JPH11173453A - Multi-stage flow rate control valve - Google Patents

Multi-stage flow rate control valve

Info

Publication number
JPH11173453A
JPH11173453A JP34278197A JP34278197A JPH11173453A JP H11173453 A JPH11173453 A JP H11173453A JP 34278197 A JP34278197 A JP 34278197A JP 34278197 A JP34278197 A JP 34278197A JP H11173453 A JPH11173453 A JP H11173453A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
orifice
solenoid valves
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34278197A
Other languages
Japanese (ja)
Other versions
JP4077915B2 (en
Inventor
Masayuki Imai
正幸 今井
Ryosuke Tsukui
良輔 津久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP34278197A priority Critical patent/JP4077915B2/en
Publication of JPH11173453A publication Critical patent/JPH11173453A/en
Application granted granted Critical
Publication of JP4077915B2 publication Critical patent/JP4077915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure fixed valve closing operation irrespective of changes of viscosity of refrigerant by supporting two solenoid valves arranged in parallel for a flow of a fluid by one valve support block and providing orifices in parallel for a flow of a fluid of two solenoid valves on this support block. SOLUTION: When valve elements 30A, 30B of each solenoid valve 10A, 10B are closed, refrigerant flows only through an orifice 26, and its flow rate becomes the minimum. Next, when the valve element 30A only is opened, refrigerant flows through a first valve hole 27 and the orifice 26, and its flow rate becomes the middle extent. When the valve elements 30B is also opened, refrigerant flows through the first valve hole 27, a second valve hole 28, and the orifice 26, and its flow rate becomes the maximum extent. When each valve element 30A, 30B is closed and the refrigerant having high viscosity is used, the valve elements 30A, 30B receive its back pressure, but valve closing operation can be smoothly done by letting the back pressure escape to an inlet passage 23 side inside a conduit 23A through a plurality of longitudinal slits and horizontal slits formed in each valve element 30A, 30B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多段式流量制御弁
に係り、特に粘度の高い冷媒の流量を制御するものに適
した多段式流量制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage flow control valve, and more particularly to a multi-stage flow control valve suitable for controlling the flow rate of a highly viscous refrigerant.

【0002】[0002]

【従来の技術】従来から冷凍循環系において凝縮圧力
(温度)を安定に制御することは、膨張弁への最適冷媒
流量の確保や圧縮機への過負荷を防止する等の点で重要
とされており、その冷媒流量の調整を行うための制御弁
として、無段階に調整するものと多段階に調整するもの
等がある。図5は、前記冷媒流量の調整を多段階に行う
制御弁を模式的に示す図であり、凝縮器と蒸発器との間
には、第1の制御弁1と、第2の制御弁2と、オリフィ
ス3とが設けられており、蒸発器側に導かれる冷媒の流
量は、該第1の制御弁1、第2の制御弁2及びオリフィ
ス3の弁開動作によって決定されるようになっている。
2. Description of the Related Art Conventionally, it has been important to stably control condensing pressure (temperature) in a refrigeration circulation system in terms of securing an optimum refrigerant flow rate to an expansion valve and preventing overload on a compressor. As a control valve for adjusting the flow rate of the refrigerant, there are a control valve that adjusts in a stepless manner and a control valve that adjusts in a multistep manner. FIG. 5 is a diagram schematically showing a control valve for adjusting the refrigerant flow rate in multiple stages. A first control valve 1 and a second control valve 2 are provided between the condenser and the evaporator. And the orifice 3 are provided, and the flow rate of the refrigerant guided to the evaporator side is determined by the valve opening operation of the first control valve 1, the second control valve 2, and the orifice 3. ing.

【0003】即ち、前記第1の制御弁1と第2の制御弁
2とが閉じている場合には、オリフィス3のみを介して
冷媒が流れるため、その流量は最小となり、第1の制御
弁1が開けられた場合には、該第1の制御弁1とオリフ
ィス3とを介して冷媒が流れるため、その流量は中程度
となり、第2の制御弁2も開けられた場合には、該第1
の制御弁1、第2の制御弁2及びオリフィス3を介して
冷媒が流れるため、その流量は最大となるといった3段
階の段階制御が行われる。
That is, when the first control valve 1 and the second control valve 2 are closed, the refrigerant flows only through the orifice 3, so that the flow rate of the refrigerant is minimized. When the first control valve 1 is opened, the refrigerant flows through the first control valve 1 and the orifice 3, so that the flow rate is medium. When the second control valve 2 is also opened, the refrigerant flows. First
Since the refrigerant flows through the control valve 1, the second control valve 2, and the orifice 3, three-stage control is performed such that the flow rate is maximized.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来の多段階に冷媒流量の調整を行うものにあっては、流
量通路に対し前記第1の制御弁1、第2の制御弁2及び
オリフィス3を別個に設ける必要があるため、部品点数
が多くなり、構成が複雑になってしまうばかりか、コス
ト低減の妨げとなってしまうという問題があった。
By the way, in the above-mentioned conventional multi-stage refrigerant flow adjustment, the first control valve 1, the second control valve 2, and the orifice 3 needs to be provided separately, so that the number of parts is increased, the configuration becomes complicated, and there is a problem that cost reduction is hindered.

