumination optical system, the indeterminate polarized light obtained from the light source 4 is made incident on the polarizing plate 2 via the integrator 3 and one of the polarized components (here, S (Polarized light component) is selectively transmitted to be incident on the spatial light modulator 1.However, the optical axis of the irregularly polarized light beam incident on the polarizing plate 2 is transmitted to the light modulation layer of the reflective liquid crystal panel 5. The luminous flux of the S-polarized component (reading light) transmitted through the polarizing plate 2 and having a certain angle θ with respect to the normal set to the corresponding liquid crystal layer, is transmitted through the coupling prism 7 and the glass substrate 6 to the liquid crystal. Oblique direction to the layer (incident angle: θ)
From the light source. In this case, the incidence surface 7a of the coupling prism 7 is set to have a relationship perpendicular to the optical axis, and the coupling prism 7 and the glass substrate 6 are made of glass having the same refractive index. Is used, the reading light enters the liquid crystal layer without being refracted. Although not shown, between the integrator 3 and the polarizing plate 2, a cold mirror or the like for removing components in an infrared wavelength band is interposed, or a three-plate projection display for displaying a color image. In some cases, the light path may be led to a liquid crystal panel corresponding to each color after being separated into R, G, and B color lights in advance, so that the light path between them is often not physically straight.

【0005】そして、液晶層へ入射したS偏光成分は反
射ミラーで反射されることにより液晶層を往復するが、
画像信号に基づく反射型液晶パネル5の駆動によって液
晶分子の転移が制御されために変調を受け、画素単位で
偏光面が回転したP偏光成分(変調光)のみがガラス基板
6からカップリングプリズム7へ入射してその出射面7aか
ら出射され、更に投射光学系(図示せず)へ導かれて変調
光による画像がスクリーン(図示せず)に投写されること
になる。
The S-polarized light component incident on the liquid crystal layer reciprocates in the liquid crystal layer by being reflected by the reflection mirror.
The driving of the reflective liquid crystal panel 5 based on the image signal controls the transition of the liquid crystal molecules and receives modulation.
The light enters the coupling prism 7 from 6 and exits from the exit surface 7a, and is further guided to a projection optical system (not shown) to project an image based on the modulated light on a screen (not shown).

【0006】[0006]

【発明が解決しようとする課題】ところで、前記の投写
型ディスプレイにおける照明光学系と空間光変調部1の
構成においては、図示するように偏光板2の偏光選択面
が入射光束の光軸に対して垂直な関係を有して配置され
ており、通常の態様での偏光板の用い方である。そし
て、この場合には、偏光板2の透過軸の方向が図8にお
ける紙面と垂直な方向に設定されており、入射する不定
偏光の内の偏光方向が前記透過軸の方向と平行な偏光成
分を選択的に透過させて空間光変調部1へ入射させる。
By the way, in the configuration of the illumination optical system and the spatial light modulator 1 in the above-mentioned projection type display, as shown in the figure, the polarization selection surface of the polarizing plate 2 is positioned with respect to the optical axis of the incident light beam. Are arranged in a vertical relationship with each other, and this is a method of using a polarizing plate in a normal mode. In this case, the direction of the transmission axis of the polarizing plate 2 is set to a direction perpendicular to the plane of FIG. 8, and the polarization direction of the incident irregularly polarized light is a polarization component parallel to the transmission axis direction. Is selectively transmitted to be incident on the spatial light modulator 1.

【0007】一方、照明光学系についてみると、光源4
は理想的な点光源ではなく有限な大きさの発光部を有し
ており、また、インテグレータ3では微小レンズセグメ
ントをマトリクス状に配設した第1レンズ板3aで多数の
2次光源像を作成し、その各2次光源像を第2レンズ板
3bによって空間光変調部1側の反射型液晶パネル5の液晶
層の平面領域(読出し光の照明領域)に重合結像させる光
学系を構成している。従って、偏光板2に入射する不定
偏光は多数の円錐状光束の集合光束からなり、個別の円
錐状光束を構成する光線に着目すると、偏光板2の入射
面において垂直に入射した光線を除く他の光線は偏光板
2の偏光選択面に対して90°以外の入射角を有するこ
とになる。
On the other hand, regarding the illumination optical system, the light source 4
Does not have an ideal point light source but has a light emitting part of finite size. In the integrator 3, a large number of secondary light source images are created by a first lens plate 3a in which minute lens segments are arranged in a matrix. And each secondary light source image is transferred to a second lens plate.
3b constitutes an optical system for forming an image on the plane area (illumination area of readout light) of the liquid crystal layer of the reflection type liquid crystal panel 5 on the side of the spatial light modulation section 1. Therefore, the indeterminate polarized light incident on the polarizing plate 2 is composed of a bundle of a large number of conical light beams. The light is a polarizing plate
It will have an angle of incidence other than 90 ° with respect to the second polarization selection plane.

【0008】そして、その入射条件における偏光板2の
偏光選択機能は図9に示される。但し、同図において、
5aは反射型液晶パネル5の読出し光の照明領域であり、
白抜き矢印で示す方向は偏光板2の透過軸の方向に相当
する。また、○で示す各位置から引出し線で対応付けた
各図は、その位置における光線の進行方向の手前側から
見た偏光成分とその偏光方向を示す。
FIG. 9 shows the polarization selecting function of the polarizing plate 2 under the incident condition. However, in the figure,
5a is an illumination area of the reading light of the reflective liquid crystal panel 5,
The direction indicated by the white arrow corresponds to the direction of the transmission axis of the polarizing plate 2. Each drawing associated with a drawing line from each position indicated by 示 す indicates a polarization component and its polarization direction as viewed from the near side in the traveling direction of the light beam at that position.

