JPH111724A - Method for preventing peeling crack of pressure vessel - Google Patents

Method for preventing peeling crack of pressure vessel

Info

Publication number
JPH111724A
JPH111724A JP15266197A JP15266197A JPH111724A JP H111724 A JPH111724 A JP H111724A JP 15266197 A JP15266197 A JP 15266197A JP 15266197 A JP15266197 A JP 15266197A JP H111724 A JPH111724 A JP H111724A
Authority
JP
Japan
Prior art keywords
pressure vessel
heat treatment
stress relief
relief annealing
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15266197A
Other languages
Japanese (ja)
Other versions
JP3501922B2 (en
Inventor
Toshiaki Fukada
利昭 深田
Ikuo Maeda
伊久雄 前田
Tomohiko Shintani
智彦 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15266197A priority Critical patent/JP3501922B2/en
Priority to IT98MI001268 priority patent/IT1303917B1/en
Publication of JPH111724A publication Critical patent/JPH111724A/en
Priority to ITMI20002396 priority patent/IT1319265B1/en
Application granted granted Critical
Publication of JP3501922B2 publication Critical patent/JP3501922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Articles (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing the occurrence of hardening in the interface between a base material and a stainless steel layer due to stress relief annealing and also the occurrence of peeling crack as delayed fracture. SOLUTION: In this method, a member for pressure vessel, where a stainless steel plate is laminated on the surface of a base material, is welded and then stress relief annealing is applied to prevent the peeling crack of the resultant pressure vessel. In this case, prior to the welding, heat treatment is applied to the member for pressure vessel at 560 to 640 deg.C, or, a method where heat treatment is applied at 560 to 640 deg.C prior to stress relief annealing can be adopted. Moreover, the stress relief annealing means heat treatment consisting of holding at 650 to 720 deg.C for 5 to 30 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧力容器の剥離割れ
防止方法に関し、詳細には石油精製等に用いられる圧力
容器であって、内面にステンレス鋼材が積層された圧力
容器のステンレス鋼材と母材の界面に発生する剥離割れ
を防止する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing peeling cracks in a pressure vessel, and more particularly to a pressure vessel used for petroleum refining and the like. And a method for preventing peeling cracks occurring at the interface of the steel sheet.

【0002】[0002]

【従来の技術】耐食性が要求される圧力容器には、炭素
鋼を母材としてその内面にステンレス鋼板が積層される
ことが一般的である。例えば、石油精製においては原油
から各種石油類を精製した後に残る重油を利用し、圧力
容器中でこの重油と高温高圧の水素とを反応させること
により、有用な軽質油類を取り出すということがなされ
ているが、この反応では副生成物として腐食性の高い硫
化水素が生成する。圧力容器の母材として通常使用され
るCr−Mo系合金鋼やCr−Mo−V系合金鋼等は、
この硫化水素に対する耐食性が低い。従って、この硫化
水素から母材を守るため、容器の内壁面にはSUS30
9やSUS347等のステンレス鋼板が積層されてい
る。
2. Description of the Related Art Generally, a pressure vessel requiring corrosion resistance is made of carbon steel as a base material and a stainless steel plate is laminated on the inner surface thereof. For example, in petroleum refining, useful light oils are extracted by utilizing heavy oil remaining after refining various petroleums from crude oil and reacting the heavy oil with high-temperature and high-pressure hydrogen in a pressure vessel. However, this reaction produces highly corrosive hydrogen sulfide as a by-product. Cr-Mo alloy steel or Cr-Mo-V alloy steel, which is usually used as a base material of a pressure vessel,
The corrosion resistance to hydrogen sulfide is low. Therefore, in order to protect the base material from the hydrogen sulfide, the inner wall surface of the container is made of SUS30.
9 and SUS347.

