JPH11173727A - Electronic refrigerator - Google Patents

Electronic refrigerator

Info

Publication number
JPH11173727A
JPH11173727A JP34253697A JP34253697A JPH11173727A JP H11173727 A JPH11173727 A JP H11173727A JP 34253697 A JP34253697 A JP 34253697A JP 34253697 A JP34253697 A JP 34253697A JP H11173727 A JPH11173727 A JP H11173727A
Authority
JP
Japan
Prior art keywords
voltage
temperature
peltier element
fan motor
applied voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34253697A
Other languages
Japanese (ja)
Inventor
Junichi Takagi
純一 高木
Nobuaki Arakawa
展昭 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34253697A priority Critical patent/JPH11173727A/en
Publication of JPH11173727A publication Critical patent/JPH11173727A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas

Abstract

PROBLEM TO BE SOLVED: To reduce noise and save power in an electronic refrigerator having the high voltage and low voltage operations of the applied voltage of a Peltier element and high cooling power obtained by rotating a fan motor for a radiator. SOLUTION: Day and night are set by a timer and a human-body detecting sensor 17 detects whether or not a person is present in surroundings to stop the operation of a fan motor 15 for a radiator when a person is present in the periphery of an electronic refrigerator at night or in the day. In this case, the applied voltage of a Poltier element 8 is raised higher than a rating to operate under high voltage and compensate for the deterioration of the quantity of heat absorption. When a person in not present in the periphery of the refrigerator in the day, the Peltier element 8 is operated under the high applied voltage and the fan motor 15 is operated app under the high applied voltage. Thus, a silent operation can be carried out without loweing cooling power and the refrigerator can be installed in a position requiring a silent operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】ペルチエ素子と放熱器用ファ
ンモータの印加電圧を制御し、低騒音化と省電力化をは
かった電子冷蔵庫。
TECHNICAL FIELD The present invention relates to an electronic refrigerator in which a voltage applied to a peltier element and a fan motor for a radiator is controlled to reduce noise and save power.

【0002】[0002]

【従来の技術】電子冷蔵庫はペルチエ素子の電極間に所
期の熱起電力Eを発生させるような電流Iと電圧Vpを
通電することによって、ペルチエ素子の吸熱面に低温T
E,放熱面に高温THが発生し、下式で表わされる吸熱
量QEを得ることによって庫内の冷却が行われるもので
ある。
2. Description of the Related Art In an electronic refrigerator, a current I and a voltage Vp for generating a desired thermoelectromotive force E are applied between electrodes of a Peltier element, so that a low temperature T is applied to a heat absorbing surface of the Peltier element.
E: A high temperature TH is generated on the heat radiating surface, and the inside of the refrigerator is cooled by obtaining a heat absorption QE represented by the following equation.

【0003】 QE=EITE−K(TH−TE)−1/2RI2 ここでKはペルチエ素子の電極間の熱伝導係数、Rはペ
ルチエ素子の電気抵抗、RI2はジュール熱である。
[0003] QE = EITE-K (TH- TE) -1 / 2RI 2 where K is the thermal conductivity coefficient between the electrodes of the Peltier element, R represents the electrical resistance of the Peltier element, RI 2 is Joule heat.

【0004】従って、ペルチエ素子の電極間に印加電圧
VPを印加すると、吸熱面にEITEという吸熱量が発
生すると同時に、高温の放熱面から低温の吸熱面にK
(TH−TE)の伝導熱が入り、さらにペルチエ素子に
発生するジュール熱RI2の半分の熱が吸熱側に入るこ
とになる。
Therefore, when an applied voltage VP is applied between the electrodes of the Peltier element, an endothermic amount of EITE is generated on the heat absorbing surface, and at the same time, K is transferred from the high-temperature heat releasing surface to the low-temperature heat absorbing surface.
(TH-TE) of the conductive heat enters, half heat Joule heat RI 2 is to enter the heat absorption side generated further Peltier element.

【0005】K(TH−TE)と1/2RI2は庫内の
冷却には寄与しない放熱量であるため、ペルチエ素子の
電極間に印加する電圧を大きくすると放熱面温度THが
高くなり放熱量K(TH−TE)が大きくなり吸熱面で
のトータル吸熱量が少なくなる。そこで、放熱面温度T
Hを出来るだけ低い温度にすることが必要となり、従来
の電子冷蔵庫に於いては放熱面と熱抵抗を少なくして接
触させた放熱器を設け、この放熱器を大きくしたり、放
熱器の放熱をよくするために放熱器用ファンモータを設
けたりしている。
[0005] K for (TH-TE) and 1 / 2RI 2 denotes a heat amount which does not contribute to the cooling of the refrigerator, the heat dissipation surface temperature TH becomes high heat dissipation and to increase the voltage applied between the electrodes of the Peltier element K (TH-TE) increases and the total heat absorption on the heat absorbing surface decreases. Therefore, the radiation surface temperature T
It is necessary to make H as low as possible, and in the conventional electronic refrigerator, a radiator that is in contact with the heat radiating surface with reduced thermal resistance is provided. In order to improve the performance, a fan motor for a radiator is provided.

【0006】なお、従来の電子冷蔵庫の公知例として、
特開平4−174269公報、特開平4−126973
公報、特開平5−312454公報がある。
As a known example of a conventional electronic refrigerator,
JP-A-4-174269, JP-A-4-126973
And Japanese Patent Application Laid-Open No. Hei 5-310454.

【0007】[0007]

【発明が解決しようとする課題】電子冷蔵庫で大きい冷
却力を得るためにはペルチエ素子の放熱面温度を下げる
ことが必要となり、このために放熱面と熱的に接触した
放熱器の放熱量を増大しなければならない。手取り早い
方法としては放熱器を大きくすればよいが、このように
すると電子冷蔵庫が大きくなりコンパクトな電子冷蔵庫
を得ることができない。そこで放熱器は小さくして放熱
器用ファンモータを用いる方法が従来採用されている。
しかし、放熱器用ファンモータを用いるとファン及びフ
ァンモータから出る騒音のために、圧縮機を使わないこ
とによる電子冷蔵庫の静音メリットを生かすことができ
ず、静音を必要とするホテルや病院の病室、あるいは一
般家庭の寝室等への設置ができないという問題があっ
た。
In order to obtain a large cooling power in an electronic refrigerator, it is necessary to lower the temperature of the heat radiating surface of the Peltier element. Must increase. As a quick method, the size of the radiator may be increased, but in this case, the size of the electronic refrigerator becomes large, and a compact electronic refrigerator cannot be obtained. Therefore, a method in which the radiator is made smaller and a fan motor for the radiator is used has been conventionally adopted.
However, if a fan motor for a radiator is used, noise generated from the fan and the fan motor cannot be used to take advantage of the quietness of the electronic refrigerator by not using a compressor. Alternatively, there is a problem that it cannot be installed in a bedroom or the like of a general home.