【0009】先ず、偏光板2の偏光選択面は、その基本
的機能として、光線の進行方向に対して直交する面と透
過軸を含んで偏光選択面に垂直な面との交叉線において
偏光成分を選択する機能を有し、その選択された偏光成
分を透過させる。従って、図9に示されるように、光源
4側からインテグレータ3を介して得られる不定偏光の光
線の内、偏光板2の偏光選択面に垂直に入射する光線
(A)に着目すると、偏光方向が偏光板2の透過軸と同一
方向であるS偏光成分[S]が選択されて透過し、偏光板
2の偏光選択面に垂直でない入射光線(B)に着目してみ
ても、偏光方向が透過軸を含んで偏光選択面に垂直な面
にあるS偏光成分[S']が選択されて透過する。その場
合、前記の各S偏光成分[S],[S']は読出し光の照明領
域5aへ入射するが、[S]の偏光方向が照明領域5aの面と
平行であるのに対し、[S']の偏光方向は平行になら
ず、一般的に偏光板2への各入射光線の入射角度によっ
て透過する偏光成分の偏光方向が異なることになり、偏
光方向が不揃いの読出し光によって照明領域5aが照射さ
れる。
First, as a basic function, the polarization selecting surface of the polarizing plate 2 has a polarization component at a crossing line between a surface perpendicular to the traveling direction of the light beam and a surface including the transmission axis and perpendicular to the polarization selecting surface. And transmits the selected polarization component. Therefore, as shown in FIG.
Of the light beams of indeterminate polarization obtained through the integrator 3 from the side 4, the light beams that are perpendicularly incident on the polarization selection surface of the polarizing plate 2
Focusing on (A), an S-polarized component [S] whose polarization direction is the same as the transmission axis of the polarizing plate 2 is selected and transmitted, and
Focusing on the incident light beam (B) that is not perpendicular to the polarization selection plane of No. 2, the S-polarized light component [S ′] whose polarization direction includes the transmission axis and is perpendicular to the polarization selection plane is selected and transmitted. . In this case, the respective S-polarized light components [S] and [S ′] are incident on the illumination area 5a of the readout light, whereas the polarization direction of [S] is parallel to the plane of the illumination area 5a. The polarization direction of S ′] is not parallel, and the polarization direction of the transmitted polarization component generally differs depending on the angle of incidence of each incident light beam on the polarizing plate 2. 5a is irradiated.

【0010】そして、前記のように読出し光の偏光方向
が不揃いになっていると、反射型液晶パネル5における
変調状態が読出し光における各偏光方向の各光線につい
て異なることになり、変調後の投射光による画像のコン
トラストの低下を招く。そこで、本発明は、光源側から
得られる不定偏光が円錐状光束になっていても、空間光
変調装置の光変調層に対して偏光方向が揃った偏光成分
の読出し光を照射できる光学的構成を提供し、それによ
り、高いコントラスト特性を有した投写型表示装置やプ
ロジェクタを実現することを目的として創作された。
If the polarization direction of the readout light is not uniform as described above, the modulation state in the reflective liquid crystal panel 5 will be different for each light beam of each polarization direction in the readout light. The light causes a decrease in the contrast of the image. Therefore, the present invention provides an optical configuration capable of irradiating the light modulation layer of the spatial light modulator with readout light of a polarization component having a uniform polarization direction, even if the irregularly polarized light obtained from the light source side is a conical light beam. It was created for the purpose of realizing a projection display device and a projector having high contrast characteristics.

【0011】[0011]

【課題を解決するための手段】本発明は、光源から得ら
れる不定偏光の光束の光軸が空間光変調装置の光変調層
に対して傾斜せしめられており、前記光束の光路中に配
置した偏光選択要素によって前記不定偏光に含まれてい
る一方の偏光成分のみを選択的に透過させ、その偏光成
分を読出し光として前記空間光変調装置の光変調層に照
射させる照明装置において、前記偏光選択要素の偏光選
択面と前記空間光変調装置の光変調層を光学的に平行な
関係で配置させたことを特徴とする空間光変調装置に対
する読出し光の照明装置に係る。
According to the present invention, the optical axis of the light beam of irregular polarization obtained from the light source is inclined with respect to the light modulation layer of the spatial light modulator, and is arranged in the light path of the light beam. An illumination device that selectively transmits only one polarization component included in the indefinite polarization by a polarization selection element and irradiates the polarization component as readout light to a light modulation layer of the spatial light modulation device, wherein the polarization selection The present invention relates to a reading light illuminating device for a spatial light modulation device, wherein a polarization selection surface of an element and a light modulation layer of the spatial light modulation device are arranged in an optically parallel relationship.

【0012】ここに、前記の「光学的に平行な関係」と
は、前記偏光選択要素の偏光選択面と前記空間光変調装
置の光変調層の間に光の屈折要素が介在した場合に、そ
の屈折角に対応して前記偏光選択要素の偏光選択面を前
記空間光変調装置の光変調層に対して傾斜させることを
含む概念であり、前記屈折要素が存在しない場合には物
理的にも平行になる。また、前記の「前記偏光選択要
素」は、不定偏光に含まれている一方の偏光成分のみを
選択的に透過させる偏光子としての機能を有した光学要
素であり、偏光板だけでなく偏光ビームスプリッタも含
む。
Here, the “optically parallel relationship” means that a light refraction element is interposed between the polarization selection surface of the polarization selection element and the light modulation layer of the spatial light modulator. It is a concept including tilting the polarization selection surface of the polarization selection element with respect to the light modulation layer of the spatial light modulator in accordance with the refraction angle, and also physically when the refraction element does not exist. Be parallel. Further, the above-mentioned “polarization selecting element” is an optical element having a function as a polarizer that selectively transmits only one of the polarization components included in the indeterminate polarized light. Also includes splitter.