【0005】しかも、従来の前記各第1の制御弁1及び
第2の制御弁2の弁体は、単に弁孔を開閉する機能をも
った形状とされているため、例えば臭化リチウム等のよ
うな粘度の高い冷媒を使用する場合、前記弁体が前記冷
媒の背圧による影響により弁閉動作が緩慢となってしま
い、適切な弁閉動作が行われなくなってしまうばかり
か、冷媒の粘度が変っても弁閉動作を一定にすることが
できないといった問題もある。本発明は、このような問
題点に鑑みてなされたものであって、その目的は、簡単
な構成でコスト低減を図ることができると共に、冷媒の
粘度が変っても弁閉動作を一定にすることができる多段
式流量制御弁を提供することである。
In addition, the conventional first and second control valves 1 and 2 have a valve body having a function of simply opening and closing a valve hole. When a refrigerant having such a high viscosity is used, the valve body has a slow valve closing operation due to the influence of the back pressure of the refrigerant, and not only does the appropriate valve closing operation not be performed, but also the viscosity of the refrigerant increases. However, there is also a problem that the valve closing operation cannot be kept constant even if the pressure changes. The present invention has been made in view of such a problem, and an object of the present invention is to reduce cost with a simple configuration and to keep the valve closing operation constant even when the viscosity of the refrigerant changes. To provide a multi-stage flow control valve.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すべく、
本発明に係る多段式流量制御弁は、流体の流れに対して
並列に配設される二つの電磁弁と、該二つの電磁弁の弁
本体を構成し前記二つの電磁弁を支持する一つの弁支持
ブロックと、前記二つの電磁弁の流体の流れに対して並
列に前記弁支持ブロックに設けられるオリフィスとを備
えることをを特徴としている。上述の如く構成された本
発明に係る多段式流量制御弁では、冷媒の流量をオリフ
ィスのみを介しての最小と、何れか一方の電磁弁の弁開
時におけるオリフィスとの総量である中程度と、前記二
つの電磁弁の弁開時におけるオリフィスとの総量である
最大とした3段階の段階制御が行われる。また、一つの
弁支持ブロックに対して、前記二つの電磁弁とオリフィ
スとが組み込まれるため、部品点数が大幅に削減され
る。
In order to achieve the above object,
The multi-stage flow control valve according to the present invention has two solenoid valves disposed in parallel to the flow of fluid, and one valve that constitutes a valve body of the two solenoid valves and supports the two solenoid valves. It is characterized by comprising a valve support block and an orifice provided in the valve support block in parallel with the fluid flow of the two solenoid valves. In the multi-stage flow control valve according to the present invention configured as described above, the flow rate of the refrigerant is minimized only through the orifice, and the total amount of the orifice at the time of opening one of the solenoid valves is a medium level. When the two solenoid valves are opened, the total amount of the two solenoid valves and the orifice is controlled to a maximum of three stages. Further, since the two solenoid valves and the orifice are incorporated into one valve support block, the number of parts is greatly reduced.

【0007】更に、前記二つの電磁弁の各々のプランジ
ャの端部に弁体を取り付けるようにしているため、弁孔
の形状や冷媒の種類に応じた弁体の選定を容易に行なう
ことができる。更にまた、前記弁支持ブロックに設けた
入口通路と外部通路との間に、前記オリフィスと前記二
つの電磁弁の各々の弁室の弁孔とを設けることで、弁室
を小さくすることができる。また、前記弁体に、前記流
体による背圧を逃すための通路を形成することで、粘度
の高い冷媒を使用する場合であっても、弁閉時に受ける
該冷媒による背圧による影響が軽減されるため、弁閉動
作がスムーズに行なわれる。
Further, since a valve element is attached to the end of each plunger of each of the two solenoid valves, it is possible to easily select a valve element according to the shape of the valve hole and the type of refrigerant. . Furthermore, by providing the orifice and the valve holes of the respective valve chambers of the two solenoid valves between the inlet passage and the external passage provided in the valve support block, the valve chamber can be made smaller. . Further, by forming a passage for releasing the back pressure due to the fluid in the valve body, even when using a refrigerant having a high viscosity, the influence of the back pressure due to the refrigerant when the valve is closed is reduced. Therefore, the valve closing operation is performed smoothly.