【0008】さらには、大きい冷却力を得るためにペル
チェ素子への印加電圧を大きくすると消費電力が大きく
なり、逆に省電力のためにペルチェ素子の印加電圧を小
さくすると所期の庫内温度が得られないという問題もあ
った。
Further, when the applied voltage to the Peltier element is increased to obtain a large cooling power, the power consumption is increased. Conversely, when the applied voltage to the Peltier element is reduced to save power, the desired internal temperature is reduced. There was also a problem that it could not be obtained.

【0009】また、病院の病室では昼間でも所定の安静
時間中は静音が要求されるため、この間にファンモータ
の運転がおこなわれると静音が得られないという問題が
あった。
[0009] Further, in hospital wards, since a quiet sound is required during a predetermined resting time even in the daytime, there is a problem that if the fan motor is operated during this time, the silent sound cannot be obtained.

【0010】[0010]

【課題を解決するための手段】本発明の電子冷蔵庫は上
記の問題を解決するためになされたものである。
SUMMARY OF THE INVENTION An electronic refrigerator according to the present invention has been made to solve the above problems.

【0011】即ち、請求項1の如く。That is, as in claim 1.

【0012】放熱器用ファンモータを廻すことによっ
て、大きい冷却力を得るようにし、かつ、ペルチェ素子
の印加電圧が高電圧と低電圧運転がある電子冷蔵庫とす
る。
By turning a fan motor for a radiator, a large cooling power can be obtained, and an electronic refrigerator in which the applied voltage of a Peltier element operates at a high voltage and a low voltage.

【0013】さらには、請求項2の如く。Furthermore, as in claim 2.

【0014】省電力化と低騒音化のために、ペルチエ素
子の印加電圧を高電圧と低電圧の2段階に設定し、周囲
温度が高くかつ庫内温度も設定温度に対し高い場合に
は、庫内温度が下がるまで高電圧運転、若しくは高電圧
運転と低電圧運転を交互に行い、周囲温度が低くかつ庫
内温度が設定温度に近い場合には低電圧運転のみを行
い、これによって設定された庫内温度が得られるよう
に、高電圧運転で庫内温度センサの低温側温度(OFF
温度)を、低電圧運転で庫内温度センサの高温側温度
(ON温度)を設定したものである。これによって、消
費電力の低減と低騒音化、及び設定された庫内温度を確
保できるようにしたものである。
In order to save power and reduce noise, the applied voltage of the Peltier element is set at two levels, high voltage and low voltage. If the ambient temperature is high and the internal temperature is higher than the set temperature, High-voltage operation or high-voltage operation and low-voltage operation are alternately performed until the temperature in the refrigerator decreases.If the ambient temperature is low and the temperature in the refrigerator is close to the set temperature, only low-voltage operation is performed. In order to obtain the temperature inside the chamber, the low temperature side (OFF
) Is set to the high temperature (ON temperature) of the internal temperature sensor in the low voltage operation. As a result, power consumption and noise can be reduced, and a set internal temperature can be secured.

【0015】さらには、請求項3、4、5の如く、無音
化のために夜間時や昼間に冷蔵庫周囲に人がいる時、タ
イマまたは人検知センサ回路でファンモータを停止さ
せ、ペルチェ素子の印加電圧を高電圧で運転させ無音化
をはかったものである。またファンモータの運転は、所
定時間経過後に自動復帰する無音化スイッチを設けると
共に、上記無音化スイッチの入力モードを記憶し、次回
運転時にはこの入力モードで運転するようにした。これ
によって、随時、手間を掛けることなく無音が得られる
ようにしたものである。
Further, when a person is present around the refrigerator at night or in the daytime for silence, the fan motor is stopped by a timer or a human detection sensor circuit to silence the Peltier device. The system is operated at a high applied voltage to eliminate noise. In addition, the operation of the fan motor is provided with a silence switch that automatically returns after a predetermined time has elapsed, and the input mode of the silence switch is stored, and the operation is performed in this input mode at the next operation. Thereby, silence can be obtained without any trouble at any time.

【0016】[0016]

【発明の実施の形態】以下、本発明の詳細について図に
示す一実施例で説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to an embodiment shown in the drawings.

【0017】図1は本発明の電子冷蔵庫の要部縦断面
図。図2は本発明の第1実施例を示すブロック図。図3
は第1実施例で昼間該冷蔵庫の周囲に人がいる時、周囲
に人がいない時及び夜間時、ペルチェ素子と放熱器用フ
ァンモータの印加電圧の関係を示す図。図4は第2実施
例で昼間省エネ運転と通常運転時に於けるペルチェ素子
と放熱用ファンモータの印加電圧の関係を示す図。図5
はペルチェ素子の印加電圧を大とした運転Cとペルチェ
素子の印加電圧を小にした運転Dに於けるペルチェ素子
入力、放熱器用ファンモータ入力の関係を示す図。図6
はC運転とD運転とを交互に行った時の入力を示す図。
図7は第1、第2の実施例でペルチェ素子の印加電圧、
放熱器用ファンモータの印加電圧と庫内温度の関係を示
す図。図8はC運転とD運転を交互に行った場合の庫内
温度の関係を示す図。図9は第3実施例を示すブロック
図である。
FIG. 1 is a longitudinal sectional view of a main part of an electronic refrigerator according to the present invention. FIG. 2 is a block diagram showing a first embodiment of the present invention. FIG.
FIG. 4 is a diagram showing a relationship between a Peltier element and a voltage applied to a radiator fan motor when a person is around the refrigerator during daytime, when there is no person around the refrigerator, and at night in the first embodiment. FIG. 4 is a diagram showing a relationship between a Peltier element and a voltage applied to a heat-dissipating fan motor during a daytime energy saving operation and a normal operation in the second embodiment. FIG.
FIG. 6 is a diagram showing a relationship between a Peltier element input and a radiator fan motor input in an operation C in which the applied voltage of the Peltier element is increased and an operation D in which the applied voltage of the Peltier element is decreased. FIG.
FIG. 4 is a diagram showing inputs when the C operation and the D operation are performed alternately.
FIG. 7 shows the applied voltage of the Peltier element in the first and second embodiments,
The figure which shows the relationship between the applied voltage of the fan motor for radiators, and the internal temperature. FIG. 8 is a diagram showing the relationship between the internal temperatures when the C operation and the D operation are performed alternately. FIG. 9 is a block diagram showing the third embodiment.