【0003】石油精製用圧力容器は、上記母材表面にス
テンレス鋼板が密着されたクラッド鋼を用いるか、或い
は上記母材表面にサブマージアーク溶接等によりステン
レス鋼板が肉盛溶接された材料を用いて、上記材料をリ
ング状または板状の部品に加工し、これらの部品を継手
溶接によりつなぎ合わせることにより最終製品の形状に
形成されている。従って、多くの継手溶接部が存在して
おり、継手溶接部の残留応力の除去を目的として溶接後
に熱処理が施されている。この溶接後熱処理は応力除去
焼鈍と呼ばれていて、溶接時に溶け込んだ水素の放出
や、母材の機械的特性の調整等にも有効である。この応
力除去焼鈍は650℃以上720℃以下の温度で5〜3
0時間行われることが一般的であり、圧力容器製作工程
においては、ほぼ最終製品の状態にて、大型の焼鈍炉に
搬入して実施されている。
[0003] A pressure vessel for oil refining uses clad steel in which a stainless steel plate is closely adhered to the surface of the base material, or a material in which a stainless steel plate is overlay-welded to the surface of the base material by submerged arc welding or the like. The above material is processed into a ring-shaped or plate-shaped part, and these parts are connected to each other by joint welding to form a final product. Therefore, there are many joint welds, and heat treatment is performed after welding for the purpose of removing residual stress in the joint welds. This post-weld heat treatment is called stress relief annealing, and is also effective in releasing hydrogen dissolved during welding, adjusting the mechanical properties of the base material, and the like. This stress relief annealing is performed at a temperature of 650 ° C. or more and 720 ° C. or less for 5 to 3 times.
It is generally carried out for 0 hours, and in the pressure vessel manufacturing process, it is carried out by being carried into a large-scale annealing furnace in a substantially finished product state.

【0004】しかしながら、この応力除去焼鈍により圧
力容器用部材の肉盛溶接部やクラッドの界面組織が硬化
し、さらに石油精製用圧力容器の運転停止時に、水素が
その硬化した上記界面組織に侵入することにより界面を
脆化させ、母材とステンレス鋼層の界面で一種の遅れ割
れである剥離割れが生じる問題が起こっている。
[0004] However, the stress relief annealing hardens the interface structure of the cladding weld portion and the cladding of the pressure vessel member, and furthermore, when the operation of the oil refining pressure vessel is stopped, hydrogen enters the hardened interface structure. As a result, the interface is embrittled, and there is a problem that peel cracking, which is a kind of delayed cracking, occurs at the interface between the base material and the stainless steel layer.

【0005】溶接後に応力除去焼鈍を施すことにより母
材−ステンレス鋼材の界面で剥離割れが発生する理由
は、上記応力除去焼鈍により上記界面にマルテンサイト
組織が生成することで、界面の硬度が大幅に上昇して割
れ易くなるからである。そこで、生成したマルテンサイ
ト組織を熱処理によりトルースタイトやソルバイト等の
他の組織に代えて耐剥離割れ性を向上させる方法が考え
られる。例えば圧力容器製作における応力除去焼鈍後に
600℃前後の熱処理を実施することによりステンレス
鋼層の剥離を防止する方法が知られている(「DISBONDIN
G MECHANISMS, IMPROVEMENT OF OVERLAY BEHAVIOR」 CRE
USOT-LOIRE INDUSTRIE Seminar, 1992)。但し、石油精製
用圧力容器製作過程において、応力除去焼鈍後の最終製
品形状の状態で大型の焼鈍炉において再度600℃前後
の熱処理を行うことは、製造コスト及び工期の面で望ま
しいことではないことから、応力除去焼鈍後の圧力容器
に熱処理を施さなくとも剥離割れを防止できる方法の開
発が要望されていた。
[0005] The reason why the stress-relieving annealing is performed after welding to cause peeling cracks at the interface between the base metal and the stainless steel material is that martensite structure is formed at the interface by the stress-relief annealing, and the hardness of the interface is greatly increased. Because it is easily broken. Therefore, a method of improving the peeling crack resistance by replacing the generated martensite structure with another structure such as troostite or sorbite by heat treatment can be considered. For example, there is known a method for preventing the stainless steel layer from peeling off by performing a heat treatment at about 600 ° C. after stress relief annealing in pressure vessel manufacturing (“DISBONDIN”).
G MECHANISMS, IMPROVEMENT OF OVERLAY BEHAVIOR '' CRE
USOT-LOIRE INDUSTRIE Seminar, 1992). However, in the process of manufacturing a pressure vessel for petroleum refining, it is not desirable from the viewpoint of manufacturing cost and construction period to perform heat treatment at around 600 ° C. again in a large annealing furnace in the state of the final product after stress relief annealing. Accordingly, there has been a demand for the development of a method capable of preventing peeling cracks without performing heat treatment on the pressure vessel after the stress relief annealing.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、応力除去焼鈍による母材
−ステンレス層界面の硬化を防ぎ、一種の遅れ破壊であ
る剥離割れを防止することができる方法を提供しようと
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and prevents hardening of a base material-stainless steel layer interface by stress relief annealing, and prevents peeling cracks, which are a kind of delayed fracture. It seeks to provide a way in which it can be done.