【0008】更に、前記流体による背圧を逃すための通
路を、前記弁室と前記入口通路とを連通するように設け
ることで、弁閉時に受ける前記冷媒による背圧による前
記弁室内部の内圧上昇が抑えられるため、弁閉動作がス
ムーズに行なわれるばかりか、粘度の相違に拘わらず弁
閉動作が一定に行なわれる。更にまた、弁体に設ける通
路をスリットとすることで、弁体とスリットとの一体成
型が可能となるため、加工性の点で有利となる。
Further, by providing a passage for releasing the back pressure due to the fluid so as to communicate the valve chamber and the inlet passage, the internal pressure in the valve chamber due to the back pressure due to the refrigerant received when the valve is closed. Since the rise is suppressed, not only the valve closing operation is performed smoothly, but also the valve closing operation is performed irrespective of the difference in viscosity. Furthermore, by forming the passage provided in the valve body as a slit, the valve body and the slit can be integrally molded, which is advantageous in terms of workability.

【0009】[0009]

【発明の実施の形態】以下、図面により本発明の実施の
形態について説明する。図1は、本発明の一実施の形態
に係る多段式流量制御弁(以下、単に制御弁という)を
示す断面図、図2は、図1の制御弁の要部を示す拡大断
面図、図3は、図1の制御弁を示す平面図、図4は、図
1の多段式流量制御弁の弁体を示す斜視図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view illustrating a multi-stage flow control valve (hereinafter, simply referred to as a control valve) according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view illustrating a main part of the control valve in FIG. 3 is a plan view showing the control valve of FIG. 1, and FIG. 4 is a perspective view showing a valve element of the multi-stage flow control valve of FIG.

【0010】図示の制御弁10は、冷凍循環系に組み込
まれて使用されるもので、基本的には、二つの電磁弁1
0A,10Bと、該電磁弁10A,10Bの弁本体を構
成する矩形形状の弁支持ブロック20とから成ってい
る。前記二つの電磁弁10A,10Bは、前記弁支持ブ
ロック20の対向面20A,20Bに各々配置されてい
る。
The illustrated control valve 10 is used by being incorporated in a refrigeration circulation system.
0A and 10B, and a rectangular valve support block 20 constituting a valve body of the solenoid valves 10A and 10B. The two solenoid valves 10A and 10B are arranged on opposing surfaces 20A and 20B of the valve support block 20, respectively.

【0011】前記二つの電磁弁10A,10Bには、ハ
ウジング11、コイル12、止めネジ13によって取り
付け固定される吸引子14、案内スリーブ15等から成
るソレノイド16が設けられている。該案内スリーブ1
5内には、コイルバネ17によって弁閉方向に付勢され
たプランジャ18が摺動自在に嵌挿されており、該プラ
ンジャ18の先端部分に設けられている嵌合孔19に
は、例えばゴム製の弁体30A,30Bがカシメ止めさ
れている。
The two solenoid valves 10A and 10B are provided with a housing 11, a coil 12, a suction element 14 attached and fixed by a set screw 13, a guide sleeve 15, and the like. The guide sleeve 1
A plunger 18 urged in the valve closing direction by a coil spring 17 is slidably fitted into the inside of the housing 5, and a fitting hole 19 provided at a tip end portion of the plunger 18 is made of, for example, rubber. Are caulked.

【0012】ここで、該ゴム製の弁体30A,30Bに
は、例えば図4(a),(b)に示すように(但し、同
図(a),(b)に示すものは同じものである)、その
周面に軸方向に沿って形成された4つの縦スリット31
が設けられている。また、該弁体30A,30Bの弁孔
閉塞面32の反対側の面33には、横スリット34が設
けられている。
Here, for example, as shown in FIGS. 4 (a) and 4 (b), the rubber valve bodies 30A and 30B have the same construction as those shown in FIGS. 4 (a) and 4 (b). ), Four longitudinal slits 31 formed on the peripheral surface along the axial direction.
Is provided. A lateral slit 34 is provided on a surface 33 of the valve bodies 30A and 30B opposite to the valve hole closing surface 32.

