JPH11172301A - Nickel-type/zirconium-type powder and its production, solid electrolyte type fuel cell using the same and its production - Google Patents

Nickel-type/zirconium-type powder and its production, solid electrolyte type fuel cell using the same and its production

Info

Publication number
JPH11172301A
JPH11172301A JP9356315A JP35631597A JPH11172301A JP H11172301 A JPH11172301 A JP H11172301A JP 9356315 A JP9356315 A JP 9356315A JP 35631597 A JP35631597 A JP 35631597A JP H11172301 A JPH11172301 A JP H11172301A
Authority
JP
Japan
Prior art keywords
phase
powder
zirconium
nickel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9356315A
Other languages
Japanese (ja)
Inventor
Haruo Nishiyama
治男 西山
Masanobu Aizawa
正信 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP9356315A priority Critical patent/JPH11172301A/en
Publication of JPH11172301A publication Critical patent/JPH11172301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To produce a nickel-type/zirconium-type powder used as a fuel electrode of a solid electrolyte type fuel cell and capable of improving the power generation characteristic and durability of the cell. SOLUTION: This nickel-type/zirconium-type powder consists of a primary phase composed of Ni and/or NiO and a secondary phase composed of Zr and/or ZrO2 . The primary phase and/or the secondary phase has a columnar form extending in one direction or a lamellar form. Owing to this eutectic structure, coagulation of Ni can be inhibited even in the case of exposure to a high temp. such as operating temp. (1000 deg.C) of the solid electrolyte type fuel cell, and the reduction of electric conductivity as well as the decrease of power generation area can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池(SOFCともいう)の燃料極用等として好適なニ
ッケル系/ジルコニウム系粉末及びその製造方法に関す
る。特には、SOFCの発電特性及び耐久性の向上に寄
与し得る、粉体の組成と組織の均一性が向上したニッケ
ル系/ジルコニウム系粉末及びその製造方法に関する。
さらに、そのようなニッケル系/ジルコニウム系粉末で
構成された燃料極を有する固体電解質型燃料電池及びそ
の製造方法に関する。
The present invention relates to a nickel-based / zirconium-based powder suitable for use as a fuel electrode of a solid oxide fuel cell (SOFC) and a method for producing the same. In particular, the present invention relates to a nickel-based / zirconium-based powder, which can contribute to improvement in power generation characteristics and durability of an SOFC, and has improved powder composition and structure uniformity, and a method for producing the same.
Furthermore, the present invention relates to a solid oxide fuel cell having a fuel electrode composed of such a nickel-based / zirconium-based powder and a method for manufacturing the same.

【0002】[0002]

【従来の技術】SOFCの燃料極用材料としては、Ni
OとY23 安定化ZrO2 (YSZ)とを混合複合化
した複合粉末の焼成層が主に用いられている(特開昭6
1−153280、特開昭61−198570等)。な
お、焼成層中のNiOは、SOFCの運転中に還元され
てNiとなり、該層はNi/YSZサーメット膜とな
る。
2. Description of the Related Art As a fuel electrode material for SOFC, Ni
A fired layer of a composite powder obtained by mixing and mixing O and Y 2 O 3 -stabilized ZrO 2 (YSZ) is mainly used (Japanese Unexamined Patent Publication No.
1-153280, JP-A-61-198570). Note that NiO in the fired layer is reduced to Ni during operation of the SOFC, and the layer becomes a Ni / YSZ cermet film.

【0003】このようなNi/YSZサーメット用の原
料粉末の製造方法としては、一般的に、NiO粉とYS
Z粉を両者とも固体の状態で混合し、その後昇温(仮
焼)して若干焼結することにより複合化する方法(固体
混合法)が採られている。混合方法としては、ボールミ
ルを用いるものや、メカノケミカル的機械混合によるも
のが知られている。また、Ni、Zr、Yをイオン状態
で混合し、これを熱分解する方法も提案されている(特
開平7−29575)。
[0003] As a method for producing such a raw material powder for Ni / YSZ cermet, generally, NiO powder and YS are used.
A method in which both powders are mixed in a solid state and then heated (calcined) and slightly sintered to form a composite (solid mixing method) is employed. As a mixing method, a method using a ball mill and a method using mechanochemical mechanical mixing are known. Also, a method has been proposed in which Ni, Zr, and Y are mixed in an ionic state and thermally decomposed (JP-A-7-29575).