【0013】本発明では、光源から得られる不定偏光の
光束の光軸が空間光変調装置の光変調層に対して傾斜し
ており、且つ偏光選択要素の偏光選択面が前記光変調層
と光学的に平行な関係にあるため、不定偏光が偏光選択
面に対して傾斜して入射する。 そして、偏光選択要素
は光線の進行方向に対して直交する面と透過軸を含んで
偏光選択面に垂直な面との交叉線において偏光成分を選
択するが、前記のように偏光選択面が不定偏光の光束に
対して傾斜しているため、前記不定偏光の光束に含まれ
ている光線の偏光選択面に対する入射角が異なっていて
も、選択された各偏光成分の偏光方向は全て偏光選択面
の透過軸方向と平行になる。即ち、不定偏光が円錐状光
束の集合光束であっても、光変調層には偏光方向の揃っ
た偏光成分が照射され、空間光変調装置では均一な偏光
成分の読出し光による変調がなされるため、変調後の投
射光によって高いコントラストの画像を再生できる。
In the present invention, the optical axis of the light beam of irregular polarization obtained from the light source is inclined with respect to the light modulation layer of the spatial light modulator, and the polarization selection surface of the polarization selection element is optically connected to the light modulation layer. Are in parallel with each other, so that the indeterminate polarized light is incident on the polarization selection surface at an angle. The polarization selection element selects a polarization component at an intersection of a plane perpendicular to the light traveling direction and a plane including the transmission axis and perpendicular to the polarization selection plane, but the polarization selection plane is indeterminate as described above. Since the light is inclined with respect to the polarized light beam, even if the incident angles of the light beams included in the irregularly polarized light beam with respect to the polarization selection surface are different, the polarization directions of the selected polarization components are all the polarization selection surface. Are parallel to the transmission axis direction. That is, even if the irregularly polarized light is a condensed light flux of a conical light flux, the light modulation layer is irradiated with a polarized light component having a uniform polarization direction, and the spatial light modulation device modulates the read light with a uniform polarized light component. In addition, a high-contrast image can be reproduced by the modulated projection light.

【0014】ところで、偏光選択要素の偏光選択面と空
間光変調装置の光変調層の間に光の屈折要素が介在しな
い場合には偏光選択面と光変調層が物理的に平行であっ
てもよいが、その平行配置の条件下で屈折要素が介在す
る場合には各光線の屈折要素に対する入射角に応じて偏
光方向が回転し、結果的に光変調層に照射される偏光成
分の偏光方向が不揃いになる。そのような場合には、屈
折要素の屈折率に対応させて偏光選択要素の偏光選択面
を空間光変調装置の光変調層に対して傾斜させるように
すれば、屈折要素による偏光方向の回転分を打ち消すよ
うな偏光方向を有した偏光成分を選択的に透過させるこ
とができる。即ち、屈折要素が介在しても、偏光選択面
と光変調層の光学的な平行関係を維持させることによ
り、光変調層に照射される偏光成分の偏光方向を揃える
ことができる。
By the way, when no light refraction element is interposed between the polarization selection surface of the polarization selection element and the light modulation layer of the spatial light modulator, even if the polarization selection surface and the light modulation layer are physically parallel. However, when a refraction element is interposed under the condition of the parallel arrangement, the polarization direction is rotated according to the incident angle of each ray to the refraction element, and as a result, the polarization direction of the polarization component irradiated on the light modulation layer Become irregular. In such a case, if the polarization selection surface of the polarization selection element is inclined with respect to the light modulation layer of the spatial light modulator in accordance with the refractive index of the refraction element, the rotation of the polarization direction due to the refraction element can be reduced. A polarization component having a polarization direction that cancels out can be selectively transmitted. That is, even if a refraction element is interposed, the polarization direction of the polarization component irradiated on the light modulation layer can be made uniform by maintaining the optical parallel relationship between the polarization selection surface and the light modulation layer.

【0015】[0015]

【発明の実施の形態】以下、本発明の「空間光変調装置
に対する読出し光の照明装置」の実施形態を図1から図
4を用いて詳細に説明する。 《実施形態1》先ず、図1は、図8と同様に反射型液晶
パネルを用いた投写型ディスプレイにおける照明光学系
と空間光変調部の模式的構成を示すものであるが、照明
光学系のインテグレータ3と光源4の部分を省略し、空間
光変調部1と偏光板2'の配置関係のみが示してある。
尚、図1において、図8と同一の符号で示される各要素
は同一要素に相当する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the "illumination device for reading light to a spatial light modulator" of the present invention will be described below in detail with reference to FIGS. Embodiment 1 First, FIG. 1 shows a schematic configuration of an illumination optical system and a spatial light modulator in a projection display using a reflective liquid crystal panel, as in FIG. The parts of the integrator 3 and the light source 4 are omitted, and only the positional relationship between the spatial light modulator 1 and the polarizing plate 2 'is shown.
Note that, in FIG. 1, each element indicated by the same reference numeral as FIG. 8 corresponds to the same element.

【0016】この実施形態の特徴は、偏光板2'がその偏
光選択面と空間光変調部1の液晶層と平行な関係で配設
されている点にある。従って、光源4側からインテグレ
ータ3等を介して得られる不定偏光の光束の光軸と偏光
板2'の偏光選択面が(90−θ)°の角度をなし、偏光板
2'に対して不定偏光が斜め方向から入射することにな
る。
The feature of this embodiment resides in that the polarizing plate 2 ′ is disposed in a parallel relationship with its polarization selection surface and the liquid crystal layer of the spatial light modulator 1. Accordingly, the optical axis of the light beam of irregular polarization obtained from the light source 4 via the integrator 3 and the like and the polarization selection surface of the polarizing plate 2 'make an angle of (90-θ) °, and the polarizing plate
Irregularly polarized light enters obliquely with respect to 2 ′.