【0013】更に、該弁孔閉塞面32及び該反対側の面
33側には、段差部35,36が設けられており、これ
らの段差部35,36を介して各4つの縦スリット31
が連通されると共に、該各4つの縦スリット31と前記
横スリット34同士も連通されている。これにより、例
えば臭化リチウム等のような粘度の高い冷媒を使用する
場合であっても、該冷媒の背圧による弁閉動作の影響が
軽減されるようになっているが、その詳細は後述する。
Further, steps 35 and 36 are provided on the valve hole closing surface 32 and the opposite surface 33 side, and four vertical slits 31 are provided through these step portions 35 and 36, respectively.
Are communicated, and the four vertical slits 31 and the horizontal slits 34 are also communicated with each other. Thereby, even when a high-viscosity refrigerant such as lithium bromide is used, the influence of the valve closing operation due to the back pressure of the refrigerant is reduced. I do.

【0014】また、図1及び図2において、前記案内ス
リーブ15の端部には、フランジ15aが設けられてい
ると共に、該案内スリーブ15の端部側は、ナット21
によって前記弁支持ブロック20側に螺合固定されてい
る。更に、前記案内スリーブ15の端部のフランジ15
aと該弁支持ブロック20との接合部位には、Oリング
22が介在されており、該Oリング22によって該弁支
持ブロック20内部の密閉状態が維持されるようになっ
ている。
1 and 2, a flange 15a is provided at an end of the guide sleeve 15, and an end of the guide sleeve 15 is provided with a nut 21.
The screw is screwed and fixed to the valve support block 20 side. Furthermore, the flange 15 at the end of the guide sleeve 15
An O-ring 22 is interposed between the joint a and the valve support block 20 so that the O-ring 22 maintains the hermetically sealed state inside the valve support block 20.

【0015】更にまた、弁支持ブロック20の中心部位
には、図示しない冷媒凝縮器側に連通される入口通路2
3を有した導管23Aと、図示しない蒸発器側に連通さ
れる出口通路24を有した導管24Aとが連接されてい
ると共に、該入口通路23側にストレーナ25が設けら
れ、該ストレーナ25によって前記図示しない冷媒凝縮
器側から送られる冷媒の不純物が除去されるようになっ
ている。
Further, an inlet passage 2 communicating with a refrigerant condenser (not shown) is provided at a central portion of the valve support block 20.
3 is connected to a conduit 24A having an outlet passage 24 communicating with an evaporator (not shown), and a strainer 25 is provided on the inlet passage 23 side. Impurities of the refrigerant sent from the refrigerant condenser (not shown) are removed.

【0016】前記入口通路23と出口通路24との間の
弁室20a,20bには、オリフィス26、第1の弁孔
27及び第2の弁孔28とが設けられており、該第1の
弁孔27及び第2の弁孔28の弁開と該オリフィス26
とにより、冷媒流量の能力可変が3段階で行なわれるよ
うになっている。
An orifice 26, a first valve hole 27 and a second valve hole 28 are provided in the valve chambers 20a and 20b between the inlet passage 23 and the outlet passage 24. The valve opening of the valve hole 27 and the second valve hole 28 and the orifice 26
Thus, the capacity of the refrigerant flow rate can be varied in three stages.

【0017】続いて、以上のような構成の制御弁10の
動作について説明する。先ず、前記各二つの電磁弁10
A,10Bのソレノイド16に励磁電流が通電され、プ
ランジャ18がコイルバネ17の付勢力に抗して吸引子
14側に引き寄せられると、該プランジャ18の前記ゴ
ム製の弁体30A,30Bが前記第1の弁孔27及び第
2の弁孔28から離れ、該第1の弁孔27及び第2の弁
孔28が開けられる。これにより、前記冷媒凝縮器に連
接されている前記導管23Aの入口通路23を介して前
記弁支持ブロック20内部に流入した冷媒は、該弁支持
ブロック20内部の弁室20a,20bから前記第1の
弁孔27及び第2の弁孔28を介して前記導管24A内
部の出口通路24側に送られ、更に前記蒸発器側に導か
れる。このとき、前記弁室20a,20b内部に設けら
れているオリフィス26を介して、前記導管24A内部
の出口通路24側に冷媒が流出している。
Next, the operation of the control valve 10 configured as described above will be described. First, each of the two solenoid valves 10
When an exciting current is applied to the solenoids 16 of the A and 10B and the plunger 18 is drawn toward the suction element 14 against the urging force of the coil spring 17, the rubber valve bodies 30A and 30B of the plunger 18 are moved to the first position. The first valve hole 27 and the second valve hole 28 are opened away from the first valve hole 27 and the second valve hole 28. As a result, the refrigerant flowing into the valve support block 20 through the inlet passage 23 of the conduit 23A connected to the refrigerant condenser flows from the valve chambers 20a and 20b inside the valve support block 20 to the first refrigerant. Through the valve hole 27 and the second valve hole 28 to the outlet passage 24 side inside the conduit 24A, and further guided to the evaporator side. At this time, the refrigerant flows out to the outlet passage 24 side inside the conduit 24A via the orifice 26 provided inside the valve chambers 20a and 20b.