【0005】[0005]

【発明が解決しようとする課題】上述の従来技術におい
て得られるニッケル系/ジルコニウム系粉末は、結局N
iあるいはNiO粒子と電解質材であるYSZ粒子とが
単純に分散している組織であった。Ni粒子とYSZ粒
子が分散している状態においては、SOFC運転条件下
(1,000℃、還元)においてNi粒子の凝集が進行
することにより、実際の発電面積の減少及び導電率の低
下が起こり、出力の低下が生ずる。
The nickel-based / zirconium-based powder obtained in the above-mentioned prior art is eventually N
The structure was such that i or NiO particles and YSZ particles as an electrolyte material were simply dispersed. In a state in which the Ni particles and the YSZ particles are dispersed, the aggregation of the Ni particles proceeds under the SOFC operating conditions (1,000 ° C., reduction), which causes a decrease in the actual power generation area and a decrease in the conductivity. , The output is reduced.

【0006】本発明は、このような問題点に鑑みてなさ
れたもので、固体電解質型燃料電池の燃料極用等として
好適な、粉体の組成と組織の均一性が向上したニッケル
系/ジルコニウム系粉末及びその製造方法を提供するこ
とを目的とする。さらに、そのようなニッケル系/ジル
コニウム系粉末で構成された燃料極を有する、耐久性及
び発電効率の高い固体電解質型燃料電池及びその製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is suitable for use as a fuel electrode of a solid oxide fuel cell, and has a nickel-based / zirconium having improved powder composition and texture uniformity. It is an object to provide a system powder and a method for producing the same. It is still another object of the present invention to provide a solid electrolyte fuel cell having a fuel electrode composed of such a nickel-based / zirconium-based powder and having high durability and high power generation efficiency, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明のニッケル系/ジ
ルコニウム系粉末は、Ni及び/又はNiOからなる第
1相と、 Zr及び/又はZrO2 からなる第2相と、
からなり、 上記第1相及び第2相が、ある方向に延び
る柱状又は層状の形態を有することを特徴とする。
The nickel-based / zirconium-based powder of the present invention comprises a first phase composed of Ni and / or NiO, a second phase composed of Zr and / or ZrO 2 ,
Wherein the first phase and the second phase have a columnar or layered form extending in a certain direction.

【0008】また、本発明のニッケル系/ジルコニウム
系粉末は、Ni及び/又はNiOからなる第1相と、
Zr及び/又はZrO2 からなる第2相と、からなり、
上記第1相又は第2相のうちのいずれか1相が母相と
なり、他の1相が該母相中に柱状組織あるいは球状、枝
状の組織として分散していることを特徴とする。ここで
いうZrO2 とは、Y23 を3〜20mol 含む部分安
定・安定化ジルコニアも含む。
The nickel / zirconium powder of the present invention comprises a first phase comprising Ni and / or NiO;
A second phase consisting of Zr and / or ZrO 2 ,
One of the first phase and the second phase is a parent phase, and the other phase is dispersed in the parent phase as a columnar structure or a spherical or branched structure. Here, ZrO 2 also includes partially stabilized and stabilized zirconia containing 3 to 20 mol of Y 2 O 3 .

【0009】ここで、柱状の組織とは、図1(A)に示
すように、一方向に延びる多くの結晶を束にまとめた形
態の組織である。層状の組織とは、図1(B)に示すよ
うに、二次元的な広がりを有する結晶が層状に重なった
組織である。母相中に柱状組織あるいは球状、枝状の組
織が分散した組織とは、図1(C)に示すように白抜き
で示す母相中を黒抜きで示す相が一方向に柱状に延びて
いる組織である。
Here, the columnar structure is a structure in which many crystals extending in one direction are bundled as shown in FIG. As shown in FIG. 1B, a layered structure is a structure in which crystals having a two-dimensional spread overlap in a layered manner. As shown in FIG. 1 (C), a columnar structure or a structure in which a spherical or branch-like structure is dispersed in a parent phase means that a phase shown in a white outline in a parent phase shown in a white outline extends columnar in one direction. Organization.