【0018】図1に於いて、1は内箱、2はソトイタ、
3は断熱箱体、4は扉、5は庫内、6はアトイタであ
り、上記断熱箱体3は内箱1とソトイタ2とアトイタ6
で囲まれた空間に発泡断熱材を充填して形成したもので
ある.。7は背面カバー、7aは背面空間室であり、こ
の背面空間室7aは断熱箱体3のアトイタ6と、そのア
トイタ6の奥行方向に突出した上下左右の各ソトイタ2
と、そのソトイタ周端部を覆う背面カバー7とで囲まれ
た空間室である。
In FIG. 1, 1 is an inner box, 2 is a soy toyer,
Reference numeral 3 denotes a heat insulating box, 4 denotes a door, 5 denotes a compartment, and 6 denotes an atita. The heat insulating box 3 comprises an inner box 1, a soy toyer 2, and an atoitor 6.
It is formed by filling the space surrounded by with foam insulation. Reference numeral 7 denotes a back cover, and 7a denotes a back space room. The back space room 7a is composed of an atototer 6 of a heat insulating box 3 and upper, lower, left and right sootitas 2 protruding in the depth direction of the atoitor 6.
And a back cover 7 that covers the peripheral end of the soy toita.

【0019】8はペルチェ素子であり、このペルチェ素
子8は断熱箱体3の背面の一部に設けた貫通部に配設さ
れ、前面部には吸熱面9、後面部には放熱面10を有し
ている。11は熱伝導体、12は吸熱器であり該熱伝導
体11はペルチェ素子8の吸熱面9に熱的に接触してい
る。
Reference numeral 8 denotes a Peltier element. The Peltier element 8 is disposed in a penetrating portion provided on a part of the back surface of the heat insulating box 3, and has a heat absorbing surface 9 on the front surface and a heat radiating surface 10 on the rear surface. Have. 11 is a heat conductor, 12 is a heat absorber, and the heat conductor 11 is in thermal contact with the heat absorption surface 9 of the Peltier element 8.

【0020】該吸熱器12は熱伝導率11に熱的に接触
し、庫内の背面に設けられている。13はサーモサイフ
ォンの沸騰ボックスであり、上記放熱面10と熱的に接
触しており、サーモサイフォンからなる放熱器14の一
部を形成している。このサーモサイフォンの沸騰ボック
ス13は内部に冷媒等の熱媒体が封入されており、沸騰
により発生した蒸気は放熱器14に流れ、放熱器14で
凝縮液となり再び沸騰ボックス13に戻る構成になって
いる。図示されていないが、沸騰ボックス13のペルチ
ェ素子8のボックス壁を構成する部材の内面には銅など
の発泡金属でできた薄いシートが貼られており、これに
より伝熱面に微小な凹みが形成され、微小な気泡核が発
生しやすい構造となり、高性能な沸騰部熱伝達率向上手
段を構成している。
The heat absorber 12 is in thermal contact with the thermal conductivity 11 and is provided on the back of the refrigerator. Reference numeral 13 denotes a thermosiphon boiling box, which is in thermal contact with the heat radiating surface 10 and forms a part of a radiator 14 made of a thermosiphon. A heating medium such as a refrigerant is sealed in the boiling box 13 of the thermosiphon, and the vapor generated by the boiling flows into the radiator 14, becomes a condensed liquid in the radiator 14, and returns to the boiling box 13 again. I have. Although not shown, a thin sheet made of a foam metal such as copper is adhered to the inner surface of a member constituting the box wall of the Peltier element 8 of the boiling box 13, whereby a minute dent is formed on the heat transfer surface. It is formed to have a structure in which minute bubble nuclei are easily generated, and constitutes a high-performance means for improving the heat transfer coefficient of the boiling portion.

【0021】ペルチェ素子の電極間に電流を流し、印加
電圧を加えると吸熱面9の温度が下がり吸熱作用が行わ
れ、熱伝導体11を介して吸熱器12により庫内5の熱
が奪われ、庫内5が冷却される。一方、ペルチェ素子8
に通電されると庫内から奪った熱と通電した電力の和に
相当する熱が放熱面10より放熱され、その熱はボック
ス壁を構成する部材及びその内面に貼付けた発泡金属の
薄いシートに熱伝導により伝わる。サーモサイフォンの
沸騰部ボックス13内の冷媒は発泡金属の薄いシートの
作用により効率よく沸騰し、高性能な沸騰部熱伝達が実
現できる。15は放熱器用ファンモータであり、この放
熱器用ファン15は放熱器14の下部にそのファンが上
方に向けて配設され、放熱器14の放熱を促進するため
に設けられている。16はハンドル、17は人検知セン
サであり、該人検知センサ17はハンドル16に設けら
れている。18は庫内温度センサであり、該庫内温度セ
ンサ18は庫内5の吸熱器12の下側に設けられてい
る。
When a current is applied between the electrodes of the Peltier element and an applied voltage is applied, the temperature of the heat absorbing surface 9 is reduced to perform a heat absorbing action, and the heat in the interior 5 is removed by the heat absorber 12 via the heat conductor 11. , The interior 5 is cooled. On the other hand, the Peltier element 8
When electricity is supplied to the box, heat corresponding to the sum of the heat taken from the inside of the compartment and the supplied electricity is dissipated from the heat dissipation surface 10, and the heat is applied to a member constituting the box wall and a thin sheet of foam metal adhered to the inner surface thereof. It is transmitted by heat conduction. The refrigerant in the boiling section box 13 of the thermosiphon boils efficiently by the action of the thin sheet of foamed metal, and high-performance boiling section heat transfer can be realized. Reference numeral 15 denotes a radiator fan motor. The radiator fan 15 is disposed below the radiator 14 so as to face upward, and is provided to promote heat radiation of the radiator 14. Reference numeral 16 denotes a handle, and 17 denotes a human detection sensor. The human detection sensor 17 is provided on the handle 16. Reference numeral 18 denotes a refrigerator temperature sensor, which is provided below the heat absorber 12 in the refrigerator 5.