【0017】次に、前記特徴に基づく配設条件下におけ
る偏光板2'の偏光選択機能を、上記の図9と同様の表現
形式による図2を用いて説明する。先ず、斜め方向から
入射する不定偏光の光線の内、偏光板2'の透過軸と垂直
な関係にある入射光線(A)に着目すると、偏光板2'は光
線の進行方向に対して直交する面と透過軸を含んで偏光
選択面に垂直な面との交叉線においてS偏光成分を選択
するため、その光線(A)の進行方向に垂直で透過軸方向
に合致する偏光方向のS偏光成分[S]のみを選択的に透
過させる。一方、偏光板2'の透過軸と垂直でない入射光
線(B)に着目すると、偏光板2'の偏光選択機能は前記と
同様であるが、その光線(B)のS偏光成分[S']の偏光
方向は透過軸の方向と一致していないため(平面的に見
て角度αだけ傾斜している)、S偏光成分[S']の透過軸
方向に係る分解ベクトルに相当する[Sy]=S'cosαの
みを選択的に透過させる。
Next, the function of selecting the polarization of the polarizing plate 2 'under the arrangement conditions based on the above features will be described with reference to FIG. First, among the light beams of indeterminate polarization incident from an oblique direction, focusing on the incident light beam (A) that is perpendicular to the transmission axis of the polarizing plate 2 ′, the polarizing plate 2 ′ is orthogonal to the traveling direction of the light beam. In order to select the S-polarized light component at the intersection of the plane and the plane perpendicular to the polarization selection plane including the transmission axis, the S-polarized light component in the polarization direction perpendicular to the traveling direction of the light beam (A) and coinciding with the transmission axis direction Only [S] is selectively transmitted. On the other hand, focusing on the incident light (B) that is not perpendicular to the transmission axis of the polarizing plate 2 ', the polarization selecting function of the polarizing plate 2' is the same as described above, but the S-polarized light component [S '] of the light (B). Is not coincident with the direction of the transmission axis (inclined by an angle α when viewed in a plane), and thus corresponds to the decomposition vector of the S-polarized component [S ′] in the transmission axis direction [Sy]. = Only S'cosα is selectively transmitted.

【0018】そして、前記のように偏光板2'で選択され
て透過した各S偏光成分[S],[Sy]はそれぞれ光線
(A),(B)の方向へ進行して反射型液晶パネル5の照明領
域5aに入射する。その場合、図2の偏光板2'を透過した
後の各S偏光成分[S],[Sy]の偏光方向は双方とも偏光
板2'の透過軸の方向と平行な関係にあるため、偏光選択
面と照明領域5aが平行に設定されていれば、その照明領
域5aの面上においても同一の偏光方向を有した偏光成分
(読出し光)となる。即ち、図9のように、偏光板2を不
定偏光の光束の光軸と垂直な関係で配置して、偏光板2
の透過軸に垂直でない入射光線(B)のS偏光成分[S']
をそのまま選択・透過させると、照明領域5aの面上では
垂直な入射光線(A)に係るS偏光成分[S]と偏光方向が
異ってしまうが、この実施形態によれば、偏光板2'によ
ってS偏光成分[S']の偏光方向を光線(B)の光軸を中
心に角度αだけ回転せしめた偏光成分[Sy]を選択・透過
させていることになり、結果的に偏光板2'の偏光選択面
と平行な照明領域5aにおいて、同一の偏光方向となった
S偏光成分[S],[Sy]が得られる。尚、角度αは一般的
には高々10°程度の小さな角度であり、図1における
角度θが小さく設定されると角度αも小さくなるため
(角度θは通例30〜60°程度の範囲で設定される)、
偏光成分[Sy]は偏光成分[S]とそれほど差の大きさに
なる。
Each of the S-polarized light components [S] and [Sy] selected and transmitted by the polarizing plate 2 'as described above is
The light travels in the directions (A) and (B) and enters the illumination area 5a of the reflective liquid crystal panel 5. In this case, since the polarization directions of the respective S-polarized light components [S] and [Sy] after passing through the polarizing plate 2 ′ in FIG. 2 are parallel to the direction of the transmission axis of the polarizing plate 2 ′, If the selection surface and the illumination area 5a are set in parallel, a polarization component having the same polarization direction on the surface of the illumination area 5a
(Read light). That is, as shown in FIG. 9, the polarizing plate 2 is arranged in a relationship perpendicular to the optical axis of the light beam of irregular polarization.
Polarization component [S '] of the incident light (B) not perpendicular to the transmission axis of
If is selected and transmitted as it is, the polarization direction will be different from the S-polarized component [S] of the perpendicular incident light (A) on the surface of the illumination area 5a, but according to this embodiment, the polarizing plate 2 ', A polarization component [Sy] obtained by rotating the polarization direction of the S polarization component [S'] by an angle α around the optical axis of the light beam (B) is selected and transmitted, and as a result, the polarizing plate In the illumination area 5a parallel to the 2 ′ polarization selection plane, S-polarized light components [S] and [Sy] having the same polarization direction are obtained. Note that the angle α is generally a small angle of at most about 10 °, and when the angle θ in FIG. 1 is set small, the angle α also becomes small.
(The angle θ is usually set in a range of about 30 to 60 °),
The polarization component [Sy] is so different from the polarization component [S].

【0019】そして、前記の偏光板2'によるS偏光成分
の選択・透過条件及び反射型液晶パネル5の照明領域5aに
対する照射条件は、入射する不定偏光の全ての光線につ
いて成立するため、照明領域5aに対する読出し光(S偏
光成分)はその偏光方向が完全に揃った状態で入射する
ことになり、反射型液晶パネル5における変調特性は読
出し光の全ての光線に対して均一になり、高いコントラ
ストでの画像表示が可能な投射光が得られる。また、こ
の実施形態では、偏光板2'がS偏光成分の選択機能を有
しているものとして説明したが、P偏光成分の選択機能
を有している場合にも、同様の原理に基づいて同様の効
果が得られる。
Since the conditions for selecting and transmitting the S-polarized light component by the polarizing plate 2 'and the conditions for irradiating the illumination area 5a of the reflective liquid crystal panel 5 are satisfied for all the rays of the incident irregularly polarized light, the illumination area The readout light (S-polarized light component) for 5a is incident with its polarization direction completely aligned, and the modulation characteristics in the reflective liquid crystal panel 5 are uniform for all the light beams of the readout light, resulting in high contrast. Thus, projection light capable of displaying an image on the LCD is obtained. Further, in this embodiment, the polarizing plate 2 ′ has been described as having the function of selecting the S-polarized light component. Similar effects can be obtained.