【0010】上記の柱状、層状、あるいは母相中に柱状
組織が分散した組織(共晶組織)のため、固体電解質型
燃料電池の運転温度(1,000℃)のような高温にさ
らされても、Niの凝集を抑制することができる。
Because of the above-mentioned columnar, layered, or microstructure in which the columnar structure is dispersed in the matrix (eutectic structure), it is exposed to a high temperature such as the operating temperature (1,000 ° C.) of a solid oxide fuel cell. Also, it is possible to suppress the aggregation of Ni.

【0011】本発明のニッケル系/ジルコニウム系粉末
の製造方法は、原料粉末あるいは原料溶液を調合・混合
し、調合・混合あるいは調合・混合・熱処理した原料粉
末を加圧成形して圧粉体を得、該圧粉体を焼成して焼結
体を得、該焼結体にレーザ照射又はアーク加熱などで部
分的に溶融し、溶融した融滴を急冷することを特徴とす
る。
In the method for producing a nickel-based / zirconium-based powder of the present invention, a raw material powder or a raw material solution is prepared and mixed, and the prepared, mixed or prepared, mixed and heat-treated raw material powder is subjected to pressure molding to form a green compact. Then, the green compact is fired to obtain a sintered body, the sintered body is partially melted by laser irradiation, arc heating, or the like, and the molten droplet is rapidly cooled.

【0012】本発明の固体電解質型燃料電池は、 空気
極、固体電解質層、燃料極及びインターコネクターを含
む固体電解質型燃料電池であって; 上記燃料極が、
Ni及び/又はNiOからなる第1相と、Zr及び/又
はZrO2 からなる第2相と、からなる粉末であって、
上記第1相及び第2相が、ある方向に延びる柱状又は層
状の形態を有する粉末の焼成体からなることを特徴とす
る。または、上記燃料極を構成する焼成層の粉末が、上
記第1相又は第2相のうちのいずれか1相が母相とな
り、他の1相が該母相中に柱状組織あるいは球状、枝状
の組織として分散していることを特徴とする。なお、導
電性等から、TiO2 、Al23 、SiO2 を少なく
とも一種以上含ませて第3相の形態を有するニッケル系
/ジルコニウム系粉末、燃料極としてもよい。
[0012] A solid oxide fuel cell according to the present invention is a solid oxide fuel cell including an air electrode, a solid electrolyte layer, a fuel electrode, and an interconnector;
A powder comprising a first phase composed of Ni and / or NiO and a second phase composed of Zr and / or ZrO 2 ,
It is characterized in that the first phase and the second phase are formed of a powdered sintered body having a columnar or layered shape extending in a certain direction. Alternatively, the powder of the sintering layer constituting the fuel electrode has a structure in which one of the first phase and the second phase is a parent phase and the other phase has a columnar structure, a spherical shape, or a branch in the parent phase. It is characterized by being dispersed as a tissue. Incidentally, from the viewpoint of conductivity and the like, at least one or more of TiO 2 , Al 2 O 3 , and SiO 2 may be contained to form a nickel-based / zirconium-based powder having a third phase form, or a fuel electrode.

【0013】[0013]