【0022】上記の本発明電子冷蔵庫に於いて、第1実
施例を図2、図3で説明すると、図2のタイマ、人検知
センサ回路のタイマで夜と昼を設定し、人検知センサで
周囲に人がいるかいないかを検知し、夜間時Bや昼間電
子冷蔵庫の周囲に人がいる時Bは放熱器用ファンモータ
の運転を停止させ、無音化をはかったものである。この
場合、ペルチェ素子への印加電圧は定格(例えば10
V)よりも上げ、高電圧(例えば13V)で運転し、吸
熱量を低下を補っている。即ち、人検知センサは焦電素
子等を用いて冷蔵庫の周囲に人がいると人体から出る赤
外線をキャッチし、これによって焦電素子に発生する電
荷をペルチェ素子制御回路と放熱器用ファンモータ制御
回路へ入力させ、ペルチェ素子への印加電圧と放熱器用
ファンモータへの印加電圧を図3に示す如く制御するも
のである。これによって夜間時や昼間電子冷蔵庫の周囲
に人がいるときは、無音化が可能となり、静音が必要な
ホテルや病院の病室内へ電子冷蔵庫を取付けられるよう
にしたものである。なお、昼間周囲に人がいない時の運
転Aはペルチェ素子への印加電圧が高電圧(例えば13
V)で、放熱器用ファンモータへの印加電圧が高電圧
(例えば12V)で運転され、この運転では、大きい冷
却力は得られるが、低騒音化は得られない。
The first embodiment of the electronic refrigerator according to the present invention will be described with reference to FIGS. 2 and 3. Referring to FIG. 2, a timer and a timer of a human detection sensor circuit are used to set night and day, and a human detection sensor is used. The presence or absence of a person is detected, and at night B or at day B when a person is present around the electronic refrigerator, the operation of the radiator fan motor is stopped to mute the sound. In this case, the voltage applied to the Peltier element is rated (for example, 10
V), operating at a high voltage (for example, 13 V) to compensate for the decrease in heat absorption. That is, the human detection sensor uses a pyroelectric element or the like to catch infrared rays emitted from the human body when there is a person around the refrigerator, and thereby the electric charge generated in the pyroelectric element is transferred to the Peltier element control circuit and the radiator fan motor control circuit. To control the voltage applied to the Peltier element and the voltage applied to the radiator fan motor as shown in FIG. This makes it possible to mute sound at night or in the daytime when there is a person around the electronic refrigerator, so that the electronic refrigerator can be mounted in a hospital room of a hotel or a hospital where quietness is required. In operation A when there is no person around in the daytime, the voltage applied to the Peltier element is high (for example, 13
V), the voltage applied to the radiator fan motor is operated at a high voltage (for example, 12 V). In this operation, a large cooling power is obtained, but noise reduction is not obtained.

【0023】次に、本発明冷蔵庫に於いて、第2実施例
を図2、図4で説明すると昼間省電力化と低騒音化のた
めに、放熱器用ファンモータの印加電圧は低電圧例えば
7.7Vにし、ペルチェ素子の印加電圧を2段階の電圧
(例えば13Vと5.5V)にし、C運転ではペルチェ
素子の印加電圧が高電圧(例えば13V)、放熱器用フ
ァンモータの印加電圧が低電圧(例えば7.7V)で運
転し、D運転ではペルチェ素子の印加電圧が低電圧(例
えば5.5V)、放熱器用ファンモータの印加電圧が低
電圧(例えば7.7V)で運転し、図2の省エネスイッ
チ回路で上記のC運転とD運転とを交互に運転させ、所
定の庫内温度を得られるように、上記C運転で庫内温度
センサの低温側温度(OFF温度)を、上記D運転で庫
内温度センサの高温側温度(ON温度)を図2の庫内温
度センサ回路で設定するようにしたものである。
Next, a second embodiment of the refrigerator according to the present invention will be described with reference to FIGS. 2 and 4. In order to save power and reduce noise during the day, the voltage applied to the radiator fan motor is low, for example, 7V. 0.7 V, the applied voltage of the Peltier element is set to two steps (for example, 13 V and 5.5 V). In C operation, the applied voltage of the Peltier element is high (for example, 13 V), and the applied voltage of the fan motor for the radiator is low. (For example, 7.7 V), and in D operation, the applied voltage of the Peltier element is low (for example, 5.5 V), and the applied voltage of the radiator fan motor is low (for example, 7.7 V). In the C operation, the low temperature side (OFF temperature) of the internal temperature sensor is set to the D value so that the C operation and the D operation are alternately operated by the energy saving switch circuit of FIG. During operation, the internal temperature sensor It is obtained so as to set the side temperature (ON temperature) at the inside temperature sensor circuit of FIG.

【0024】ここで、上記C運転とD運転に於けるペル
チェ素子印加電圧VPとペルチェ素子入力のWPの関
係、及びファンモータ印加電圧VPとファンモータ入力
WFとの関係について説明し、その実施例を図5で説明
する。
Here, the relationship between the Peltier element applied voltage VP and the peltier element input WP and the relationship between the fan motor applied voltage VP and the fan motor input WF in the C operation and the D operation will be described. Will be described with reference to FIG.

【0025】ペルチェ素子入力WPは放熱量QHと吸熱
量QEとの差として(1)式で表わされ、これをペルチ
ェ素子の熱起電力E、電流I、印加電圧VP、放熱面温
度TH、吸熱面温度TE、電気抵抗Rで表すと(2)式
の如くとなる。(2)式を電流Iで除すると(3)式が
得られ、電流Iの(4)式が得られる。
The Peltier element input WP is expressed by the following equation (1) as the difference between the heat radiation amount QH and the heat absorption QE, which is expressed by the thermoelectromotive force E of the Peltier element, the current I, the applied voltage VP, the heat radiation surface temperature TH, When expressed by the heat-absorbing surface temperature TE and the electric resistance R, the expression (2) is obtained. By dividing equation (2) by current I, equation (3) is obtained, and equation (4) of current I is obtained.