【0020】《実施形態2》上記の実施形態1では、偏
光板2'を透過した読出し光(S偏光成分)が何等の屈折作
用を受けずに反射型液晶パネル5の読出し光の照明領域5
aへ到達することを前提として説明した。しかし、一般
の空間光変調装置においては読出し光の入射面からその
光変調層までにガラス基板等の光の屈折要素が介在する
ことが多く、例えば、前記の空間光変調装置1において
も、図3に示すように、偏光板2'から得られるS偏光成
分の光束をカップリングプリズム7の入射面7aに対して
一定の傾斜角度で入射させ、カップリングプリズム7の
屈折率よりガラス基板6の屈折率を大きく設定しておい
て、前記偏光成分の光束を屈折させて反射型液晶パネル
5の読出し光の照明領域5aへ導光する場合がある。
<Embodiment 2> In the first embodiment, the readout light (S-polarized light component) transmitted through the polarizing plate 2 'is not subjected to any refraction, and the readout light illumination area 5 of the reflective liquid crystal panel 5 is not affected.
The explanation has been given on the assumption that it reaches a. However, in a general spatial light modulation device, a light refraction element such as a glass substrate is often interposed from the incident surface of the readout light to the light modulation layer. As shown in FIG. 3, the luminous flux of the S-polarized light component obtained from the polarizing plate 2 ′ is made incident on the incident surface 7 a of the coupling prism 7 at a fixed inclination angle, and the refractive index of the A reflective liquid crystal panel is set by setting a large refractive index and refracting the light beam of the polarized light component.
In some cases, the readout light of No. 5 may be guided to the illumination area 5a.

【0021】その場合、S偏光成分は常に光線の方向に
対して垂直な関係を保つため、図3に示されるように、
実施形態1と同様に偏光板2'の偏光選択面を反射型液晶
パネル5の照明領域5aと物理的に平行な配置関係のまま
にすると、各光線のS偏光成分の偏光方向がその光線の
屈折角に対応して屈折前の状態から回転することにな
り、結果的に照明領域5aにおいて読出し光の偏光方向が
不揃いになる。
In this case, since the S-polarized light component always keeps a relation perpendicular to the direction of the light beam, as shown in FIG.
When the polarization selection surface of the polarizing plate 2 ′ is kept in a physical parallel relationship with the illumination area 5 a of the reflective liquid crystal panel 5 as in the first embodiment, the polarization direction of the S-polarized component of each light beam is The rotation from the state before the refraction is performed in accordance with the refraction angle, and as a result, the polarization direction of the readout light in the illumination area 5a becomes uneven.

【0022】そして、その状態は図2と同様の表現形式
による図4を用いて考察できる。但し、図4において
は、図2の構成で無視したカップリングプリズム7が屈
折要素として照明領域5aの上側に設けられている。ま
た、ここでは、説明の煩雑化を避けるために、カップリ
ングプリズム7の入射面7aにおいてのみ光線が屈折する
こととし、ガラス基板6による屈折条件は加味しない条
件で表現されている。図4と図2を比較すれば明らかな
ように、偏光板2'による偏光成分の選択・透過機能は実
施形態1の場合と同様であり、偏光板2'に入射した各光
線(A),(B)はS偏光成分[S],[Sy]の光線となるが、
カップリングプリズム7の入射面7aで屈折されて反射型
液晶パネル5の照明領域5aに到達する。その場合、円錐
状光束の光線の内、偏光板2'の透過軸と垂直な関係にあ
る光線については、偏光板2'の偏光選択面と反射型液晶
パネル5の照明領域5aに垂直な面内で屈折するため、そ
の光線のS偏光成分[S]の偏光方向は変化しない。しか
し、偏光板2'の透過軸と垂直でない光線についてみる
と、屈折を受けることにより入射前のS偏光成分[Sy]
の偏光方向がその屈折角に対応した角度βだけ回転し、
[S1]で示されるS偏光成分となる。
The state can be considered with reference to FIG. 4 in the same expression format as in FIG. However, in FIG. 4, the coupling prism 7 ignored in the configuration of FIG. 2 is provided above the illumination area 5a as a refraction element. Here, in order to avoid complication of the description, it is assumed that the light beam is refracted only on the incident surface 7a of the coupling prism 7, and the refraction condition by the glass substrate 6 is expressed without consideration. As is clear from the comparison between FIG. 4 and FIG. 2, the function of selecting and transmitting the polarized light component by the polarizing plate 2 ′ is the same as that of the first embodiment, and each light beam (A), (B) is a ray of S-polarized light components [S] and [Sy],
The light is refracted by the incident surface 7a of the coupling prism 7 and reaches the illumination area 5a of the reflective liquid crystal panel 5. In this case, of the light rays of the conical luminous flux, the light rays that are perpendicular to the transmission axis of the polarizing plate 2 ′ are perpendicular to the polarization selection surface of the polarizing plate 2 ′ and the illumination area 5 a of the reflective liquid crystal panel 5. , The polarization direction of the S-polarized component [S] of the light beam does not change. However, with respect to a light ray that is not perpendicular to the transmission axis of the polarizing plate 2 ', the S-polarized light component [Sy] before being incident due to refraction.
Is rotated by an angle β corresponding to the angle of refraction,
It becomes an S-polarized light component represented by [S1].

【0023】従って、その場合には実施形態1での合理
的条件から外れてしまい、結果的に照明領域5aにおいて
光線(A)に係るS偏光成分[S]と光線(B)に係るS偏光
成分[S1]が異なる偏光方向で入射し、図9の場合と同
様に偏光方向が不揃いの読出し光によって照射されため
に反射型液晶パネル5での変調後の投射光による画像の
コントラストが低下する。
Therefore, in this case, the ratio deviates from the rational condition in the first embodiment, and as a result, the S-polarized component [S] of the light (A) and the S-polarized light of the light (B) in the illumination area 5a. Since the component [S1] is incident in a different polarization direction and is illuminated with read light having a non-uniform polarization direction as in the case of FIG. 9, the contrast of the image due to the projection light after modulation by the reflective liquid crystal panel 5 is reduced. .