【発明の実施の形態】本発明においては、上記粉末中
で、柱状又は層状組織の結晶成長長さhと該組織の幅r
との関係が2r<hを満たす組織が、全組織の中で50
mol%以上を占めることが好ましい。なお、r、hの幾何
学的意味は図1に示すとおりである。このような粉末組
織はNi凝集抑制の効果が一層優れている。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a crystal growth length h of a columnar or layered structure and a width r of the structure in the above powder are described.
Of the organizations satisfying 2r <h are 50% of all the organizations.
Preferably, it accounts for at least mol%. The geometric meanings of r and h are as shown in FIG. Such a powder structure is more excellent in the effect of suppressing Ni agglomeration.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。 (1)原料粉末の調合・混合:ジルコニウム、イットリ
ウム及びニッケルの硝酸塩原料を用いて、30mol%{Z
rO2 (8mol%)Y23 }−70mol%NiO組成とな
るように調合した。この調合した液に、水酸化ナトリウ
ムを共沈剤として加え、共沈法により平均径1μm の混
合粉末を得た。共沈法により得られた混合原料粉末にさ
らにバインダー5wt% を加えボールミルを用いて24時
間混合した。なお、NiO/8YSZ=25/75〜9
0/10mol%の範囲において、後述する溶融→急冷プロ
セスによって共晶組織の粉末が得られることを確認し
た。
Embodiments of the present invention will be described below. (1) Preparation and mixing of raw material powder: 30 mol% @Z using zirconium, yttrium and nickel nitrate raw materials
rO 2 (8 mol%) Y 2 O 3 } −70 mol% NiO was prepared. Sodium hydroxide was added as a coprecipitant to the prepared liquid, and a mixed powder having an average diameter of 1 μm was obtained by a coprecipitation method. 5 wt% of a binder was further added to the mixed raw material powder obtained by the coprecipitation method, and the mixture was mixed using a ball mill for 24 hours. In addition, NiO / 8YSZ = 25 / 75-9
In the range of 0/10 mol%, it was confirmed that a powder having a eutectic structure was obtained by a melting-to-quenching process described later.

【0015】(2)成形・焼成:上記混合原料粉末を、
一軸プレス機を用いて10kgf/mm2 の圧力でプレス成形
した。成形体の寸法はφ22×5t mm であった。この成
形体を、大気雰囲気下、1,500℃で5時間焼成し焼
結体を得た。この焼結体の密度は理論密度の97%以上
であった。
(2) Forming and firing: The above mixed raw material powder is
Press molding was performed at a pressure of 10 kgf / mm 2 using a uniaxial press. The dimensions of the molded body was φ22 × 5 t mm. The molded body was fired at 1,500 ° C. for 5 hours in an air atmosphere to obtain a sintered body. The density of this sintered body was 97% or more of the theoretical density.

【0016】(3)溶融・共晶粉作製:上記の焼結体
に、炭酸ガスレーザ(パワー密度:1kW/cm2、ビーム径
10mmφ)を当てて、部分的に溶融させ、溶滴を水冷銅
盤上に滴下させて共晶組織のNiO−YSZバルク体を
得た。得られたバルク体を粉砕することにより、電解質
界面層あるいはその上部の層に適した粉末粒径(例えば
0.5〜3μm 程度)とした。
(3) Production of molten / eutectic powder: A carbon dioxide laser (power density: 1 kW / cm 2 , beam diameter: 10 mmφ) is applied to the above sintered body to partially melt it, and the droplets are cooled with a water-cooled copper plate. It was dropped on to obtain a NiO-YSZ bulk body having a eutectic structure. The obtained bulk body was pulverized to obtain a powder particle size (for example, about 0.5 to 3 μm) suitable for the electrolyte interface layer or a layer thereabove.

【0017】(4)成膜・焼成:有機溶剤としてのエタ
ノールを68部、分散剤としてのポリカルボン酸型高分
子界面活性剤を1部、消泡剤としてのジアルキルスルホ
コハク酸塩を1部、バインダーとしてのセルロースを3
部混合してスラリーを作製した。このスラリーを、La
0.75Sr0.25MnO3 の上にインターコネクター及び電
解質膜を成膜した基板上に、ディッピングによりスラリ
ーコートした。これを乾燥後1,450℃で焼成した。
得られたニッケル系/ジルコニウム系膜の厚さは150
μm 、気孔率は27%であった。
(4) Film formation and baking: 68 parts of ethanol as an organic solvent, 1 part of a polycarboxylic acid type polymer surfactant as a dispersant, 1 part of a dialkyl sulfosuccinate as an antifoaming agent, Cellulose as binder 3
Partially mixed to prepare a slurry. This slurry is
Slurry coating was performed by dipping on a substrate having an interconnector and an electrolyte film formed on 0.75 Sr 0.25 MnO 3 . After drying, it was fired at 1,450 ° C.
The thickness of the obtained nickel-based / zirconium-based film is 150
μm, porosity was 27%.