【0018】ここで、前記ゴム製の弁体30A,30B
による弁開時における前記第1の弁孔27及び第2の弁
孔28から前記導管24A内部の出口通路24側へ流出
する前記冷媒の流量をそれぞれ(α)とし、前記オリフ
ィス26を介して前記導管24A内部の出口通路24側
へ流出する前記冷媒の流量を(β)としたとき、前記制
御弁10で制御される冷媒の流量は、前記二つの電磁弁
10A,10Bの開閉動作によって多段階に流量制御さ
れる。
Here, the rubber valve bodies 30A, 30B
The flow rate of the refrigerant flowing from the first valve hole 27 and the second valve hole 28 to the outlet passage 24 inside the conduit 24 </ b> A when the valve is opened is defined as (α), and the refrigerant flows through the orifice 26. Assuming that the flow rate of the refrigerant flowing out to the outlet passage 24 side inside the conduit 24A is (β), the flow rate of the refrigerant controlled by the control valve 10 is multi-step by opening and closing the two solenoid valves 10A and 10B. Is controlled.

【0019】即ち、前記電磁弁10Aの弁体30Aと電
磁弁10Bの弁体30Bとが閉じている場合には、オリ
フィス26を介してのみ冷媒が流れるため、その流量は
最小の(β)となり、電磁弁10A側の弁体30Aのみ
が開けられた場合には、該電磁弁10A側の第1の弁孔
27とオリフィス3とを介して冷媒が流れるため、その
流量は中程度の(α+β)となり、電磁弁10Bの弁体
30Bも開けられた場合には、該第1及び第2の弁孔2
7,28及びオリフィス3を介して冷媒が流れるため、
その流量は最大の(2α+β)となるといった3段階の
段階制御が行われる。
That is, when the valve body 30A of the solenoid valve 10A and the valve body 30B of the solenoid valve 10B are closed, the refrigerant flows only through the orifice 26, and the flow rate becomes the minimum (β). When only the valve body 30A on the solenoid valve 10A side is opened, the refrigerant flows through the first valve hole 27 on the solenoid valve 10A side and the orifice 3, so that the flow rate is moderate (α + β ), And when the valve element 30B of the solenoid valve 10B is also opened, the first and second valve holes 2
Since the refrigerant flows through 7, 28 and the orifice 3,
Three-stage control is performed such that the flow rate becomes the maximum (2α + β).

【0020】一方、弁閉時において、例えば前記電磁弁
10A,10Bの前記弁体30A,30Bが前記第1及
び第2の弁孔27,28を閉じるとき、例えば前述した
ように、臭化リチウム等のような粘度の高い冷媒を使用
する場合には、前記弁室20a,20b内部の前記弁体
30A,30Bが該粘度の高い冷媒の背圧を受けること
になるが、該背圧による影響は次のような理由から軽減
される。
On the other hand, when the valves 30A, 30B of the solenoid valves 10A, 10B close the first and second valve holes 27, 28 when the valves are closed, for example, as described above, lithium bromide is used. When a refrigerant having a high viscosity is used, the valve bodies 30A and 30B inside the valve chambers 20a and 20b receive the back pressure of the high viscosity refrigerant. Is reduced for the following reasons.

【0021】即ち、該弁体30A,30Bには、前記図
4(a),(b)で説明したように、その周面に軸方向
に沿って形成された4つの縦スリット31と前記弁孔閉
塞面32の反対側の面33に形成された横スリット34
とが設けられ、更に該弁孔閉塞面32及び該反対側の面
33側に設けられた段差部35,36により、該段差部
35,36を介して各4つの縦スリット31が連通され
ると共に、該各4つの縦スリット31と前記横スリット
34同士も連通されている。このため、弁閉時における
前記粘度の高い冷媒からの背圧を、該4つの縦スリット
31と前記横スリット34とを介して前記導管23A内
部の入口通路23側に逃すことができるため、前記弁室
20a,20b内部の前記背圧による内圧上昇が抑えら
れ、弁閉動作がスムーズに行なわれる。
That is, as described with reference to FIGS. 4 (a) and 4 (b), the valve bodies 30A and 30B have four longitudinal slits 31 formed along the axial direction on the peripheral surface thereof and the valve A lateral slit 34 formed in a surface 33 opposite to the hole closing surface 32
Are provided, and the four vertical slits 31 communicate with each other through the step portions 35 and 36 by the step portions 35 and 36 provided on the valve hole closing surface 32 and the opposite surface 33 side. The four vertical slits 31 and the horizontal slits 34 are also connected to each other. Therefore, the back pressure from the high-viscosity refrigerant when the valve is closed can be released to the inlet passage 23 side inside the conduit 23A through the four vertical slits 31 and the horizontal slits 34, The internal pressure rise due to the back pressure inside the valve chambers 20a and 20b is suppressed, and the valve closing operation is performed smoothly.