【0024】そこで、この実施形態では、偏光板2'と反
射型液晶パネル5の照明領域5aの間の光路中に屈折要素
が介在する場合において、図5に示すように、偏光板2'
の偏光選択面を反射型液晶パネル5の液晶層に対して傾
斜させ、両者が光学的に平行な関係を有するようにす
る。具体的には、偏光板2'に入射する不定偏光の光束の
光軸とS偏光成分の読出し光が反射型液晶パネル5の液
晶層へ入射する際の光軸との角度(屈折角度)ψに対応さ
せて、偏光板2'の偏光選択面を前記液晶層の面に対して
角度Φだけ傾斜させ、物理的には両面が非平行になる
が、光学的には実施形態1と同条件が構成できる光学的
な平行関係を得られるようにする。
Therefore, in this embodiment, as shown in FIG. 5, when a refractive element is interposed in the optical path between the polarizing plate 2 'and the illumination area 5a of the reflective liquid crystal panel 5, the polarizing plate 2'
Is inclined with respect to the liquid crystal layer of the reflective liquid crystal panel 5 so that the two have an optically parallel relationship. Specifically, the angle (refraction angle) between the optical axis of the light beam of the irregularly polarized light incident on the polarizing plate 2 ′ and the optical axis when the readout light of the S-polarized component enters the liquid crystal layer of the reflective liquid crystal panel 5 ψ In response to the above, the polarization selection surface of the polarizing plate 2 ′ is inclined by an angle Φ with respect to the surface of the liquid crystal layer, so that both surfaces are physically non-parallel, but optically under the same conditions as in the first embodiment. To obtain an optical parallel relationship that can be configured.

【0025】そして、前記の傾斜角度Φが如何なる大き
さのものであるかは、図4と同様の表現形式で偏光板2'
を傾斜させた場合に相当する図6を用いて説明される。
同図において、先ず、入射光線(A)については偏光板2'
の透過軸と垂直な関係にあるため、図4の場合と同様に
S偏光成分[S]が選択・透過される。一方、入射光線
(B)については、「光線の進行方向に対して直交する面
と透過軸を含んで偏光選択面に垂直な面との交叉線にお
いてS偏光成分を選択する」という偏光板2'の基本的機
能に基づいてS偏光成分[S2]を選択・透過させる。この
S偏光成分[S2]の偏光方向は、実施形態1や図4で得
られたS偏光成分[Sy]の偏光方向に対して角度βだけ
回転したものであるが、その回転方向についてみると、
図4において屈折前のS偏光成分[Sy]が屈折後にS偏
光成分[S1]となって偏光方向が回転した方向と逆方向
になっている。即ち、S偏光成分[S2]の偏光方向は、
図4において光線(B)に係るS偏光成分がカップリング
プリズム7の入射面7aで屈折を受けることで偏光方向が
回転する角度分(β)をキャンセルさせるようになってお
り、偏光板2'の前記傾斜角度Φはその回転角度と回転方
向の条件を与えるように設定される。
The magnitude of the inclination angle Φ is determined in the same manner as in FIG.
This will be described with reference to FIG.
In the figure, first, the incident light (A) is
, The S-polarized component [S] is selected and transmitted as in the case of FIG. Meanwhile, the incident ray
Regarding (B), the basic principle of the polarizing plate 2 ′ is to select an S-polarized component at the intersection of a plane perpendicular to the light propagation direction and a plane including the transmission axis and perpendicular to the polarization selection plane. The S-polarized component [S2] is selected and transmitted based on the function. The polarization direction of the S-polarized component [S2] is rotated by an angle β with respect to the polarization direction of the S-polarized component [Sy] obtained in the first embodiment and FIG. ,
In FIG. 4, the S-polarized light component [Sy] before refraction becomes the S-polarized light component [S1] after refraction, and the direction of polarization is opposite to the direction of rotation. That is, the polarization direction of the S-polarized component [S2] is
In FIG. 4, the S-polarized light component of the light beam (B) is refracted by the incident surface 7a of the coupling prism 7, thereby canceling the angle (β) by which the polarization direction is rotated. Is set so as to give the conditions of the rotation angle and the rotation direction.

【0026】従って、偏光板2'が選択・透過させた光線
(B)に係るS偏光成分[S2]は、カップリングプリズム7
内へ入射した段階で、実施形態1において得られたS偏
光成分[Sy]と同一の偏光方向を有したS偏光成分[S
y']となり、反射型液晶パネル5の照明領域5aに対して光
線(A)に係るS偏光成分[S]と同一の偏光方向で入射す
ることになる。換言すれば、カップリングプリズム7や
ガラス基板6等の屈折要素が介在した場合においても、
偏光板2'の偏光選択面をその屈折率に対応させて傾斜さ
せれば、実施形態1の場合と同様の光学的条件を構成で
きる。
Therefore, the light beam selected and transmitted by the polarizing plate 2 '
The S-polarized light component [S2] according to FIG.
At the stage where the light enters the S-polarized light component [Sy] having the same polarization direction as the S-polarized light component [Sy] obtained in the first embodiment.
y ′], and enters the illumination area 5a of the reflective liquid crystal panel 5 in the same polarization direction as the S-polarized light component [S] of the light ray (A). In other words, even when a refraction element such as the coupling prism 7 or the glass substrate 6 is interposed,
If the polarization selection surface of the polarizing plate 2 ′ is inclined in accordance with the refractive index, the same optical conditions as in the first embodiment can be configured.