【0018】(5)導電率測定:ニッケル系/ジルコニ
ウム系膜をH2 雰囲気、1,000℃×5hrで還元後
に、四端子法により導電率を測定した結果、高い導電率
(1,600s/cm)を示した。従来の固体混合法による
原料粉末を用いた膜では導電率は1,100s/cm近辺な
ので、本実施例の場合は、これよりも45%も向上し
た。
(5) Conductivity measurement: After the nickel-based / zirconium-based film was reduced at 1,000 ° C. for 5 hours in an H 2 atmosphere, the conductivity was measured by a four-terminal method. As a result, a high conductivity (1600 s / cm). In the film using the raw material powder obtained by the conventional solid mixing method, the conductivity is around 1,100 s / cm, and in the case of the present embodiment, the conductivity is improved by 45%.

【0019】(6)セル製造・発電評価この粉末を使用
して発電試験セルを作製して評価した。まず上記(4)
と同様にNiO/YSZ複合粉末スラリーを作製した。
これを空気極(LaSrMnO3 )、インターコネクタ
ー(LaCaCrO3 )と電解質(YSZ)からなる基
体管に塗膜、乾燥、1,450℃で焼成して、3%H2
雰囲気、1,000℃で還元処理した。燃料;11%H
2 O,89%H2 、酸化剤;空気4倍等量、燃料利用
率;40%、温度;1,000℃の運転条件で発電評価
した結果、最大出力0.5W/cm2 の高出力を示し、従来
の粉末混合による粉末を用いて作製したセルの最大出力
(約0.42W/cm2 )より高いことが確認された。
(6) Cell production / power generation evaluation A power generation test cell was prepared using this powder and evaluated. First, (4) above
A NiO / YSZ composite powder slurry was prepared in the same manner as described above.
This was coated on a base tube composed of an air electrode (LaSrMnO 3 ), an interconnector (LaCaCrO 3 ), and an electrolyte (YSZ), dried, and fired at 1,450 ° C. to obtain 3% H 2.
The reduction treatment was performed at 1,000 ° C. in an atmosphere. Fuel: 11% H
2 O, 89% H 2 , oxidant; 4 times equivalent of air, fuel utilization: 40%, temperature: 1,000 ° C. As a result of power generation evaluation, high output of 0.5 W / cm 2 maximum And it was confirmed that the output was higher than the maximum output (about 0.42 W / cm 2 ) of the cell manufactured using the powder obtained by the conventional powder mixing.

【0020】(7)耐久試験:上記条件で連続して10
00時間運転を行い、1000時間後におけるセル出力
の低下を調べた。図2は、共晶組織の含有量とセル出力
の劣化率との関係を示すグラフである。同図に示すよう
に、共晶組織がほとんどない場合は、劣化率が1.4%
であったのが、共晶組織50%の場合は劣化率0.2%
に低下した。図3は、共晶組織のh/rとセル出力の劣
化率との関係を示すグラフである。同図に示すように、
h/rが2を越えると、劣化率は0.2%以下となっ
て、工業的に十分なレベルとなった。
(7) Durability test: 10 continuous tests under the above conditions
The operation was performed for 00 hours, and a decrease in cell output after 1000 hours was examined. FIG. 2 is a graph showing the relationship between the content of the eutectic structure and the deterioration rate of the cell output. As shown in the figure, when there is almost no eutectic structure, the deterioration rate is 1.4%.
However, when the eutectic structure was 50%, the deterioration rate was 0.2%.
Has dropped. FIG. 3 is a graph showing the relationship between the h / r of the eutectic structure and the deterioration rate of the cell output. As shown in the figure,
When h / r exceeds 2, the deterioration rate becomes 0.2% or less, which is an industrially sufficient level.