【0022】このように、本実施の形態では、冷媒の流
量をオリフィス26のみを介しての最小と、何れか一方
の電磁弁10A又は10Bの弁開時におけるオリフィス
26との総量である中程度と、前記二つの電磁弁10
A,10Bの弁開時におけるオリフィス26との総量で
ある最大とした3段階の段階制御が行われる機能を、一
つの弁支持ブロック20に組み込むようにしたので、部
品点数が大幅に削減される。
As described above, in the present embodiment, the flow rate of the refrigerant is set to a minimum value via only the orifice 26 and a medium flow rate which is the total amount of the orifice 26 when one of the solenoid valves 10A or 10B is opened. And the two solenoid valves 10
The function of performing the maximum three-stage control, which is the total amount with the orifice 26 when the valves A and 10B are opened, is incorporated in one valve support block 20, so that the number of parts is greatly reduced. .

【0023】更に、前記二つの電磁弁10A,10Bの
各々のプランジャ18の端部に弁体30A,30Bを取
り付けるようにしているため、前記第1及び第2の弁孔
27,28の形状や冷媒の種類に応じた前記弁体30
A,30Bの選定を容易に行なうことができる。更にま
た、前記弁支持ブロック20に設けた入口通路23と外
部通路24との間に、前記オリフィス26と前記二つの
電磁弁10A,10Bの各々の弁室20a,20bの前
記第1及び第2の弁孔27,28とを設けることで、該
弁室20a,20bを小さくすることができる。また、
前記弁体30A,30Bに設けた前記流体による背圧を
逃すための通路を、前記弁室20a,20bと前記入口
通路23との間で連通させたので、弁閉時に受ける前記
冷媒による背圧による前記弁室20a,20b内部の内
圧上昇が抑えられるため、弁閉動作がスムーズに行なわ
れるばかりか、粘度の相違に拘わらず弁閉動作が一定に
行なわれる。
Further, since the valve bodies 30A, 30B are attached to the ends of the plungers 18 of the two solenoid valves 10A, 10B, the shape and the shape of the first and second valve holes 27, 28 are determined. The valve 30 according to the type of the refrigerant
A and 30B can be easily selected. Furthermore, between the inlet passage 23 provided in the valve support block 20 and the external passage 24, the orifice 26 and the first and second valve chambers 20a and 20b of the two solenoid valves 10A and 10B are provided. By providing the valve holes 27 and 28, the valve chambers 20a and 20b can be reduced. Also,
Since the passage provided in the valve bodies 30A and 30B for releasing the back pressure due to the fluid is communicated between the valve chambers 20a and 20b and the inlet passage 23, the back pressure due to the refrigerant received when the valves are closed. As a result, the internal pressure rise inside the valve chambers 20a and 20b is suppressed, so that not only the valve closing operation is performed smoothly, but also the valve closing operation is performed irrespective of the difference in viscosity.

【0024】更にまた、前記弁体30A,30Bに設け
た通路を前記縦スリット31と横スリット34とするこ
とで、該弁体30A,30Bと該縦スリット31及び横
スリット34との一体成型が可能となるため、加工性の
点で有利となる。尚、本実施の形態では、前記弁体30
A,30Bの周面に軸方向に沿って形成される縦スリッ
ト31を4つとした場合について説明したが、この例に
限らず、該縦スリット31を3つ以下或いは5つ以上と
しても良いことは勿論である。また、前記弁孔閉塞面3
2の反対側の面33に横スリット34を1つ形成した場
合について説明したが、この例に限らず、該横スリット
34を2つ以上としても良く、該2つ以上とした場合に
は互いの横スリット34を交差させるようにしても良
い。更に、前記弁体30A,30Bの縦スリット31を
周面の軸方向に沿って形成した場合について説明した
が、この例に限らず、該縦スリット31をスパイラル状
に形成しても良い。
Further, the passages provided in the valve bodies 30A, 30B are formed by the vertical slits 31 and the horizontal slits 34, so that the valve bodies 30A, 30B and the vertical slits 31 and the horizontal slits 34 can be integrally formed. This is possible, which is advantageous in terms of workability. In the present embodiment, the valve 30
A case has been described in which four longitudinal slits 31 are formed along the axial direction on the peripheral surfaces of A and 30B. However, the present invention is not limited to this example, and the number of the longitudinal slits 31 may be three or less or five or more. Of course. Further, the valve hole closing surface 3
Although the case where one horizontal slit 34 is formed on the surface 33 on the side opposite to 2 has been described, the present invention is not limited to this example, and the number of the horizontal slits 34 may be two or more. May be made to cross each other. Furthermore, the case where the vertical slits 31 of the valve bodies 30A and 30B are formed along the axial direction of the peripheral surface has been described. However, the present invention is not limited to this example, and the vertical slits 31 may be formed in a spiral shape.