【0007】[0007]

【課題を解決するための手段】上記課題を解決し得た本
発明とは、母材表面にステンレス鋼板が積層された圧力
容器用部材を溶接し、次いで応力除去焼鈍を施すことに
より製造される圧力容器の剥離割れを防止する方法であ
って、前記溶接に先立って上記圧力容器用部材に560
℃以上640℃以下の熱処理を施すことを要旨とするも
のである。或いは、上記応力除去焼鈍に先立って560
℃以上640℃以下の熱処理を施す方法を採用しても良
い。尚、本発明において応力除去焼鈍とは、650℃以
上720℃以下の温度において、5時間以上30時間以
下保持する熱処理を意味するものである。
According to the present invention, which has solved the above-mentioned problems, the present invention is manufactured by welding a member for a pressure vessel in which a stainless steel plate is laminated on a surface of a base material, and then performing stress relief annealing. A method for preventing peeling cracks of a pressure vessel, wherein the pressure vessel member has 560
The gist of the invention is to perform a heat treatment at a temperature of not less than 640 ° C. Alternatively, 560 prior to the stress relief annealing.
A method of performing a heat treatment at a temperature of not less than 640 ° C and not more than 640 ° C may be employed. In the present invention, the stress relieving annealing means a heat treatment that is maintained at a temperature of 650 ° C. to 720 ° C. for 5 hours to 30 hours.

【0008】[0008]

【発明の実施の形態】そもそも母材−ステンレス鋼層界
面にマルテンサイト組織が生成する機構は、界面の合金
元素(Cr,Ni等)の濃度が連続的に変化しているた
め、部分的にオーステナイト化温度が非常に低下してお
り、上記応力除去焼鈍によって部分的にオーステナイト
化された領域が冷却によりマルテンサイトとなるからで
あると考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the first place, the mechanism of the formation of a martensite structure at the interface between a base material and a stainless steel layer is partially due to the continuous change in the concentration of alloying elements (Cr, Ni, etc.) at the interface. This is considered to be because the austenitizing temperature is very low, and the region partially austenitized by the stress relief annealing becomes martensite by cooling.

【0009】従って応力除去焼鈍によってオーステナイ
ト化される領域を予めなくしておけば、マルテンサイト
組織が生成されなくなる。そこで本発明では、応力除去
焼鈍の前に、その焼鈍温度よりも低い温度で加熱・保持
することにより、界面の結晶組織を全てフェライト+炭
化物に変態させる熱処理を施す方法を採用するものであ
る。一旦、フェライト+炭化物に変態させられた結晶組
織のオーステナイト化温度は応力除去焼鈍の加熱温度よ
り十分高く、応力除去焼鈍を施してもオーステナイト化
することはないので、急冷してもマルテンサイト組織が
生成することはない。従って、界面の硬さは応力除去焼
鈍終了後も上昇することがないので、遅れ割れ発生の要
因がなくなり、耐剥離割れ性が改善されるものである。
Therefore, if a region to be austenitized by stress relief annealing is eliminated in advance, a martensite structure is not generated. Therefore, in the present invention, a method is employed in which, prior to the stress relief annealing, a heat treatment for transforming all the crystal structure at the interface into ferrite + carbide by heating and holding at a temperature lower than the annealing temperature is adopted. The austenitizing temperature of the crystal structure once transformed into ferrite + carbide is sufficiently higher than the heating temperature of stress relief annealing, and it does not become austenite even if stress relief annealing is performed. It does not generate. Therefore, since the hardness of the interface does not increase even after the end of the stress relief annealing, the cause of delayed cracking is eliminated, and the peeling crack resistance is improved.