【0021】つぎに、燃料極内において組成を変える実
施例について説明する。上述の(4)成膜〜(6)セル
製造工程において、電解質と燃料極との界面における燃
料極層の材料として、NiO/8YSZ=30/70mo
l%、平均粒径2μm の粉末を用い、膜厚20μm の層を
形成した。その上部の燃料極層を以下の粉末及び膜厚で
形成した。なお、上下両層は共焼成した。 NiO/8YSZ=50/50mol% 平均粒径5μm 、膜厚30μm NiO/8YSZ=70/30mol%、平均粒径8μ
m 、膜厚50μm NiO/8YSZ=85/15mol%、平均粒径15
μm 、膜厚50μm
Next, an embodiment in which the composition is changed in the fuel electrode will be described. In the above (4) film formation to (6) cell manufacturing process, NiO / 8YSZ = 30 / 70mo as a material of the fuel electrode layer at the interface between the electrolyte and the fuel electrode.
A layer having a thickness of 20 μm was formed using 1% powder having an average particle size of 2 μm. The upper fuel electrode layer was formed with the following powder and film thickness. The upper and lower layers were co-fired. NiO / 8YSZ = 50/50 mol% average particle diameter 5 μm, film thickness 30 μm NiO / 8YSZ = 70/30 mol%, average particle diameter 8 μ
m, film thickness 50 μm NiO / 8YSZ = 85/15 mol%, average particle size 15
μm, film thickness 50μm

【0022】これらの実施例においては、導電率が、燃
料極内において組成を変えなかった実施例よりも有意に
向上した。特にNiO/8YSZ=85/15mol%、
平均粒径15μm 、膜厚50μm の場合は、導電率が
1,800s/cmと、実施例中でピーク値であった。
In these examples, the conductivity was significantly improved as compared with the examples in which the composition was not changed in the fuel electrode. In particular, NiO / 8YSZ = 85/15 mol%,
When the average particle size was 15 μm and the film thickness was 50 μm, the conductivity was 1,800 s / cm, which was the peak value in the examples.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、本発明
によれば、従来のNi(O)/YSZ分散組織の燃料極
においては、固体電解質型燃料電池運転時にNiが凝集
するなどにより出力の低下が大きかったが、本共晶組織
燃料極においてはNiの凝集を抑制することが可能とな
り出力の低下はほとんど認められなくなった。
As is apparent from the above description, according to the present invention, the output of the conventional Ni (O) / YSZ dispersed fuel electrode due to the agglomeration of Ni during the operation of the solid oxide fuel cell is reduced. However, in the present eutectic structure fuel electrode, it was possible to suppress the agglomeration of Ni, and almost no decrease in output was observed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にいう共晶組織の概念を説明するための
図である。
FIG. 1 is a view for explaining the concept of a eutectic structure according to the present invention.

【図2】共晶組織の含有量とセル出力の劣化率との関係
を示すグラフである。
FIG. 2 is a graph showing a relationship between a content of a eutectic structure and a deterioration rate of a cell output.

【図3】共晶組織のh/rとセル出力の劣化率との関係
を示すグラフである。
FIG. 3 is a graph showing a relationship between h / r of a eutectic structure and a deterioration rate of a cell output.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/88 C04B 35/00 J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 4/88 C04B 35/00 E