【0026】 WP=QH−QE (1) WP=EI(TH−TE)+RI2 (2) VP=E(TH−TE)+RI (3) I=(VP−E(TH−TE))/R (4) ファンモータの印加電圧VFを上げると放熱器の空気側
熱伝達率が大きくなり放熱器の温度が下がり、放熱面温
度THも下がる。この場合、吸熱面温度TEの変化は少
なく、印加電圧VP、熱起電力E、電気抵抗Rは一定す
ると電流Iは大きくなり、(2)式でペルチェ素子入力
WPは電流Iの2乗に比例し増加する。この関係を実施
例で示すと図5の如くとなる。ファンモータ印加電圧V
Fによりペルチェ素子入力WPは変化するが、ファンモ
ータ印加電圧VF=7.7で、ペルチェ素子印加電圧V
Fを13Vから、5.5Vに下げるとペルチェ素子入力
WPは63Wも低減する。一方、ファンモータ印加電圧
VFに対するファンモータ入力WFはペルチェ素子入力
WPに比べ小さく、変化も少ない。従って、C運転の入
力(WP+WF)は78.6W、D運転の入力(WP+
WF)は16.7Wとなる。電子冷蔵庫を省電力にする
には図6でC運転の運転時間tcを少なくし、D運転の
運転時間tDを多くすることによって平均入力ωを小さ
くすることができる。しかし、運転時間tcを少なくす
ると冷却力が減少するのでペルチェ素子印加電圧VPと
ファンモータ印加電圧VFに対する庫内温度の関係を求
めてみる。
WP = QH−QE (1) WP = EI (TH−TE) + RI 2 (2) VP = E (TH−TE) + RI (3) I = (VP−E (TH−TE)) / R (4) When the voltage VF applied to the fan motor is increased, the air-side heat transfer coefficient of the radiator increases, the temperature of the radiator decreases, and the heat radiation surface temperature TH also decreases. In this case, when the applied voltage VP, the thermoelectromotive force E, and the electric resistance R are constant, the current I becomes large, and the Peltier element input WP is proportional to the square of the current I in the equation (2). And increase. FIG. 5 shows this relationship in the embodiment. Fan motor applied voltage V
Although the Peltier element input WP changes with F, when the fan motor applied voltage VF = 7.7, the Peltier element applied voltage V
When F is reduced from 13 V to 5.5 V, the Peltier element input WP is reduced by 63 W. On the other hand, the fan motor input WF with respect to the fan motor applied voltage VF is smaller than the Peltier element input WP, and changes less. Therefore, the input (WP + WF) for the C operation is 78.6 W, and the input for the D operation (WP + WF)
WF) is 16.7 W. To reduce the power consumption of the electronic refrigerator, the average input ω can be reduced by reducing the operation time tc of the C operation and increasing the operation time tD of the D operation in FIG. However, if the operation time tc is reduced, the cooling power is reduced. Therefore, the relationship between the internal temperature and the Peltier element applied voltage VP and the fan motor applied voltage VF will be obtained.

【0027】ペルチェ素子電圧VPは前記(3)式で表
され、この式から冷却面温度TEを求めると(5)式の
如くとなる。
The Peltier element voltage VP is represented by the above equation (3), and when the cooling surface temperature TE is obtained from this equation, the following equation (5) is obtained.

【0028】 TE=TH−(VP−RI)/E (5) ここで、ファンモータの印加電圧VFを上げると放熱器
の空気側熱伝達率が大きくなり放熱器の温度が下がり、
放熱面温度THも下がる。一方前記(4)式で印加電圧
VP、熱起電力E、電気抵抗Rは一定とすると電流Iは
おおきくなり、上記(5)式で(VP−RI)/Eの項
が大きくなり、結果としてファンモータの印加電圧VF
が上がると吸熱面温度TEは下がり、吸熱器の温度も下
がり、庫内温度Tiも下がる。この関係を実施例で示す
と、図7の如くとなる。例えばペルチェ素子の印加電圧
VP=13Vでファンモータ印加電圧VF=7.7Vの
C運転の庫内温度Tiは0℃となり、ペルチェ素子の印
加電圧Vp=5.5Vでファンモータ印加電圧7.7V
のD運転の庫内温度Tiは6℃となる。ここに示す庫内
温度Tiは扉の開閉等がなく、庫内に食品等がない無負
荷状態である。実用状態では庫内温度は上昇するので、
無負荷状態で設定された庫内温度は例えば周囲温度30
℃の時、3〜5℃となる。従って、所期の庫内温度を確
保するにはC運転とD運転とを交互に行うことが必要と
なる。
TE = TH− (VP−RI) / E (5) Here, when the applied voltage VF of the fan motor is increased, the air-side heat transfer coefficient of the radiator increases, and the temperature of the radiator decreases.
The heat radiation surface temperature TH also decreases. On the other hand, if the applied voltage VP, the thermoelectromotive force E and the electric resistance R are constant in the above equation (4), the current I becomes large, and the term (VP-RI) / E in the above equation (5) becomes large. Applied voltage VF of fan motor
When the temperature rises, the heat absorption surface temperature TE decreases, the temperature of the heat absorber decreases, and the internal temperature Ti also decreases. FIG. 7 shows this relationship in the embodiment. For example, when the applied voltage VP of the Peltier element is 13 V, the internal temperature Ti of the C operation at the fan motor applied voltage VF = 7.7 V becomes 0 ° C., and the applied voltage Vp of the Peltier element is 5.5 V and the fan motor applied voltage is 7.7 V.
The internal temperature Ti of the D operation is 6 ° C. The internal temperature Ti shown here is a no-load state where there is no opening or closing of the door or the like and there is no food or the like in the internal compartment. In a practical state, the internal temperature rises,
The internal temperature set in the no-load state is, for example, an ambient temperature of 30.
It becomes 3-5 degreeC at the time of degreeC. Therefore, it is necessary to alternately perform the C operation and the D operation in order to secure the intended inside temperature.

【0029】そこで、図8に示す如く、C運転で庫内温
度センサの低温側温度(OFF温度=例えば3℃)をD
運転で庫内温度センサの高温側温度(ON温度=例えば
5℃)を設定することにより、所期の庫内温度(3〜5
℃)を得られるようにしたものである。このようにする
と、Cの冷却力はDの冷却力よりも勝るため、入力の大
きいCの運転時間は入力の小さいDの運転時間よりも少
なくなり、省電力化をはかることができる。なお、例え
ば周囲温度が30℃以下の場合、D運転のみで所期の庫
内温度(3〜5℃)を得ることができる。
Therefore, as shown in FIG. 8, the low temperature (OFF temperature = for example, 3 ° C.) of the internal temperature sensor is changed to D in the C operation.
By setting the high temperature (ON temperature = 5 ° C., for example) of the internal temperature sensor during operation, the desired internal temperature (3 to 5) is set.
° C). In this case, since the cooling power of C is superior to the cooling power of D, the operation time of C having a large input is shorter than the operation time of D having a small input, and power can be saved. For example, when the ambient temperature is 30 ° C. or lower, the desired inside temperature (3 to 5 ° C.) can be obtained only by the D operation.