【0010】更に、本発明に係る方法を採用すれば、応
力除去焼鈍をおこなってもマルテンサイトが生成されな
い機構について詳述すると、以下の通りである。即ち、
Cr−Mo鋼等の母材にステンレス鋼を溶接(積層)す
ると、界面にマルテンサイト相が生成する。このマルテ
ンサイト相は、600℃前後の加熱ではオーステナイト
変態を起こすことはなく、母材からの浸炭により炭化物
(例えば炭化クロム)を析出すると共に、上記マルテン
サイト相が分解してフェライト組織に変化する。このよ
うなフェライト+炭化物は、応力除去焼鈍時において高
温度(650℃以上720℃以下)に加熱されても、既
に形成されている炭化物が地相に固溶することはなく、
またフェライト化された地相に存在するCやCr等の組
成も少なくなっているので、オーステナイト化変態温度
が高くなっていてオーステナイト変態を起こしにくくな
っていると共に、たとえ部分的にオーステナイト変態し
たとしても冷却過程にマルテンサイト変態が起こりにく
い(焼入れが入りにくい)状態となっているからであ
る。
Further, the mechanism by which martensite is not generated even when stress relief annealing is performed by employing the method according to the present invention will be described in detail below. That is,
When stainless steel is welded (laminated) to a base material such as Cr-Mo steel, a martensite phase is generated at the interface. This martensite phase does not undergo austenite transformation when heated to about 600 ° C., and precipitates carbide (for example, chromium carbide) due to carburization from the base material, and the martensite phase is decomposed to change into a ferrite structure. . Even if such ferrite + carbide is heated to a high temperature (650 ° C. or more and 720 ° C. or less) during stress relief annealing, the already formed carbide does not form a solid solution in the ground phase.
In addition, since the composition of C, Cr, etc. existing in the ferritized geological phase is also reduced, the austenite transformation temperature is high, making it difficult for austenite transformation to occur. This is because martensitic transformation hardly occurs during the cooling process (hardening hardly occurs).

【0011】図1は、応力除去焼鈍(690℃×21時
間)の前に施す熱処理(保持時間:5時間)の温度と、
応力除去焼鈍後の界面硬さの関係を示すグラフである。
界面硬さは600℃付近で極小となり、660℃以下で
400Hv以下となっており、640℃以下で350H
v以下となっている。界面硬さが400Hv以下であれ
ば耐剥離割れ性を確認できるが、界面硬さを350Hv
以下とすることにより耐剥離割れ性は大幅に向上するの
で、640℃以下で熱処理を行うことが推奨される。熱
処理温度が低過ぎると熱処理効果が十分に得られず、ま
た保持時間に長時間を要するので560℃以上とするこ
とが望ましい。保持時間については短か過ぎるとフェラ
イトと炭化物が十分に分離できないので1時間以上が望
ましく、5時間以上がより望ましい。一方、保持時間が
長過ぎると母材の強度低下を招く恐れがあるので200
時間以下とする必要があり、また生産効率の点からはで
きるだけ熱処理時間は短い方が望ましく、20時間以下
がより望ましい。
FIG. 1 shows the temperature of the heat treatment (retention time: 5 hours) applied before the stress relief annealing (690 ° C. × 21 hours).
4 is a graph showing a relationship between interface hardness after stress relief annealing.
The interface hardness is minimal at around 600 ° C., is 400 Hv or less at 660 ° C. or less, and 350 Hv at 640 ° C. or less.
v or less. If the interface hardness is 400 Hv or less, peeling crack resistance can be confirmed.
Since the resistance to peeling cracking is greatly improved by setting the temperature to the following, it is recommended to perform the heat treatment at 640 ° C. or lower. If the heat treatment temperature is too low, a sufficient heat treatment effect cannot be obtained, and a long holding time is required. If the holding time is too short, the ferrite and the carbide cannot be sufficiently separated, so that the holding time is preferably 1 hour or more, and more preferably 5 hours or more. On the other hand, if the holding time is too long, the strength of the base material may be reduced.
It is necessary to set the heat treatment time as short as possible, and from the viewpoint of production efficiency, the heat treatment time is preferably as short as possible, more preferably 20 hours or less.