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 Ni及び/又はNiOからなる第1相
と、 Zr及び/又はZrO2 からなる第2相と、からなり、 上記第1相及び第2相が、ある方向に延びる柱状又は層
状の形態を有することを特徴とするニッケル系/ジルコ
ニウム系粉末。
1. A first phase composed of Ni and / or NiO and a second phase composed of Zr and / or ZrO 2 , wherein the first phase and the second phase are columnar or layered extending in a certain direction. A nickel-based / zirconium-based powder characterized by having the following form:
【請求項2】 Ni及び/又はNiOからなる第1相
と、 Zr及び/又はZrO2 からなる第2相と、からなり、 上記第1相又は第2相のうちのいずれか1相が母相とな
り、他の1相が該母相中に柱状組織あるいは球状、枝状
の組織として分散していることを特徴とするニッケル系
/ジルコニウム系粉末。
2. A first phase comprising Ni and / or NiO, and a second phase comprising Zr and / or ZrO 2 , wherein one of the first and second phases is a mother phase. A nickel-based / zirconium-based powder, wherein the other phase is dispersed in the matrix as a columnar structure or a spherical or branched structure.
【請求項3】 上記柱状又は層状組織の結晶成長長さh
と該組織の幅rとの関係が2r<hを満たす組織が、全
組織の中で50mol%以上を占めることを特徴とする請求
項1又は2記載のニッケル系/ジルコニウム系粉末。
3. The crystal growth length h of the columnar or layered structure.
3. The nickel-based / zirconium-based powder according to claim 1 or 2, wherein a structure satisfying 2r <h satisfies the relationship of 2r <h with respect to the whole structure.
【請求項4】 原料粉末あるいは原料溶液を調合・混合
し、調合・混合あるいは調合・混合・熱処理した原料粉
末を加圧成形して圧粉体を得、該圧粉体を焼成して焼結
体を得、該焼結体にレーザ照射又はアーク加熱などで部
分的に溶融し、溶融した融滴を急冷することを特徴とす
る請求項1、2又は3記載のニッケル系/ジルコニウム
系粉末の製造方法。
4. A raw material powder or a raw material solution is prepared and mixed, and the prepared, mixed or prepared, mixed and heat-treated raw material powder is subjected to pressure molding to obtain a green compact, and the green compact is fired and sintered. 4. A nickel-based / zirconium-based powder according to claim 1, wherein the sintered body is partially melted by laser irradiation or arc heating or the like, and the molten droplet is rapidly cooled. Production method.
【請求項5】 空気極、固体電解質層、燃料極及びイン
ターコネクターを含む固体電解質型燃料電池であって;
上記燃料極が、 Ni及び/又はNiOからなる第1相と、Zr及び/又
はZrO2 からなる第2相と、からなる粉末であって、
上記第1相及び第2相が、ある方向に延びる柱状又は層
状の形態を有する粉末の焼成体からなることを特徴とす
る固体電解質型燃料電池。
5. A solid oxide fuel cell comprising an air electrode, a solid electrolyte layer, a fuel electrode, and an interconnector;
The fuel electrode is a powder comprising: a first phase composed of Ni and / or NiO; and a second phase composed of Zr and / or ZrO 2 ,
A solid oxide fuel cell, wherein the first phase and the second phase are formed of a fired powder having a columnar or layered shape extending in a certain direction.
【請求項6】 空気極、固体電解質層、燃料極及びイン
ターコネクターを含む固体電解質型燃料電池であって;
上記燃料極が、 Ni及び/又はNiOからなる第1相と、Zr及び/又
はZrO2 からなる第2相と、からなる粉末であって、
上記第1相又は第2相のうちのいずれか1相が母相とな
り、他の1相が該母相中に柱状組織あるいは球状、枝状
の組織として分散している粉末の焼成体からなることを
特徴とする固体電解質型燃料電池。
6. A solid oxide fuel cell including an air electrode, a solid electrolyte layer, a fuel electrode, and an interconnector;
The fuel electrode is a powder comprising: a first phase composed of Ni and / or NiO; and a second phase composed of Zr and / or ZrO 2 ,
One of the first phase and the second phase is a mother phase, and the other phase is a fired body of powder dispersed in the matrix as a columnar structure or a spherical or branched structure. A solid oxide fuel cell, comprising:
【請求項7】 上記燃料極を構成する粉末は、上記柱状
又は層状組織の結晶成長長さhと該組織の幅rとの関係
が2r<hを満たす組織が、全組織の中で50mol%以上
を占める粉末であることを特徴とする請求項5又は6記
載の固体電解質型燃料電池。
7. The powder constituting the fuel electrode contains 50 mol% of the total structure in which the relationship between the crystal growth length h of the columnar or layered structure and the width r of the structure satisfies 2r <h. 7. The solid oxide fuel cell according to claim 5, wherein the powder occupies the above.
【請求項8】 固体電解質層と燃料極との界面に、Ni
あるいはNiO含有量が50mol%以下の上記ニッケル系
/ジルコニウム系粉末の焼成層が設けられていることを
特徴とする請求項5、6又は7記載の固体電解質型燃料
電池。
8. An interface between the solid electrolyte layer and the fuel electrode, wherein Ni
8. The solid oxide fuel cell according to claim 5, wherein a sintered layer of the nickel-based / zirconium-based powder having a NiO content of 50 mol% or less is provided.
【請求項9】 上記界面を除く燃料極が、Niあるいは
NiO含有量が50mol%以上の上記ニッケル系/ジルコ
ニウム系粉末の焼成層からなり、かつ界面を除く燃料極
の厚さが上記界面のニッケル系/ジルコニウム系粉末焼
成層の厚さよりも厚いことを特徴とする請求項8記載の
固体電解質型燃料電池。
9. The fuel electrode excluding the interface comprises a calcined layer of the nickel-based / zirconium-based powder having a Ni or NiO content of 50 mol% or more, and the fuel electrode excluding the interface has a thickness of nickel at the interface. 9. The solid oxide fuel cell according to claim 8, wherein the thickness is larger than the thickness of the sintering system / zirconium-based powder layer.
【請求項10】 請求項1〜3いずれか1項記載のニッ
ケル系/ジルコニウム系粉末をスラリーコート法により
固体電解質層上に成膜する工程を含むことを特徴とする
固体電解質型燃料電池の製造方法。
10. A method for producing a solid oxide fuel cell, comprising a step of forming the nickel-based / zirconium-based powder according to claim 1 on a solid electrolyte layer by a slurry coating method. Method.
JP9356315A 1997-12-10 1997-12-10 Nickel-type/zirconium-type powder and its production, solid electrolyte type fuel cell using the same and its production Pending JPH11172301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9356315A JPH11172301A (en) 1997-12-10 1997-12-10 Nickel-type/zirconium-type powder and its production, solid electrolyte type fuel cell using the same and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9356315A JPH11172301A (en) 1997-12-10 1997-12-10 Nickel-type/zirconium-type powder and its production, solid electrolyte type fuel cell using the same and its production