【0025】[0025]

【発明の効果】以上の説明から理解されるように、本発
明に係る多段式流量制御弁によれば、一つの弁支持ブロ
ックに対して前記二つの電磁弁とオリフィスとを組み込
むことにより、部品点数を大幅に削減すると共に、前記
弁体に通路を形成し前記流体による背圧を逃すようにし
たので、簡単な構成でコスト低減を図ることができると
共に、冷媒の粘度が変っても弁閉動作を一定にすること
ができる。
As will be understood from the above description, according to the multistage flow control valve according to the present invention, the parts are realized by incorporating the two solenoid valves and the orifice into one valve support block. The number of points was greatly reduced, and a passage was formed in the valve body to release the back pressure due to the fluid, so that the cost could be reduced with a simple configuration and the valve closed even if the viscosity of the refrigerant changed. The operation can be constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る多段式流量制御弁
を示す断面図。
FIG. 1 is a sectional view showing a multi-stage flow control valve according to an embodiment of the present invention.

【図2】図1の制御弁の要部を示す拡大断面図。FIG. 2 is an enlarged sectional view showing a main part of the control valve of FIG. 1;

【図3】図1の制御弁を示す平面図。FIG. 3 is a plan view showing the control valve of FIG. 1;

【図4】図1の多段式流量制御弁の弁体を示す斜視図。FIG. 4 is a perspective view showing a valve body of the multi-stage flow control valve of FIG. 1;

【図5】従来の冷媒流量の調整を多段階に行う形態を示
す模式図。
FIG. 5 is a schematic diagram showing a conventional mode of adjusting the flow rate of refrigerant in multiple stages.

【符号の説明】[Explanation of symbols]

10 制御弁 10A,10B 電磁弁 11 ハウジング 12 コイル 13 止めネジ 14 吸引子 15 案内スリーブ 16 ソレノイド 17 コイルバネ 18 プランジャ 20 弁支持ブロック 20a,20b 弁室 23A,24A 導管 23 入口通路 24 出口通路 25 ストレーナ 26 オリフィス 27 第1の弁孔 28 第2の弁孔 30A,30B 弁体 31 縦スリット 34 横スリット 35,36 段差部 DESCRIPTION OF SYMBOLS 10 Control valve 10A, 10B Solenoid valve 11 Housing 12 Coil 13 Set screw 14 Attractor 15 Guide sleeve 16 Solenoid 17 Coil spring 18 Plunger 20 Valve support block 20a, 20b Valve room 23A, 24A Duct 23 Inlet passage 24 Outlet passage 25 Strainer 26 Orifice 27 first valve hole 28 second valve hole 30A, 30B valve element 31 vertical slit 34 horizontal slit 35, 36 stepped portion