【0012】このように本発明によれば応力除去焼鈍後
に熱処理を行わなくともマルテンサイト組織の生成を防
止して剥離割れを防ぐことができる。従って、本発明に
よれば、圧力容器全体ではなく個々の圧力容器用部材に
対し剥離割れ防止用の熱処理を行うことができ、また耐
剥離割れ性の改善が必要な部材のみに対して熱処理を行
うこともできる。この様に圧力容器全体に熱処理を行う
のではなく、圧力容器部材に熱処理を施すことができる
ので、熱処理炉のスペース効率やエネルギー効率も高ま
り、複数の圧力容器分の圧力容器用部材に、同時に熱処
理を施すことも可能であるので、工期の短縮を図ること
もできる。尚、本発明方法は界面の結晶組織をフェライ
ト+炭化物にすることによりマルテンサイトの生成を防
止する方法であるので、応力除去焼鈍前であれば、圧力
容器用部材を組みつけた後に熱処理を行っても良い。
As described above, according to the present invention, it is possible to prevent the formation of martensite structure and prevent the occurrence of peeling cracks without performing heat treatment after the stress relief annealing. Therefore, according to the present invention, heat treatment for preventing peeling cracks can be performed not on the entire pressure vessel but on individual pressure vessel members, and heat treatment can be performed only on members requiring improvement in peeling crack resistance. You can do it too. Since the heat treatment can be performed on the pressure vessel members instead of performing the heat treatment on the entire pressure vessel in this manner, the space efficiency and energy efficiency of the heat treatment furnace can be increased, and the pressure vessel members for a plurality of pressure vessels can be simultaneously formed. Since heat treatment can be performed, the construction period can be shortened. Since the method of the present invention is a method of preventing the formation of martensite by changing the crystal structure of the interface to ferrite + carbide, before the stress relief annealing, heat treatment is performed after assembling the pressure vessel member. May be.

【0013】以下本発明を実施例によってさらに詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に適合し得る範囲で適当に変
更して実施することはいずれも本発明の技術的範囲に含
まれるものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and the present invention will be carried out with appropriate modifications within a range that can conform to the above and subsequent points. All of these are included in the technical scope of the present invention.

【0014】[0014]

【実施例】実施例1 2.25Cr−1 Mo鋼を母材とする石油精製用圧力容器の
実機材であって、帯状電極サブマージアーク溶接により
母材の内表面にSUS309及びSUS347の2層の
ステンレス鋼層を肉盛溶接により形成した鋼材(60m
mφ)を供試材として用いた。表1に示す種々の温度で
5時間の熱処理を行った後、690℃で21時間の応力
除去焼鈍を行い、ステンレス鋼層と母材との界面の硬さ
を測定した。硬さの測定は、各試料につき20か所の測
定を行い、夫々の最高硬さを求め、それらの平均をとっ
たものである。試験の結果を表1に併記する。
EXAMPLE 1 A pressure vessel for petroleum refining using 2.25Cr-1 Mo steel as a base material, and two layers of SUS309 and SUS347 stainless steel were formed on the inner surface of the base material by band electrode submerged arc welding. Steel material (60m
mφ) was used as a test material. After performing heat treatment at various temperatures shown in Table 1 for 5 hours, stress relief annealing was performed at 690 ° C. for 21 hours, and the hardness of the interface between the stainless steel layer and the base material was measured. The hardness is measured by measuring 20 places for each sample, obtaining the maximum hardness of each sample, and averaging them. Table 1 also shows the results of the test.

【0015】[0015]

【表1】 [Table 1]

【0016】応力除去焼鈍前の熱処理温度が640℃以
下であれば、応力除去焼鈍後の界面硬さが約350Hv
以下となることが分かる。
If the heat treatment temperature before the stress relief annealing is 640 ° C. or less, the interface hardness after the stress relief annealing is about 350 Hv.
It turns out that it becomes as follows.

【0017】実施例2 実施例1と同様にして得られた供試材No.1を用いて
耐剥離割れ感受性の評価を行った。剥離割れ試験の試験
条件は、試験温度480℃、水素圧力200kg/cm
2 ,保持時間48時間であり、保持終了後300℃/時
間の冷却速度で室温まで冷却した。室温到達後336時
間(2週間)放置してから超音波探傷試験を行い、剥離
面積を測定した。供試材No.1に関して、剥離割れ防
止を目的とする熱処理(600℃×5Hr)を応力除去
焼鈍の前後に行った場合と、行わない場合の結果を表2
に示す。
Example 2 The test material No. 1 obtained in the same manner as in Example 1 was used. 1 was used to evaluate the susceptibility to peeling cracking. The test conditions for the peeling crack test were a test temperature of 480 ° C. and a hydrogen pressure of 200 kg / cm.
2. The holding time was 48 hours, and after the holding was completed, the sample was cooled to room temperature at a cooling rate of 300 ° C./hour. After leaving for 336 hours (2 weeks) after reaching room temperature, an ultrasonic flaw detection test was performed to measure the peeled area. Test material No. Table 2 shows the results obtained when heat treatment (600 ° C. × 5 hours) for preventing peeling cracks was performed before and after stress relief annealing and when heat treatment was not performed.
Shown in