【0030】さらには、第3実施例を図9のブロック図
で説明すると、一時無音化のために、放熱器用ファンモ
ータの運転を停止し、所定時間経過後に自動復帰する無
音化スイッチを設けたものである。即ち、無音化スイッ
チを押すと、無音化スイッチ回路が作動し、放熱器用フ
ァンモータ制御回路に通電され、放熱器用ファンモータ
の運転が停止し、タイマにより所定時間経過後に自動復
帰するものである。この場合、ペルチェ素子印化電圧は
ペルチェ素子制御回路により高電圧(例えば13V)に
保持するようにする。これによって、ホテルや病院等で
一時無音が必要となった時、対応できるようにしたもの
である。
Further, the third embodiment will be described with reference to the block diagram of FIG. 9. In order to temporarily silence, a silence switch is provided for stopping the operation of the radiator fan motor and automatically returning after a predetermined time has elapsed. Things. That is, when the mute switch is pressed, the mute switch circuit is activated, the power is supplied to the radiator fan motor control circuit, the operation of the radiator fan motor stops, and the timer automatically returns after a predetermined time has elapsed. In this case, the Peltier element printing voltage is maintained at a high voltage (for example, 13 V) by the Peltier element control circuit. This makes it possible to cope with the need for temporary silence at a hotel or hospital.

【0031】さらには、無音化スイッチの入力モードを
記憶し、次回運転時にはこの入力モードで運転できる無
音化モード記憶回路を設け、無音化スイッチをいちいち
押す手間をはぶくようにした。これによって、ホテルや
病院等で使い勝手のよい冷蔵庫を提供できるようにした
ものである。
Further, the input mode of the silence switch is stored, and a silence mode memory circuit which can be operated in the input mode at the next operation is provided, so that it is not necessary to press the silence switch every time. As a result, an easy-to-use refrigerator can be provided in hotels and hospitals.

【0032】[0032]

【発明の効果】電子冷蔵庫で大きい冷却力を得るために
はペルチェ素子の放熱面温度を下げることが必要とな
り、このために放熱面と熱的に接触した放熱器を放熱起
用ファンモータを廻して放熱することが行われている。
電子冷蔵庫は圧縮機を用いないので静音運転が得られる
為、静音が要求される場所で使われることが多かったが
放熱用ファンモータを廻す電子冷蔵庫にあっては騒音が
問題となり、設置ができないという問題があった。
In order to obtain a large cooling power in an electronic refrigerator, it is necessary to lower the temperature of the radiating surface of the Peltier element. For this purpose, a radiator that is in thermal contact with the radiating surface is rotated by a radiating fan motor. Heat dissipation is being done.
Since the electronic refrigerator does not use a compressor, it can be operated quietly because it can be operated quietly, but it is often used in places where noise is required. There was a problem.

【0033】そこで、静音化が必要な電子冷蔵庫の周囲
に人がいる時は放熱用ファンモータの運転を停止させ、
ペルチェ素子の印加電圧を高電圧に上げて運転させるよ
うにしたものである。これによって、冷却力をあまり低
下させることなしに無音運転ができ、無音が必要な場所
への設置を可能にした。
Therefore, when there is a person around the electronic refrigerator that requires a quieter operation, the operation of the radiating fan motor is stopped,
The Peltier device is operated by raising the applied voltage to a high voltage. As a result, silent operation can be performed without significantly lowering the cooling power, and installation in a place where silence is required is enabled.

【0034】さらには、大きい冷却力を得るためにペル
チェ素子への印加電圧を大きくすると消費電力が大きく
なり、逆に省電力のためにペルチェ素子の印加電圧を小
さくすると所期の庫内温度が得られないという問題があ
った。
Furthermore, if the applied voltage to the Peltier element is increased to obtain a large cooling power, the power consumption increases. Conversely, if the applied voltage to the Peltier element is reduced to save power, the desired internal temperature becomes lower. There was a problem that it could not be obtained.

【0035】そこで、省電力化のためにペルチェ素子の
印加電圧に高電圧と低電圧の2段階の電圧を設け、高電
圧運転Cと低電圧運転Dとを交互に行うことによって、
設定された庫内温度を得られるように、高電圧運転Cで
庫内温度センサの低温側温度(OFF温度)を、低電圧
運転Dで庫内温度センサの高温側温度(ON温度)を設
定した。これによって、冷却力、消費電力共に、大きい
高電圧運転Cの時間は短く、冷却力、消費電力共に小さ
い低電圧運転Dの時間は長くなり、省エネ運転が可能に
なる。
In order to save power, two levels of high voltage and low voltage are provided for the applied voltage of the Peltier element, and high voltage operation C and low voltage operation D are alternately performed.
Set the low temperature (OFF temperature) of the internal temperature sensor in the high voltage operation C and the high temperature (ON temperature) of the internal temperature sensor in the low voltage operation D so that the set internal temperature can be obtained. did. As a result, the time of the high-voltage operation C in which both the cooling power and the power consumption are large is short, and the time of the low-voltage operation D in which the cooling power and the power consumption are both small is long, so that the energy-saving operation is possible.

【0036】さらには、運転中は無音が要求され、この
間にファンモータの運転が行われると無音が得られない
という問題があった。
Further, there is a problem that silence is required during operation, and silence cannot be obtained if the fan motor is operated during this operation.

【0037】そこで、放熱起用ファンモータの運転を停
止し、所定時間経過した後に自動復帰する無音化スイッ
チ回路を設け、無音運転が必要な時無音化スイッチをO
Nするようにした。
Therefore, a silencing switch circuit is provided which stops the operation of the fan motor for generating heat and automatically returns after a predetermined time has elapsed.
N.

【0038】これによって、運転中に静音対応ができる
ようにした。さらには、運転中に静音にしたい時間帯は
決まっているが、その都度無音化スイッチをONしなけ
ればならない煩わしさがあった。
[0038] With this arrangement, it is possible to cope with noise during driving. Further, the time period during which the user wants to reduce noise during driving is fixed, but there is an annoyance that the mute switch must be turned on each time.