Publications (1)

Publication Number Publication Date
JPH11172301A true JPH11172301A (en) 1999-06-29

Family

ID=18448426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9356315A Pending JPH11172301A (en) 1997-12-10 1997-12-10 Nickel-type/zirconium-type powder and its production, solid electrolyte type fuel cell using the same and its production

Country Status (1)

Country Link
JP (1) JPH11172301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012498A (en) * 2005-07-01 2007-01-18 Chubu Electric Power Co Inc Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP2007299767A (en) * 2007-07-18 2007-11-15 National Institute Of Advanced Industrial & Technology Electrolyte material for solid electrolyte fuel cells, solid electrolyte fuel cell and method for fabrication thereof
JP2012520394A (en) * 2009-03-12 2012-09-06 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melting cermet products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012498A (en) * 2005-07-01 2007-01-18 Chubu Electric Power Co Inc Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP2007299767A (en) * 2007-07-18 2007-11-15 National Institute Of Advanced Industrial & Technology Electrolyte material for solid electrolyte fuel cells, solid electrolyte fuel cell and method for fabrication thereof
JP2012520394A (en) * 2009-03-12 2012-09-06 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melting cermet products

Similar Documents

Publication Publication Date Title
JP5306726B2 (en) Fuel cell electrode-electrolyte composite powder and preparation method thereof
RU2521874C2 (en) Solid oxide cell and battery containing same
JP6109672B2 (en) Ceramic cathode-solid electrolyte composite
JP2007200693A (en) Manufacturing method of material for solid oxide fuel cell
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
KR20200057047A (en) Secondary battery
CN109716447A (en) Solid electrolyte and all-solid-state battery
JP2012528438A (en) Cathode
JP6109673B2 (en) Ceramic cathode-solid electrolyte composite
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
JP3620800B2 (en) Method for producing solid electrolyte sintered body
JPH11172301A (en) Nickel-type/zirconium-type powder and its production, solid electrolyte type fuel cell using the same and its production
JP6168690B2 (en) Ceramic cathode-solid electrolyte composite
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP3411064B2 (en) Method for producing solid electrolyte sintered body for solid oxide fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
EP3203563B1 (en) Electrolyte membrane, fuel cell including same, battery module including fuel cell, and method for manufacturing electrolyte membrane
JP2006244810A (en) Electrode for solid oxide fuel cell and its manufacturing method
JP2008071668A (en) Composite particle powder and its manufacturing method, electrode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel battery cell
JP2022156600A (en) Ceramic powder material, sintered body, and battery
JP2022151220A (en) Solid electrolyte, all-solid battery, manufacturing method of solid electrolyte, and manufacturing method of all-solid battery
JPH11343123A (en) Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same
JP3117781B2 (en) Method for producing electrode material for solid oxide fuel cell
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
JP3604210B2 (en) Method for producing NiO / YSZ composite powder