【0027】尚、以上の実施形態1及び実施形態2では
偏光板2'を用いた場合について説明したが、その原理が
当然に偏光ビームスプリッタを用いた場合にも適用でき
ることは言うまでもない。その場合には、例えば、図7
に示すような態様で偏光ビームスプリッタ8が配置され
るが、その偏光分離面(偏光選択面に相当)8aが前記の各
実施形態の条件で設定されるようにすればよく、偏光板
2'との相違は所要偏光成分以外の偏光成分を反射光とし
て所定方向に導光するか否かに過ぎない。また、各実施
形態は反射型液晶パネル5に適用する場合について説明
しているが、透過型液晶パネルに適用しても同様の効果
が得られることは原理的に当然である。
In the first and second embodiments, the case where the polarizing plate 2 'is used has been described. However, it goes without saying that the principle can also be applied to the case where a polarizing beam splitter is used. In that case, for example, FIG.
The polarization beam splitter 8 is arranged in a mode as shown in FIG. 5, but the polarization separation plane (corresponding to the polarization selection plane) 8a may be set under the conditions of each of the above embodiments, and a polarizing plate
The difference from 2 ′ is only whether or not a polarized light component other than the required polarized light component is guided in a predetermined direction as reflected light. In addition, although the embodiments have been described with respect to the case where the present invention is applied to the reflective liquid crystal panel 5, it is of course that the same effect can be obtained even when the present invention is applied to the transmissive liquid crystal panel.

【0028】[0028]

【発明の効果】本発明の「空間光変調装置に対する読出
し光の照明装置」は、以上の構成を有していることによ
り、次のような効果を奏する。読出し光を斜め方向から
照射させる空間光変調装置において、照明光学系にはイ
ンテグレータ等が介在せしめられるために、光源側から
得られる不定偏光の照明光が円錐状光束の集合光束にな
っていることが多く、偏光選択要素の偏光選択面を通常
の用法にしたがって前記集合光束の光軸に対して垂直に
配置させると、選択された偏光成分の偏光方向が不揃い
になった状態で空間光変調装置の光変調層に照射されて
変調光による画像のコントラストの低下を招く。本発明
は、偏光選択要素の偏光選択面と空間光変調装置の光変
調層を光学的に平行な関係で配置させるという極めて簡
単な構成によって、空間光変調装置の光変調層に対して
偏光方向が完全に揃った偏光成分を照射させることを可
能にし、前記の問題点を合理的に解消する。
According to the present invention, the "illumination device for reading light with respect to the spatial light modulator" has the following effects by having the above configuration. In the spatial light modulator that irradiates the readout light from an oblique direction, the integrator etc. are interposed in the illumination optical system, so that the illumination light of irregular polarization obtained from the light source side is a condensed light flux of a conical light flux In many cases, when the polarization selection surface of the polarization selection element is arranged perpendicular to the optical axis of the aggregated light beam according to a normal usage, the spatial light modulation device is in a state where the polarization directions of the selected polarization components are not uniform. Irradiates the light modulating layer, thereby lowering the contrast of the image due to the modulated light. The present invention provides an extremely simple configuration in which a polarization selection surface of a polarization selection element and a light modulation layer of a spatial light modulation device are arranged in an optically parallel relationship with each other. Can irradiate a polarized component that is completely uniform, and the above problem is rationally solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の「空間光変調装置に対する読出し光の
照明装置」の実施形態1に係る投写型ディスプレイにお
ける照明光学系と空間光変調部(変調部は反射型液晶パ
ネル)の模式的構成図である。
FIG. 1 is a schematic configuration of an illumination optical system and a spatial light modulation unit (a modulation unit is a reflective liquid crystal panel) in a projection display according to a first embodiment of a “lighting device for reading light with respect to a spatial light modulation device” of the present invention. FIG.

【図2】図1の光学系を平面的に表現すると共に、各光
線に係る偏光成分とその偏光方向を示して偏光板の偏光
選択機能を説明するための図である。
FIG. 2 is a diagram for describing a polarization selection function of a polarizing plate by expressing the optical system of FIG. 1 in a plan view, and showing polarization components and polarization directions of each light beam.

【図3】図1の光学系において、カップリングプリズム
等が屈折要素として機能する場合を示した模式的構成図
である。
FIG. 3 is a schematic configuration diagram showing a case where a coupling prism or the like functions as a refraction element in the optical system of FIG. 1;

【図4】図3の光学系を平面的に表現すると共に、各光
線に係る偏光成分とその偏光方向を示して偏光板の偏光
選択機能及びその場合の問題点を説明するための図であ
る。
FIG. 4 is a diagram showing the optical system of FIG. 3 in a plan view, and showing a polarization component and a polarization direction of each light beam to explain a polarization selection function of a polarizing plate and a problem in that case. .

【図5】実施形態2に係る投写型ディスプレイにおける
照明光学系と空間光変調部(変調部は反射型液晶パネル)
の模式的構成図である。
FIG. 5 shows an illumination optical system and a spatial light modulator in the projection display according to the second embodiment (the modulator is a reflective liquid crystal panel).
FIG. 3 is a schematic configuration diagram of FIG.

【図6】図5の光学系を平面的に表現すると共に、各光
線に係る偏光成分とその偏光方向を示して偏光板の偏光
選択機能を説明するための図である。
FIG. 6 is a diagram illustrating the optical system of FIG. 5 in a plan view and illustrating a polarization component of each light ray and a polarization direction thereof to explain a polarization selection function of a polarizing plate.

【図7】偏光ビームスプリッタを用いた場合の配置態様
を示す模式的構成図である。
FIG. 7 is a schematic configuration diagram showing an arrangement mode when a polarizing beam splitter is used.

【図8】反射型液晶パネルを用いた投写型ディスプレイ
における照明光学系と空間光変調部の模式的構成図であ
る。
FIG. 8 is a schematic configuration diagram of an illumination optical system and a spatial light modulator in a projection display using a reflective liquid crystal panel.

【図9】図8の構成(従来技術)において、その偏光板と
空間光変調部の照明領域の関係を平面的に表現すると共
に、各光線に係る偏光成分とその偏光方向を示して偏光
板の偏光選択機能を説明するための図である。
FIG. 9 is a plan view showing the relationship between the polarizing plate and the illumination area of the spatial light modulator in the configuration (prior art) of FIG. FIG. 4 is a diagram for explaining a polarization selection function of FIG.