【0039】そこで、無音化スイッチの入力モードを記
憶し、次回運転時にはこの入力モードで運転するように
した。これによって、毎回無音化スイッチをONすると
いう煩わしさを解消したものである。
Therefore, the input mode of the silence switch is stored, and the operation is performed in this input mode at the next operation. This eliminates the hassle of turning on the silence switch each time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電子冷蔵庫の要部縦断面図。FIG. 1 is a longitudinal sectional view of a main part of an electronic refrigerator according to the present invention.

【図2】本発明の第1実施例を示すブロック図。FIG. 2 is a block diagram showing a first embodiment of the present invention.

【図3】冷蔵庫の周囲に人がいる、人がいない時、及び
夜間時、ペルチェ素子と放熱器用ファンモータの印加電
圧の関係を示す図。
FIG. 3 is a diagram showing a relationship between a Peltier element and a voltage applied to a fan motor for a radiator when there is a person around the refrigerator, when there is no person, and at night.

【図4】本発明の第2実施例で昼間D運転とC運転時に
於けるペルチェ素子と放熱器用ファンモータの印加電圧
の関係を示す図。
FIG. 4 is a diagram showing a relationship between a Peltier element and a voltage applied to a radiator fan motor during daytime D operation and C operation in a second embodiment of the present invention.

【図5】ペルチェ素子印加電圧を大にした運転Cとペル
チェ素子印加電圧を小にした運転Dに於けるペルチェ素
子入力、放熱器用ファンモータ入力の関係を示す図。
FIG. 5 is a diagram illustrating a relationship between a Peltier element input and a radiator fan motor input in an operation C in which the Peltier element applied voltage is increased and an operation D in which the Peltier element applied voltage is decreased.

【図6】C運転とD運転とを交互に行った時の入力を示
す図。
FIG. 6 is a diagram showing inputs when the C operation and the D operation are performed alternately.

【図7】第1、第2実施例でペルチェ素子の印加電圧、
放熱器用ファンの印加電圧と庫内温度の関係を示す図。
FIG. 7 shows the applied voltage of the Peltier element in the first and second embodiments,
The figure which shows the relationship between the applied voltage of the fan for radiators, and the temperature in a store | warehouse | chamber.

【図8】C運転とD運転を交互に行った場合の庫内温度
の関係を示す図。
FIG. 8 is a diagram showing the relationship between the internal temperatures when the C operation and the D operation are performed alternately.

【図9】第3実施例を示すブロック図。FIG. 9 is a block diagram showing a third embodiment.

【符号の説明】[Explanation of symbols]

1…内箱、2…ソトイタ、3…断熱箱体、4…扉、5…
庫内、6…アトイタ、7…背面カバ、7a…背面空間
室、8…ペルチェ素子、9…吸熱面、10…放熱面、1
1…熱伝導体、12…吸熱器、13…沸騰ボックス、1
4…放熱器、15…放熱器用ファンモータ、16…ハン
ドル、17…人検知センサ、18…庫内温度センサ。
1 ... inner box, 2 ... soy toy, 3 ... heat insulation box, 4 ... door, 5 ...
Inside of the refrigerator, 6 ... Atita, 7 ... Back cover, 7a ... Back space room, 8 ... Peltier element, 9 ... Heat absorbing surface, 10 ... Heat dissipation surface, 1
DESCRIPTION OF SYMBOLS 1 ... Thermal conductor, 12 ... Heat sink, 13 ... Boiling box, 1
4 radiator, 15 radiator fan motor, 16 handle, 17 human detection sensor, 18 internal temperature sensor.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】放熱器用ファンモータを廻すことによっ
て、大きい冷却力を得るようにし、かつ、ペルチェ素子
の印加電圧が高電圧と低電圧運転があることを特徴とす
る電子冷蔵庫。
1. An electronic refrigerator characterized in that a large cooling power is obtained by rotating a fan motor for a radiator, and that the applied voltage of a Peltier element has a high voltage and a low voltage operation.
【請求項2】省電力化と低騒音化のために、ペルチエ素
子の印加電圧を高電圧と低電圧の2段階に設定し、周囲
温度が高くかつ庫内温度も設定温度に対し高い場合に
は,庫内温度が下がるまで高電圧運転、若しくは高電圧
運転と低電圧運転を交互に行い、周囲温度が低くかつ庫
内温度が設定温度に近い場合には低電圧運転のみを行
い、これによって設定された庫内温度が得られるよう
に、高電圧運転で庫内温度センサの低温側温度(OFF
温度)を、低電圧運転で庫内温度センサの高温側温度
(ON温度)を設定したことを特徴とする請求項1記載
の電子冷蔵庫。
2. In order to save power and reduce noise, the applied voltage of the Peltier element is set at two levels, high voltage and low voltage, and when the ambient temperature is high and the internal temperature is higher than the set temperature. Performs high-voltage operation or high-voltage operation and low-voltage operation alternately until the inside temperature decreases, and performs only low-voltage operation when the ambient temperature is low and the inside temperature is close to the set temperature. In order to obtain the set internal temperature, the low temperature side of the internal temperature sensor (OFF
2. The electronic refrigerator according to claim 1, wherein the temperature is set to a high temperature side (ON temperature) of the internal temperature sensor in the low voltage operation.
【請求項3】前記冷蔵庫の周囲に人がいる場合若しくは
特に無音化が必要な場合にはファンモータをタイマ又は
人検知センサ回路で停止させるとともに,冷蔵庫の冷却
力が不足する場合にはペルチェ素子の印加電圧を高くす
ることを特徴とする請求項1または2記載の電子冷蔵
庫。
3. A fan motor is stopped by a timer or a human detection sensor circuit when there is a person around the refrigerator or when silencing is required, and a Peltier element is used when the cooling power of the refrigerator is insufficient. 3. The electronic refrigerator according to claim 1, wherein the applied voltage is increased.
【請求項4】放熱器用ファンモータの運転を停止させ、
所定時間経過後に自動復帰する無音化スイッチを設けた
ことを特徴とする請求項1乃至3記載の電子冷蔵庫。
4. The operation of the radiator fan motor is stopped,
The electronic refrigerator according to any one of claims 1 to 3, further comprising a mute switch that automatically returns after a predetermined time has elapsed.
【請求項5】上記無音化スイッチは入力モードを記憶
し、次回運転時にはこの入力モードで運転するようにし
たことを特徴とする請求項1乃至4記載の電子冷蔵庫。
5. An electronic refrigerator according to claim 1, wherein said mute switch stores an input mode and operates in the input mode at the next operation.
JP34253697A 1997-12-12 1997-12-12 Electronic refrigerator Pending JPH11173727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34253697A JPH11173727A (en) 1997-12-12 1997-12-12 Electronic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34253697A JPH11173727A (en) 1997-12-12 1997-12-12 Electronic refrigerator