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 流体の流れに対して並列に配設される二
つの電磁弁と、該二つの電磁弁の弁本体を構成し前記二
つの電磁弁を支持する一つの弁支持ブロックと、前記二
つの電磁弁の流体の流れに対して並列に前記弁支持ブロ
ックに設けられるオリフィスとを備えることを特徴とす
る多段式流量制御弁。
1. Two solenoid valves arranged in parallel with a flow of fluid, one valve support block constituting a valve body of the two solenoid valves and supporting the two solenoid valves, An orifice provided in the valve support block in parallel with the fluid flow of the two solenoid valves.
【請求項2】 前記二つの電磁弁の各々には、前記弁室
に対し進退自在とされるプランジャが設けられると共
に、前記弁室側に向く前記プランジャの端部には弁体が
取り付けられていることを特徴とする請求項1記載の多
段式流量制御弁。
2. Each of the two solenoid valves is provided with a plunger which is movable back and forth with respect to the valve chamber, and a valve body is attached to an end of the plunger facing the valve chamber. The multi-stage flow control valve according to claim 1, wherein:
【請求項3】 前記弁支持ブロックには、外部に連通す
る入口通路と外部通路とが設けられ、該入口通路と外部
通路との間には、前記オリフィスと前記二つの電磁弁の
各々の弁室の弁孔とが設けられていることを特徴とする
請求項1記載の多段式流量制御弁。
3. The valve support block is provided with an inlet passage and an outer passage communicating with the outside, and a valve between the orifice and the two solenoid valves is provided between the inlet passage and the outer passage. The multi-stage flow control valve according to claim 1, wherein a valve hole of the chamber is provided.
【請求項4】 前記弁体には、前記流体による背圧を逃
すための通路が形成されていることを特徴とする請求項
2記載の多段式流量制御弁。
4. The multi-stage flow control valve according to claim 2, wherein a passage for releasing a back pressure caused by the fluid is formed in the valve body.
【請求項5】 前記流体による背圧を逃すための通路
は、前記弁室と前記入口通路とを連通するように設けら
れていることを特徴とする請求項4記載の多段式流量制
御弁。
5. The multi-stage flow control valve according to claim 4, wherein a passage for releasing the back pressure by the fluid is provided so as to communicate the valve chamber and the inlet passage.
【請求項6】 前記流体による背圧を逃すための通路
は、スリットであることを特徴とする請求項4又は5記
載の多段式流量制御弁。
6. The multi-stage flow control valve according to claim 4, wherein the passage for releasing the back pressure caused by the fluid is a slit.
JP34278197A 1997-12-12 1997-12-12 Solenoid valve and multistage flow control valve equipped with the solenoid valve Expired - Lifetime JP4077915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34278197A JP4077915B2 (en) 1997-12-12 1997-12-12 Solenoid valve and multistage flow control valve equipped with the solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34278197A JP4077915B2 (en) 1997-12-12 1997-12-12 Solenoid valve and multistage flow control valve equipped with the solenoid valve

Publications (2)

Publication Number Publication Date
JPH11173453A true JPH11173453A (en) 1999-06-29
JP4077915B2 JP4077915B2 (en) 2008-04-23

Family

ID=18356456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34278197A Expired - Lifetime JP4077915B2 (en) 1997-12-12 1997-12-12 Solenoid valve and multistage flow control valve equipped with the solenoid valve

Country Status (1)

Country Link
JP (1) JP4077915B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140136A (en) * 2001-10-18 2005-06-02 Katakura Industries Co Ltd Cutoff valve
KR100741008B1 (en) 2005-08-29 2007-07-20 레인보우스케이프주식회사 Solenoid valve for fountain
JP2013519051A (en) * 2010-02-02 2013-05-23 アスコ ジュコマティック エス.アー. Pilot operated solenoid valve
CN110500429A (en) * 2019-04-12 2019-11-26 北京七星华创流量计有限公司 Flow control valve and reaction chamber pressure control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140136A (en) * 2001-10-18 2005-06-02 Katakura Industries Co Ltd Cutoff valve
KR100741008B1 (en) 2005-08-29 2007-07-20 레인보우스케이프주식회사 Solenoid valve for fountain
JP2013519051A (en) * 2010-02-02 2013-05-23 アスコ ジュコマティック エス.アー. Pilot operated solenoid valve
CN110500429A (en) * 2019-04-12 2019-11-26 北京七星华创流量计有限公司 Flow control valve and reaction chamber pressure control device

Also Published As

Publication number Publication date
JP4077915B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP4283069B2 (en) Compound valve
JP5544459B2 (en) Pilot operated solenoid valve
US6532764B1 (en) Degree of supercooling control type expansion valve
US4548047A (en) Expansion valve
US11603832B2 (en) Capacity control valve having a throttle valve portion with a communication hole
JP2000146365A (en) Expansion member and valve unit usable therefor
JP2007533035A (en) Asymmetric volume booster configuration for valve actuators
US4840038A (en) Control device for use in a refrigeration circuit
JP4056378B2 (en) Differential pressure valve
JP2007085489A (en) Pressure control valve
JPH11173453A (en) Multi-stage flow rate control valve
KR20050054842A (en) Expansion valve
US3973410A (en) Disc-type automatic expansion valve for refrigerant
US7246501B2 (en) Shut-off valve, kit having a shut-off valve, and an expansion valve
KR20140076507A (en) Control valve
US4934156A (en) Evaporator pressure regulating valve controlled by an auxiliary force for a refrigerator installation
JPH0587746B2 (en)
JP2001066020A (en) Electromagnetic flow rate control valve
EP1292787A1 (en) Regulation insert with several adjustment possibilities
JP3908843B2 (en) Refrigeration / refrigeration cycle equipment and differential pressure regulating valve
JPS62147181A (en) Solenoid proportional type pressure control valve
JPS59106771A (en) High pressure valve
EP4321358A1 (en) Valve device and air conditioning device
KR20040031244A (en) Extension Valve Assembly for Air Conditioner of Vehicle
JPH07259778A (en) Capacity control device for screw compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term