【0018】また、実施例1のサブマージアーク溶接
(SAW)に代えて、ガスタングステンアーク溶接(G
TAW)を行った供試材No.2と、更に応力除去焼鈍
の熱処理の前に焼入れ(960℃×2.5Hr;水冷)
及び焼戻し(650℃×2.5Hr;空冷)を行った供
試材No.3を用いて、上記剥離割れ試験を行った。結
果は表2に併記する。
In place of the submerged arc welding (SAW) of the first embodiment, gas tungsten arc welding (G
TAW). 2 and further quenching before heat treatment of stress relief annealing (960 ° C × 2.5Hr; water cooling)
Specimen material No. 2 which had been subjected to tempering and tempering (650 ° C. × 2.5 hr; air cooling). Using No. 3, the above-mentioned peel cracking test was performed. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】剥離割れ防止を目的とした熱処理を行わな
い場合には剥離割れが発生しているが、本発明法によれ
ば、従来法と同様に剥離割れを防止することが可能であ
ることが分かる。
When no heat treatment for preventing peeling cracks is performed, peeling cracks occur. However, according to the method of the present invention, peeling cracks can be prevented similarly to the conventional method. I understand.

【0021】[0021]

【発明の効果】本発明は以上の様に構成されているの
で、応力除去焼鈍後に熱処理を行わなくとも圧力容器の
母材とステンレス鋼層との界面で発生する剥離割れを防
止することができる方法の提供が可能となった。従っ
て、圧力容器全体ではなく個々の圧力容器用部材に対し
剥離割れ防止用の熱処理を行うことができ、また耐剥離
割れ性の改善が必要な部材のみに対して熱処理を行えば
良いこととなった。
As described above, the present invention is configured as described above, so that peeling cracks generated at the interface between the base material of the pressure vessel and the stainless steel layer can be prevented without performing heat treatment after stress relief annealing. Provision of a method became possible. Therefore, heat treatment for preventing peeling cracks can be performed not on the entire pressure vessel but on individual pressure vessel members, and heat treatment only needs to be performed on members that require improvement in peeling crack resistance. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】応力除去焼鈍前の熱処理温度と応力除去焼鈍後
の界面硬さの関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a heat treatment temperature before stress relief annealing and an interface hardness after stress relief annealing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C21D 9/50 101 C21D 9/50 101Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C21D 9/50 101 C21D 9/50 101Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母材表面にステンレス鋼板が積層された
圧力容器用部材を溶接し、次いで応力除去焼鈍を施すこ
とにより製造される圧力容器の剥離割れを防止する方法
であって、 前記溶接に先立って上記圧力容器用部材に560℃以上
640℃以下の熱処理を施すことを特徴とする圧力容器
の剥離割れ防止方法。
1. A method for preventing a pressure vessel manufactured by welding a pressure vessel member having a stainless steel plate laminated on a surface of a base material and then subjecting the pressure vessel to stress relief annealing, wherein the welding includes: A method for preventing peeling cracks of a pressure vessel, comprising subjecting the pressure vessel member to a heat treatment at 560 ° C. or more and 640 ° C. or less beforehand.
【請求項2】 母材表面にステンレス鋼板が積層された
圧力容器用部材を溶接し、次いで応力除去焼鈍を施すこ
とにより製造される圧力容器の剥離割れを防止する方法
であって、 上記応力除去焼鈍に先立って560℃以上640℃以下
の熱処理を施すことを特徴とする圧力容器の剥離割れ防
止方法。
2. A method for preventing a crack of a pressure vessel manufactured by welding a member for a pressure vessel in which a stainless steel plate is laminated on a surface of a base material and then performing stress relief annealing, the method comprising: A method for preventing separation cracking of a pressure vessel, comprising performing a heat treatment at 560 ° C. or more and 640 ° C. or less prior to annealing.
【請求項3】 650℃以上720℃以下の温度にて、
5時間以上30時間以下保持することにより応力除去焼
鈍を行う請求項1または2に記載の圧力容器の剥離割れ
防止方法。
3. At a temperature of 650 ° C. or more and 720 ° C. or less,
The method for preventing separation cracking of a pressure vessel according to claim 1 or 2, wherein the stress relief annealing is performed by holding the pressure for 5 hours or more and 30 hours or less.
JP15266197A 1997-06-10 1997-06-10 Prevention of peeling crack of pressure vessel Expired - Fee Related JP3501922B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15266197A JP3501922B2 (en) 1997-06-10 1997-06-10 Prevention of peeling crack of pressure vessel
IT98MI001268 IT1303917B1 (en) 1997-06-10 1998-06-05 Exfoliation crack prevention method for pressurised container - involves performing heat treatment prior to welding within specified temperature
ITMI20002396 IT1319265B1 (en) 1997-06-10 2000-11-07 METHOD FOR PREVENTING SHEET CRACKS IN PRESSURE CONTAINERS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15266197A JP3501922B2 (en) 1997-06-10 1997-06-10 Prevention of peeling crack of pressure vessel