Publications (1)

Publication Number Publication Date
JPH11173727A true JPH11173727A (en) 1999-07-02

Family

ID=18354515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34253697A Pending JPH11173727A (en) 1997-12-12 1997-12-12 Electronic refrigerator

Country Status (1)

Country Link
JP (1) JPH11173727A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128196A (en) * 2000-10-19 2002-05-09 Takane Denki Kk Beverage cooling server
KR100456589B1 (en) * 2002-08-19 2004-11-10 삼성전자주식회사 Refrigerator using thermoelectronic semiconductor device and method for controlling
JP2005331230A (en) * 2004-04-21 2005-12-02 Ricoh Co Ltd Cooling device, cooling method, program, recording medium and electronic device
JP2008286506A (en) * 2007-05-21 2008-11-27 Mitsubishi Electric Engineering Co Ltd Preservation storage and refrigerating preservation storage
US20090277200A1 (en) * 2008-05-06 2009-11-12 Indel B S.P.A. Refrigeration unit and respective control and management assembly
US7750287B2 (en) 2006-10-20 2010-07-06 Sony Corporation Temperature control apparatus and method, and program
US7980084B2 (en) 2006-10-20 2011-07-19 Sony Corporation Temperature control apparatus, method and program for peltier element
JP2012152307A (en) * 2011-01-25 2012-08-16 Hitachi Maxell Ltd Beauty appliance
CN106123476A (en) * 2016-06-27 2016-11-16 青岛海尔股份有限公司 Intelligent detecting method for refrigerator
JP2018151123A (en) * 2017-03-13 2018-09-27 三菱電機エンジニアリング株式会社 Storage and refrigerator
JP2018194205A (en) * 2017-05-15 2018-12-06 東芝ライフスタイル株式会社 refrigerator
JP2020003164A (en) * 2018-06-29 2020-01-09 シャープ株式会社 Refrigerator, refrigerator control method and refrigerator control program
CN114777371A (en) * 2022-04-08 2022-07-22 海信(山东)冰箱有限公司 Refrigerator and noise reduction method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128196A (en) * 2000-10-19 2002-05-09 Takane Denki Kk Beverage cooling server
KR100456589B1 (en) * 2002-08-19 2004-11-10 삼성전자주식회사 Refrigerator using thermoelectronic semiconductor device and method for controlling
JP2005331230A (en) * 2004-04-21 2005-12-02 Ricoh Co Ltd Cooling device, cooling method, program, recording medium and electronic device
US7712318B2 (en) 2004-04-21 2010-05-11 Ricoh Company, Ltd. Cooling apparatus, cooling method, program, computer readable information recording medium and electronic apparatus
US7980084B2 (en) 2006-10-20 2011-07-19 Sony Corporation Temperature control apparatus, method and program for peltier element
US7750287B2 (en) 2006-10-20 2010-07-06 Sony Corporation Temperature control apparatus and method, and program
JP4503045B2 (en) * 2007-05-21 2010-07-14 三菱電機エンジニアリング株式会社 Storage and refrigerated storage
JP2008286506A (en) * 2007-05-21 2008-11-27 Mitsubishi Electric Engineering Co Ltd Preservation storage and refrigerating preservation storage
US20090277200A1 (en) * 2008-05-06 2009-11-12 Indel B S.P.A. Refrigeration unit and respective control and management assembly
CN101598481A (en) * 2008-05-06 2009-12-09 英戴尔比股份公司 Refrigeration unit and control corresponding and Management Unit
US8297066B2 (en) * 2008-05-06 2012-10-30 Indel B S.P.A. Refrigeration unit and respective control and management assembly
JP2012152307A (en) * 2011-01-25 2012-08-16 Hitachi Maxell Ltd Beauty appliance
CN106123476A (en) * 2016-06-27 2016-11-16 青岛海尔股份有限公司 Intelligent detecting method for refrigerator
JP2018151123A (en) * 2017-03-13 2018-09-27 三菱電機エンジニアリング株式会社 Storage and refrigerator
JP2018194205A (en) * 2017-05-15 2018-12-06 東芝ライフスタイル株式会社 refrigerator
JP2020003164A (en) * 2018-06-29 2020-01-09 シャープ株式会社 Refrigerator, refrigerator control method and refrigerator control program
CN114777371A (en) * 2022-04-08 2022-07-22 海信(山东)冰箱有限公司 Refrigerator and noise reduction method thereof

Similar Documents

Publication Publication Date Title
JPH11173727A (en) Electronic refrigerator
US3111166A (en) Portable heating and cooling appliance
JP2004271053A (en) Electronic warm/cold storage, and dressing table and washing stand using the same
KR930006408A (en) Combined thermoelectric refrigeration / heating device with thermoelectric semiconductor elements
JP2000130883A (en) Cooler
JPH11325500A (en) Small air conditioner
JPH06207771A (en) Cold and hot storage chamber
JPH0814723A (en) Cold and warm storage box for vehicle
JP2003254637A (en) Thermal conduction apparatus
JP2003035480A (en) Electronic cold and hot storage chamber
JP2706429B2 (en) Thermoelectrically cooled drinking water can cooler
JPH08136121A (en) Constant temperature box for cosmetics or the like and constant temperature box-equipped dressing table
JPH09313269A (en) Sink
KR100912195B1 (en) Cooling and warming apparatus
KR200353322Y1 (en) Cooling and heating cabinet used solar battery
JPH07260188A (en) Cold storage type cold air apparatus with peliier device
JPH09313271A (en) Sink stand
JP2001066012A (en) Peltier unit
US20200212283A1 (en) Electronic device
JPH01196481A (en) Electronic refrigerator
JPH0346690Y2 (en)
JP2001263898A (en) Silent refrigerator
KR19980022402U (en) Car electronic refrigerator
KR19980025949A (en) Rapid cooling system of refrigerator
JPH0539420Y2 (en)