【符号の説明】[Explanation of symbols]

1…空間光変調部、2,2'…偏光板、3…インテグレータ、
3a…第1レンズ板、3b…第2レンズ板、4…光源、5…反
射型液晶パネル、5a…照明領域、6…ガラス基板、7…カ
ップリングプリズム、7a…入射面、8…偏光ビームスプ
リッタ、8a…偏光分離面、A,B…光線、S,S',S1,S
2,Sx,Sy,Sy'…S偏光成分、P…P偏光成分、α…平
面的に見た場合の光線Aと光線Bのなす角度、β…S偏
光成分の回転角度、θ…入射角、ψ…屈折角度。
1… Spatial light modulator, 2,2 ′… Polarizer, 3… Integrator,
3a: first lens plate, 3b: second lens plate, 4: light source, 5: reflective liquid crystal panel, 5a: illumination area, 6: glass substrate, 7: coupling prism, 7a: incident surface, 8: polarized beam Splitter, 8a: polarized light separating surface, A, B: light beam, S, S ', S1, S
2, Sx, Sy, Sy ': S-polarized light component, P: P-polarized light component, α: angle between light beam A and light beam B when viewed in a plane, β: rotation angle of S-polarized light component, θ: incident angle , Ψ ... refraction angle.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源から得られる不定偏光の光束の光軸
が空間光変調装置の光変調層に対して傾斜せしめられて
おり、前記光束の光路中に配置した偏光選択要素によっ
て前記不定偏光に含まれている一方の偏光成分のみを選
択的に透過させ、その偏光成分を読出し光として前記空
間光変調装置の光変調層に照射させる照明装置におい
て、前記偏光選択要素の偏光選択面と前記空間光変調装
置の光変調層を光学的に平行な関係で配置させたことを
特徴とする空間光変調装置に対する読出し光の照明装
置。
1. An optical axis of a light beam of indeterminate polarization obtained from a light source is inclined with respect to a light modulation layer of a spatial light modulator, and is converted into the indeterminate polarization by a polarization selection element arranged in an optical path of the light beam. In an illumination device for selectively transmitting only one of the included polarization components and irradiating the polarization component of the polarization component as readout light to the light modulation layer of the spatial light modulation device, the polarization selection surface of the polarization selection element and the space An illumination device for reading light with respect to a spatial light modulation device, wherein the light modulation layers of the light modulation device are arranged in an optically parallel relationship.
【請求項2】 前記偏光選択要素の偏光選択面と前記空
間光変調装置の光変調層の間に光の屈折要素が介在した
場合に、その屈折率に対応させて前記偏光選択要素の偏
光選択面を前記空間光変調装置の光変調層に対して傾斜
させることとした請求項1の空間光変調装置に対する読
出し光の照明装置。
2. When a light refraction element is interposed between the polarization selection surface of the polarization selection element and the light modulation layer of the spatial light modulator, the polarization selection of the polarization selection element is performed in accordance with the refractive index. 2. The illumination device for reading light with respect to the spatial light modulation device according to claim 1, wherein the surface is inclined with respect to the light modulation layer of the spatial light modulation device.
【請求項3】 前記偏光選択要素が偏光板である請求項
1又は請求項2の空間光変調装置に対する読出し光の照
明装置。
3. The illumination device for reading light with respect to the spatial light modulation device according to claim 1, wherein the polarization selection element is a polarizing plate.
【請求項4】 前記偏光選択要素が偏光ビームスプリッ
タである請求項1又は請求項2の空間光変調装置に対す
る読出し光の照明装置。
4. The illumination device for reading light with respect to the spatial light modulation device according to claim 1, wherein the polarization selection element is a polarization beam splitter.
JP36274697A 1997-12-12 1997-12-12 Illumination device of reading light for spatial light modulator Expired - Lifetime JP3381773B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP36274697A JP3381773B2 (en) 1997-12-12 1997-12-12 Illumination device of reading light for spatial light modulator
US09/206,989 US6049410A (en) 1997-12-12 1998-12-08 Structure of spatial light modulator and lighting system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36274697A JP3381773B2 (en) 1997-12-12 1997-12-12 Illumination device of reading light for spatial light modulator

Publications (2)

Publication Number Publication Date
JPH11174449A true JPH11174449A (en) 1999-07-02
JP3381773B2 JP3381773B2 (en) 2003-03-04

Family

ID=18477636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36274697A Expired - Lifetime JP3381773B2 (en) 1997-12-12 1997-12-12 Illumination device of reading light for spatial light modulator

Country Status (1)

Country Link
JP (1) JP3381773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816290B2 (en) 2000-07-05 2004-11-09 Sony Corporation Image display element, and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816290B2 (en) 2000-07-05 2004-11-09 Sony Corporation Image display element, and image display device

Also Published As

Publication number Publication date
JP3381773B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
USRE39243E1 (en) Optical element, polarization illumination device, and projector
JP3060049B2 (en) Image projection device
US5327270A (en) Polarizing beam splitter apparatus and light valve image projection system
US6286961B1 (en) Illuminating optical system and projection type display
JP3199313B2 (en) Reflection type liquid crystal display device and projection type liquid crystal display device using the same
EP0389240A2 (en) Polarizing beam splitter apparatus and light valve image projection system
JPH11271744A (en) Color liquid crystal display device
JPH11271677A (en) Color projection display device
JPH1115074A (en) Projection type picture display device
JP3402527B2 (en) Reflective color image projector
JPH08122699A (en) Image projection device
JP4325135B2 (en) Lighting device and projector
JP2010072138A (en) Illumination optical system and projector device using the same
US7352416B2 (en) Polarization direction of incident light beam perpendicular or parallel to liquid display molecular orientation for reduced drive voltage
US6049410A (en) Structure of spatial light modulator and lighting system therefor
JPH10339852A (en) Projection type display device
US6123424A (en) Optical system for use in an image projector
JP4967253B2 (en) Optical device and projection device
JPH11174449A (en) Illuminator of reading light to spatial light modulation device
KR20030090021A (en) Projection system using plate polarizer of reflection type
JP2003005132A (en) Image projection device
USRE36725E (en) Projection-type display device
JPH0458242A (en) Projection type liquid crystal display device
JPH10260313A (en) Light source unit for reflection type polarizing and modulating element
JPH06265890A (en) Polarized light selecting element and image display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

EXPY Cancellation because of completion of term