Publications (2)

Publication Number Publication Date
JPH111724A true JPH111724A (en) 1999-01-06
JP3501922B2 JP3501922B2 (en) 2004-03-02

Family

ID=15545329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15266197A Expired - Fee Related JP3501922B2 (en) 1997-06-10 1997-06-10 Prevention of peeling crack of pressure vessel

Country Status (2)

Country Link
JP (1) JP3501922B2 (en)
IT (1) IT1319265B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161667A1 (en) * 2012-04-26 2015-12-24 株式会社Ihi Pressure vessel overlay welding method and pressure vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161667A1 (en) * 2012-04-26 2015-12-24 株式会社Ihi Pressure vessel overlay welding method and pressure vessel

Also Published As

Publication number Publication date
JP3501922B2 (en) 2004-03-02
ITMI20002396A1 (en) 2002-05-07
IT1319265B1 (en) 2003-09-26

Similar Documents

Publication Publication Date Title
RU2196671C2 (en) Method for repairing articles of alloyed steel by welding
CN109789504B (en) Method for manufacturing ferritic heat-resistant steel welded structure, and ferritic heat-resistant steel welded structure
Pai et al. Results of tensile, hardness and bend tests of modified 9Cr 1Mo steel welds: Comparison between cold wire and hot wire gas tungsten arc welding (GTAW) processes
US4404047A (en) Process for the improved heat treatment of steels using direct electrical resistance heating
Kalyankar et al. Effect of post weld heat treatment on mechanical properties of pressure vessel steels
Natesan et al. Report on the completion of the procurement of the first heat of Alloy 709
CN109789505B (en) Method for manufacturing ferritic heat-resistant steel welded structure, and ferritic heat-resistant steel welded structure
Natesan et al. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.
Guo et al. Microstructural characterization and mechanical behavior of Cr25Ni35NbM alloy dissimilar weld joint for application in a hydrogen reformer furnace
Ampornrat et al. Tensile and stress corrosion cracking behavior of ferritic–martensitic steels in supercritical water
JPH111724A (en) Method for preventing peeling crack of pressure vessel
JPH10273733A (en) Heat treatment for recycling of equipment made of stainless steel for nuclear power use
Parrington Failure of a stainless steel holding tank
Toppo et al. Studies on the Influence of Sodium Hydroxide Concentration on the Stress Corrosion Cracking Behavior of Modified 9Cr-1Mo (P91) Steel Weldment
RU2559598C2 (en) Reconditioning of articles from low-carbon perlite steel after operation
JPH09324897A (en) Pressure vessel for petroleum refining operation and its heat treatment process
JPH09111335A (en) Method for heat-treating two-phase stainless steel
Siefert et al. Material behavior of T23 and T24
JPS6151613B2 (en)
JPH0128815B2 (en)
RU2798180C2 (en) High-quality material for flexible long-dimensional pipes and method for its manufacture
SU840161A1 (en) Method of treatment of austenite corrosion-resistant steel welded articles
JPS61235516A (en) Heat treatment of welded stainless steel joint
JPH0368928B2 (en)
Lundin et al. Effect of welding conditions on transformation and properties of heat-affected zones in LWR (light-water reactor) vessel steels

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees