JPH11171716A - Inoculant encapsulating microorganism symbiotic with plant root to plant - Google Patents

Inoculant encapsulating microorganism symbiotic with plant root to plant

Info

Publication number
JPH11171716A
JPH11171716A JP9334661A JP33466197A JPH11171716A JP H11171716 A JPH11171716 A JP H11171716A JP 9334661 A JP9334661 A JP 9334661A JP 33466197 A JP33466197 A JP 33466197A JP H11171716 A JPH11171716 A JP H11171716A
Authority
JP
Japan
Prior art keywords
plant
inoculant
microorganisms
microorganism
symbiotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9334661A
Other languages
Japanese (ja)
Other versions
JP3328924B2 (en
Inventor
Keiichi Shimizu
圭一 清水
Akira Murakami
章 村上
Kunimutsu Murakami
邦睦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP33466197A priority Critical patent/JP3328924B2/en
Publication of JPH11171716A publication Critical patent/JPH11171716A/en
Application granted granted Critical
Publication of JP3328924B2 publication Critical patent/JP3328924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an inoculant to the plant by which microorganisms symbiotic with a plant root is protected enough from the soil microorganism when inoculating the inoculant to the plant and a habitat for the inoculant is secured by encapsulating the microorganisms symbiotic with the plant root, with a high molecular material produced by microorganisms. SOLUTION: The objective inoculant is obtained by encapsulating (A) microorganisms symbiotic with a plant root, with (B) a high molecular material produced by microorganisms. Mycorrhiza bacteria and leguminous bacteria or the likes are preferably used as the component A. Especially, a water- insoluble and biodegradable high molecular material, e.g. a microorganism cellulose and a microorganism polysaccharide curdlan or the like is preferably used as the component B. The inoculant is obtained by simultaneously culturing polymer-synthesizing microorganisms and the component A in a liquid in a one step process in which both of the culture and proliferation step of the component A, and the encapsulation step of the component A are carried out by one step. For example, acetic acid bacteria producing the cellulose, etc., are preferably used as the polymer-synthesizing microorganisms.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物根共生微生物
を利用した新規な植物への接種剤に関する。
[0001] The present invention relates to a novel inoculant for plants utilizing a plant root symbiotic microorganism.

【0002】[0002]

【従来の技術】土壌中には、植物根と共生し、その植物
の生育を助ける種々の微生物が存在している。例えば、
そのような微生物の一つである根粒菌は、植物根に感染
し、空気中の窒素を固定して植物体に供給することによ
り、また菌根菌は、やはり植物根に感染し、リン酸等の
ミネラルや水の吸収を助けることにより、それらが感染
している植物の生長を促進したり、耐病性や耐乾燥性を
高めることが知られている。
2. Description of the Related Art In the soil, there are various microorganisms which coexist with plant roots and help the growth of the plant. For example,
One of such microorganisms, rhizobia, infects plant roots, fixes nitrogen in the air and supplies it to plants, and mycorrhizal fungi also infect plant roots, It is known that by assisting the absorption of minerals and water such as the above, they promote the growth of plants infected with them, and enhance disease resistance and drought resistance.

【0003】こうした有用な植物根共生微生物は、農
業、林業等への利用に多大な期待が寄せられているが、
これらを単に土壌中に加えただけでは、他の土壌微生物
からの悪影響を受けるため、その植物への感染が阻害さ
れるといった問題がある。また、そうでなくとも、菌根
菌はその生長性に劣るため植物への感染に長い期間を要
する。
[0003] Although such useful plant root symbiotic microorganisms are expected to be used in agriculture, forestry, and the like, great expectations are placed on them.
Simply adding these to the soil has the problem of adverse effects from other soil microorganisms, thus inhibiting infection of the plant. Even so, mycorrhizal fungi are poor in growth and require a long period of time to infect plants.

【0004】そこで、これら植物根共生微生物の実際の
使用にあたっては、これらを他の土壌微生物から保護
し、かつ、これらに適当な生育の場を与えて、植物への
感染が起こりやすいようにするために、担体材料と混合
したり、あるいは担体材料に内包させた接種剤として用
いることが検討されている。例えば、様々な土壌、クレ
ー、砂、石炭、カオリン粉末、ミズゴケ、泥炭、親水性
ポリマー、油をベースとするもの、パルプ及びセルロー
ス等が植物根共生微生物の担体材料として、土壌に加え
る、あるいは種子等に直接まぶし付ける等の接種方法に
て検討されてきた。
[0004] Therefore, in actual use of these plant root symbiotic microorganisms, they are protected from other soil microorganisms, and they are provided with a suitable place for growth so that infection to plants is likely to occur. Therefore, it has been studied to use it as an inoculant mixed with a carrier material or included in a carrier material. For example, various soils, clay, sand, coal, kaolin powder, sphagnum moss, peat, hydrophilic polymers, oil-based materials, pulp, cellulose, etc. may be added to soil as a carrier material for plant root symbiotic microorganisms, or seeds. Inoculation methods such as direct spraying on the vegetation have been studied.

【0005】[0005]

【発明が解決しようとする課題】しかし、土壌等の担体
と植物根共生微生物とを混合して用いるタイプの接種剤
では、土壌微生物からの植物根共生微生物の保護等が不
十分である。また、親水性ポリマー等の担体に植物根共
生微生物を内包させて用いるタイプの接種剤では、土壌
微生物からの植物根共生微生物の保護等はほぼ達成され
るが、その作成にあたって、植物根共生微生物を培養し
て準備するだけではなく、これを適当な条件下で担体材
料に内包させるための、少なくとも1以上の工程が余分
に要求されることになる。
However, an inoculant of a type in which a carrier such as soil and a plant root symbiotic microorganism are mixed is insufficient in protection of the plant root symbiotic microorganism from soil microorganisms. In addition, a type of inoculant in which a plant-symbiotic microorganism is encapsulated in a carrier such as a hydrophilic polymer can almost completely protect the plant-symbiotic microorganism from soil microorganisms. In addition to preparing by culturing, at least one or more additional steps for encapsulating this in a carrier material under appropriate conditions are required.

【0006】本願発明は、かかる従来の技術の欠点を克
服した、植物根共生微生物接種剤及びその作成方法を提
供することを課題とする。即ち、植物へ接種すべき植物
根共生微生物が土壌微生物から十分に保護され、かつ、
その生育の場が確保され、しかもきわめて簡易に作成で
きる、植物への感染性に優れた植物根共生微生物接種剤
を提供することを課題とする。
[0006] An object of the present invention is to provide an inoculant for plant root symbiotic microorganisms and a method for producing the same, which overcomes the drawbacks of the conventional technology. That is, the plant root symbiotic microorganisms to be inoculated to the plant are sufficiently protected from soil microorganisms, and
An object of the present invention is to provide an inoculant for plant root symbiotic microorganisms, which secures a place for its growth and can be prepared extremely easily and has excellent infectivity to plants.

【0007】[0007]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく鋭意検討を行った結果、接種剤の担体と
して微生物生産性高分子物質を選択し、これにより植物
根共生微生物を内包して植物へ接種した場合に、植物根
共生微生物は土壌微生物から十分に保護され、かつ、生
育の場が与えられ、その植物への感染率は大きく上昇す
ること、しかも、この高分子物質を生産する微生物と植
物根共生微生物とを同時に液体培養することで、植物根
共生微生物の培養・増殖工程と、この植物根共生微生物
を高分子物質で内包する工程とをわずか1段階で行える
ことを見出し、本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve such problems, and as a result, selected a microorganism-producing polymer substance as a carrier for an inoculant, and thereby used a plant-root symbiotic microorganism. When encapsulated and inoculated into a plant, the plant root symbiotic microorganisms are sufficiently protected from soil microorganisms, and are provided with a place for growth, and the infection rate to the plant is greatly increased. By simultaneously culturing the microorganisms that produce the plant and the plant root symbiotic microorganisms in a liquid, the process of culturing and growing the plant root symbiotic microorganisms and the process of encapsulating the plant root symbiotic microorganisms with a polymer substance can be performed in only one step. And completed the present invention.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0009】本発明で用いられる植物根共生微生物につ
いてその種類に制限はないが、植物の生育を助けるもの
として特に有用であり、その研究も比較的進んでいる菌
根菌、根粒菌等は、本発明の植物根共生微生物としての
適用が容易であり、その効果も大きいため好ましい。例
えば、菌根菌のうち、内生菌根菌としてはArbuscular
根菌に属するGigaspora属、Scutellispora属、Glomus
属、Acaulospora属、Scl erocystis属、Entrophospora
等、ラン科菌根菌に属するRhizoctonia属等、ツツジ科
菌根菌に属するPezizella属等が、外生菌根菌としてはA
manita属、Tricho loma属、Rhizopogon属、Scleroderma
属、Pisolitus属等が本発明に好適に使用でき、また根
粒菌としてはRhizobium属、Bradyrhizobium属等が本発
明に好適に使用できる。なお、菌根菌の場合にはその胞
子、菌糸及び子実体を本発明の接種剤として使用するこ
とができ、根粒菌の場合にはその全菌体を本発明の接種
剤として使用することができる。
[0009] About the plant root symbiotic microorganism used in the present invention
And there are no restrictions on the type, but those that help plants grow
Bacteria that are particularly useful as
Root fungi, rhizobia, etc. are the plant symbiotic microorganisms of the present invention.
It is preferable because the application is easy and the effect is large. An example
For example, among mycorrhizal fungi,ArbuscularFungus
Belongs to the root fungusGigasporaGenus,ScutellisporaGenus,Glomus
Genus,AcaulosporaGenus,Scl erocystisGenus,EntrophosporaGenus
Belongs to the orchid mycorrhizal fungiRhizoctoniaGenus, ericaceae
Belongs to mycorrhizal fungiPezizellaGenera etc. are ectomycorrhizal fungiA
manitaGenus,Tricho lomaGenus,RhizopogonGenus,Scleroderma
Genus,PisolitusGenus can be suitably used in the present invention, and
As a bacterial germRhizobiumGenus,BradyrhizobiumGenus etc.
It can be used favorably for obvious reasons. In the case of mycorrhizal fungi, the vesicles
Offspring, mycelia and fruiting bodies may be used as inoculants according to the invention.
In the case of rhizobia, all the cells are inoculated according to the present invention.
It can be used as an agent.

【0010】また、これらの植物根共生微生物を内包さ
せる微生物生産性の高分子物質についても、それが植物
根共生微生物を内包するという機能を果たすものである
限り、その使用できる種類に制限はない。しかし、本発
明の目的のより効果的な達成及び環境負荷の観点から
は、特に水不溶性の生分解性高分子物質、例えば、微生
物セルロース、微生物多糖ガードラン等の使用が好まし
い。これらの高分子物質は水不溶性であるため、これら
を用いて植物根共生微生物を内包した接種剤は、使用時
に土壌中の水分によって崩壊することがなく、植物根共
生微生物が植物に感染するまでの間、これを土壌微生物
から効果的に保護し、また、その生育の場を確保するこ
とができる。一方、これらの高分子物質は生分解性であ
るため、一定期間経過後は土壌中で分解して環境に残留
することがない。
[0010] In addition, there is no limitation on the types of microorganism-producing macromolecular substances that can harbor plant symbiotic microorganisms as long as they have a function of enclosing plant root symbiotic microorganisms. . However, from the viewpoint of more effectively achieving the object of the present invention and environmental load, it is particularly preferable to use a water-insoluble biodegradable polymer substance, for example, microbial cellulose, microbial polysaccharide guard run and the like. Since these high molecular substances are water-insoluble, the inoculant containing the plant root symbiotic microorganisms using them does not disintegrate due to the moisture in the soil during use, and is used until the plant root symbiotic microorganisms infect the plants. During this time, it can be effectively protected from soil microorganisms and a place for its growth can be secured. On the other hand, since these high molecular substances are biodegradable, they do not decompose in soil and remain in the environment after a certain period of time.

【0011】従って、本発明でこうした高分子物質の生
産に使用する高分子合成微生物も、水不溶性の生分解性
高分子物質を生産する菌、例えば、セルロースを生産す
る酢酸菌類、ガードランを生産するAlcaligenes faeca
lis等が好ましい。なお、セルロース生産性の酢酸菌類
として具体的には、Acetobacter acetiAcetobacte r
xylinum(以下、A.キシリヌムと記載する。)等のA
cetobacter属、Pseudom onas属、Achromobacter属、Alca
ligenes属、Aerobacter属、Rhizobium属、Agrob acteriu
m属、Azobacter属、Sarcina属等を挙げることができ
る。
Accordingly, the polymer-synthesizing microorganism used in the production of such a polymer substance in the present invention also produces a bacterium that produces a water-insoluble biodegradable polymer substance, for example, an acetic acid bacterium that produces cellulose and a guard run. Alcaligenes faeca
lis and the like are preferred. Specific examples of the cellulose-producing acetic acid bacteria include Acetobacter aceti and Acetobacterium .
A such as xylinum (hereinafter referred to as A. xylinum )
cetobacter , Pseudom onas , Achromobacter , Alca
Ligenes , Aerobacter , Rhizobium , Agrob acteriu
genus m , Azobacter genus, Sarcina genus and the like.

【0012】本発明では、これら高分子合成微生物と植
物根共生微生物とを同時に液体培養することで、植物根
共生微生物の培養・増殖工程と、この植物根共生微生物
を高分子物質で内包する工程とを1段階で行う。
In the present invention, the step of culturing and growing the symbiotic plant root microorganisms and the step of encapsulating the symbiotic plant root microorganisms with a polymer substance are carried out by simultaneously culturing these polymer-synthesizing microorganisms and the plant root symbiotic microorganisms in liquid. Are performed in one stage.

【0013】培養条件に特に制限はなく、高分子合成微
生物による高分子物質の生産条件と植物根共生微生物の
増殖条件とをバランスさせ、生産される高分子物質の量
とこれに内包される植物根共生微生物の量とが、できる
だけ短時間で、本発明の植物への接種剤として適切な
比、即ち、植物根共生微生物の植物への感染率として最
適な値が得られる量比、となるように設定すればよい。
一般的には、培地としてHestrin-Schramm(以下、HS
と略す。)培地、Ohta培地、浜田培地、Hagem培地、Mel
in-Norkans培地、Mastutake培地等のいずれかを用い、
高分子合成微生物と植物根共生微生物とを一緒に、温度
16〜30℃、暗所、PH4〜8の条件下で培養すれ
ば、本発明の接種剤を得ることができる。なお、植物根
共生微生物である菌根菌と根粒菌とでは、その最適生育
温度が若干異なっているため、本発明の接種剤をより効
率的に作成するためには、植物根共生微生物として菌根
菌を用いる場合は温度を20〜25℃、根粒菌を用いる
場合は温度を25〜30℃として培養を行うことが好ま
しい。
The cultivation conditions are not particularly limited, and the conditions for production of the high molecular substance by the high molecular weight synthetic microorganism and the growth conditions of the plant root symbiotic microorganism are balanced, and the amount of the high molecular substance to be produced and the plant contained therein are balanced. The amount of the root symbiotic microorganisms is as short as possible and an appropriate ratio as an inoculant for the plant of the present invention, that is, an amount ratio at which an optimal value is obtained as the infection rate of the plant root symbiotic microorganisms to the plant. It may be set as follows.
In general, Hestrin-Schramm (hereinafter, HS) is used as a medium.
Abbreviated. ) Medium, Ohta medium, Hamada medium, Hagem medium, Mel
Using any of in-Norkans medium, Mastutake medium, etc.
The inoculant of the present invention can be obtained by culturing the polymer-synthesizing microorganism and the plant-symbiotic microorganism together under the conditions of a temperature of 16 to 30 ° C., a dark place and a pH of 4 to 8. Since the optimum growth temperature of mycorrhizal fungi and rhizobia, which are symbiotic plant root microorganisms, is slightly different, in order to more efficiently prepare the inoculant of the present invention, the fungal root symbiotic microorganisms must be used. The culture is preferably performed at a temperature of 20 to 25 ° C when using rhizobia, and at a temperature of 25 to 30 ° C when using rhizobia.

【0014】なお、高分子物質に内包される植物根共生
微生物の量が多ければ多いほど、植物へのその感染率も
高くなるとは限らない。土壌微生物からの保護のため、
この植物根共生微生物を高分子物質で十分にガードして
やる必要もあり、従って、植物根共生微生物の性質(土
壌微生物に対する耐性の強弱等)とこうした接種剤が使
用される土壌の性質(存在する土壌微生物の種類や数
等)などによって、植物根共生微生物の植物への感染率
が最大になるような適切な量比が、その植物根共生微生
物と高分子物質との間で存在する。
It is to be noted that the greater the amount of the plant root symbiotic microorganisms included in the high molecular substance, the higher the rate of infection of the plants with the symbiotic microorganisms. For protection from soil microorganisms,
It is also necessary to sufficiently protect the plant root symbiotic microorganisms with a high molecular substance. Therefore, the properties of the plant root symbiotic microorganisms (such as the level of resistance to soil microorganisms) and the properties of the soil in which such inoculants are used (the existing soil) Depending on the type and number of microorganisms, etc., there is an appropriate quantitative ratio between the plant-root symbiotic microorganism and the high molecular substance so as to maximize the infection rate of the plant-root symbiotic microorganism to the plant.

【0015】また、本発明では培養方法にも特に制限は
ない。ただ単に高分子合成微生物と植物根共生微生物と
を一緒に液体培養しさえすれば、その過程で自然に、高
分子合成微生物により生産される高分子物質に植物根共
生微生物が内包され、目的とする接種剤が作成される。
従って、液体培養であれば、静置培養、振とう培養、旋
回培養等のいずれでも、単独で又はこれらを組み合わせ
て本発明に適用できるが、得られる接種剤の形状は、選
択する培養方法によって異なったものとなる。このた
め、本発明によれば、様々な形状の接種剤が作成でき、
実際の使用の場において様々な態様で、例えば、粒状の
形状のものを土壌や支持体中に埋設あるいは混合して間
接的に植物に接種したり、シート状の形状のものを植物
根に巻き付けて直接的に植物に接種したり、とこれを使
い分けることが可能となる。
In the present invention, the culturing method is not particularly limited. As long as the polymer-synthesizing microorganisms and the plant-symbiotic microorganisms are simply liquid-cultured together, in the process, the plant-symbiotic microorganisms are naturally included in the polymer material produced by the polymer-synthesizing microorganisms. Inoculum to be prepared.
Therefore, if it is a liquid culture, any of stationary culture, shaking culture, swirl culture, etc., can be applied to the present invention alone or in combination, but the shape of the obtained inoculant depends on the culture method to be selected. It will be different. Therefore, according to the present invention, inoculants of various shapes can be prepared,
In various places in the field of actual use, for example, the granular form is buried or mixed in soil or a support to indirectly inoculate the plant, or the sheet form is wound around the plant root. It is possible to inoculate plants directly and use them properly.

【0016】具体的には、粒状の接種剤は、前記の培養
条件を用い、振とう培養又は旋回培養を行うことにより
作成することができる。振とう速度又は旋回速度は10
〜180rpmが好ましい。速度が10rpmより遅くなると
接種剤は粒状というよりもシート状の形状を示しやすく
なり、また、180rpmを超えると攪拌によるせん断力
の低下から、高分子合成微生物・植物根共生微生物は両
者とも活性が低下するおそれがある。一方、シート状の
接種剤は静置培養を行うことにより得ることができる。
高分子合成微生物と植物根共生微生物とを、やはり前記
の培養条件を用いて静置培養すれば、その培養液の気液
界面に植物根共生微生物を内包した高分子物質の膜が形
成されるので、これを適当なシート厚になるまで培養す
ればよい。
Specifically, the granular inoculant can be prepared by shaking culture or swirling culture under the above culture conditions. Shaking or turning speed is 10
~ 180 rpm is preferred. When the speed is lower than 10 rpm, the inoculant tends to show a sheet-like shape rather than a granular shape, and when the speed exceeds 180 rpm, both the polymer-synthesizing microorganisms and the plant root symbiotic microorganisms have an activity due to a decrease in shearing force due to stirring. It may decrease. On the other hand, a sheet-shaped inoculant can be obtained by static culture.
When the polymer-synthesizing microorganism and the plant root symbiotic microorganism are statically cultured under the above-described culture conditions, a film of a polymer substance containing the plant root symbiotic microorganism is formed at the gas-liquid interface of the culture solution. Therefore, it may be cultured until the sheet thickness becomes appropriate.

【0017】植物根共生微生物の宿主となる植物もま
た、その種類を問わない。その由来も実生苗、挿し木
苗、クローン苗のいずれであっても構わない。実生苗の
場合には播種、発芽・発根、植え替え、山出し等の各過
程において本発明の接種剤を使用でき、また、挿し木苗
の場合には挿し木、発根、植え替え、植栽等の各過程に
おいて、クローン苗の場合には発根、順化、育苗、植え
替え、植栽等の各過程において、本発明の接種剤をそれ
ぞれ使用できる。
Plants to be used as hosts for plant-root symbiotic microorganisms are also not limited in type. The origin may be any of seedlings, cuttings and clones. In the case of seedlings, the inoculant of the present invention can be used in each process such as sowing, germination / rooting, replanting, and hilling, and in the case of cuttings, cuttings, rooting, replanting and planting. In the case of cloned seedlings, the inoculant of the present invention can be used in each step of rooting, acclimatization, raising seedlings, replanting, planting, and the like.

【0018】[0018]

【実施例】以下に、本発明を実施例に基づいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0019】[実施例1]外生菌根菌類であるPisolitu
s tinctrius(コツブダケ:以下、PTと略す。)の子
実体より胞子を分離・採取し、この胞子と、HS培地に
て28℃、暗所で4日間前培養(静置)した酢酸菌類
A.キシリヌム(ATCC10245)の菌体とを新たなHS培
地に接種して、23℃、暗所にて、速度90rpmで振と
う培養を行った。
Example 1 Pisolitu , an ectomycorrhizal fungus
A spore was separated and collected from the fruiting body of S. s tinctrius (hereinafter, abbreviated as PT). The cells of xylinum (ATCC10245) were inoculated into a new HS medium, and shaking culture was performed at 23 ° C. in a dark place at a speed of 90 rpm.

【0020】10日間の培養後、ある程度生長・増殖し
たPT菌体がA.キシリヌムの生産する微生物セルロー
スに内包されている、粒状の接種剤が得られたので、こ
れを発芽10日後のユーカリプタス・グロブラス(Euca
lyptus globulus:以下、E.グロブラスと記載す
る。)実生苗20本の根付近の土壌中に、数カ所に分け
て埋め込んだ。30日後、これらの苗を掘り出して、定
法に従い0.05%トリパンブルーでその根を処理する
ことにより菌根菌の菌糸を染色し、感染率を測定したと
ころ、表1に示す結果が得られた。
After 10 days of cultivation, PT cells that have grown and proliferated to some extent become A. cerevisiae. Kishirinumu are in included in the microbial cellulose producing, since granular inoculum is obtained, which after germination 10 days Eucalyptus globulus (Euca
lyptus globulus : E. Described as globras. ) The seedlings were embedded in the soil near the roots of 20 seedlings in several places. Thirty days later, these seedlings were dug out, and their roots were treated with 0.05% trypan blue according to a standard method to stain the mycelium of mycorrhizal fungi and measure the infection rate. The results shown in Table 1 were obtained. Was.

【0021】[0021]

【表1】表1.Eucalyptus globulus実生苗に対する感
染率の比較
[Table 1] Comparison of infection rates for Eucalyptus globulus seedlings

【0022】なお、この表において感染率は、測定に供
した苗1個体が有する全ての根のうち30本の根を無作
為に抽出し、それらのうちのトリパンブルーによって染
色されている根の割合、即ち菌根菌に感染した根の割合
を示したものである。具体的には、底に格子状の線の入
ったシャーレ中にトリパンブルー処理後の根試料をむら
なく広げ、根の輪郭内に位置する格子の交点数とそれら
の交点のうち根の染色部分に位置している交点数を顕微
鏡(拡大率20倍程度)下でカウントし、[根の輪郭内
に位置する交点数]に対する[根の染色部分に位置する
交点数]のパーセンテージとして計算した。
In this table, the infection rate was determined by randomly extracting 30 roots among all the roots of one seedling subjected to the measurement, and of those roots stained with trypan blue. The ratio, that is, the ratio of roots infected with mycorrhizal fungi. Specifically, the root sample after trypan blue treatment was spread evenly in a Petri dish with grid lines at the bottom, and the number of grid intersections located within the root outline and the stained part of the root among those intersections Was counted under a microscope (about 20 times magnification) and calculated as a percentage of [the number of intersections located in the stained part of the root] to [the number of intersections located in the contour of the root].

【0023】[比較例1]本発明の接種剤の代わりにP
Tの胞子自体を用いた他は、実施例1と同様にして、P
Tのそれらの苗への感染率を測定した。結果を表1に示
す。
Comparative Example 1 Instead of the inoculant of the present invention, P
Except for using the spores of T itself,
The transmission rate of T to these seedlings was determined. Table 1 shows the results.

【0024】[実施例2]PT胞子の代わりに、土壌中
から湿式篩法にて分離・採取した内生菌根菌類Gi gaspor
a属に属する胞子を用いた他は、実施例1と同様にして
粒状の接種剤(Gig aspora菌体がA.キシリヌムの生産
する微生物セルロースに内包されているもの。)を作成
し、E.グロブラス実生苗への感染率を測定した。結果
を表1に示す。
[Example 2] In place of PT spores, endophytic mycorrhizal fungi Gi gaspor separated and collected from soil by a wet sieve method
A granular inoculant ( Gig aspora cells are included in microbial cellulose produced by A. xylinum) was prepared in the same manner as in Example 1 except that spores belonging to the genus a were used. The infection rate to Globras seedlings was measured. Table 1 shows the results.

【0025】[比較例2]本発明の接種剤の代わりにGi
gaspora属胞子自体を用いた他は、実施例2と同様にし
て、Gigasporaのそれらの苗への感染率を測定した。結
果を表1に示す。
Comparative Example 2 Instead of the inoculant of the present invention, Gi
The infection rate of Gigaspora to those seedlings was measured in the same manner as in Example 2, except that the spores of the genus gaspora were used. Table 1 shows the results.

【0026】[実施例3]PT胞子の代わりに、Acacci
a mearnsii根の根粒から分離・採取し、YM(酵母エ
キス・マンニトール)培地にて30℃、暗所で10日間
前培養を行ったRh izobium属に属する根粒菌を用いた他
は、実施例1と同様にして粒状の接種剤(R hizobium
体がA.キシリヌムの生産する微生物セルロースに内包
されているもの。)を作成した。
Example 3 Instead of PT spores, Acacci
Example 1 except that rhizobia belonging to the genus Rh izobium were isolated and collected from the root nodules of a mearnsii root and pre-cultured in YM (yeast extract / mannitol) medium at 30 ° C. for 10 days in the dark. A granular inoculum ( R hizobium cells are contained in microbial cellulose produced by A. xylinum) was prepared in the same manner as in Example 1.

【0027】この接種剤を発芽10日後のAcaccia mea
rnsii実生苗20本の根付近の土壌中に数カ所に分けて
埋め込み、30日後、これらの苗を掘り出してその根に
形成された根粒の数を計測した。結果を表2に示す。
This inoculant was treated with Accaccia mea 10 days after germination.
The rnsii seedlings were embedded in the soil near the roots of 20 seedlings at several locations, and after 30 days, these seedlings were dug out and the number of nodules formed on the roots was counted. Table 2 shows the results.

【0028】[0028]

【表2】表2.Acaccia mearnsii実生苗に対する感染
率の比較
[Table 2] Table 2. Comparison of infection rates for Acaccia mearnsii seedlings

【0029】[比較例3]本発明の接種剤の代わりに、
前培養後のRhizobium属根粒菌を滅菌水に懸濁して用い
た他は、実施例3と同様にして、Rhizobiumのそれらの
苗への感染率を測定した。結果を表2に示す。
Comparative Example 3 Instead of the inoculant of the present invention,
The infection rate of Rhizobium to those seedlings was measured in the same manner as in Example 3 except that Rhizobium rhizobia after preculture was used in suspension in sterilized water. Table 2 shows the results.

【0030】表1、2から明らかなように、本発明の接
種剤を用いることによって、植物根共生微生物の植物へ
の感染率は、それが菌根菌であるか根粒菌であるか、ま
た外生菌根菌であるか内生菌根菌であるかを問わず、こ
れらの菌を直接に土壌中に加えた場合よりも確実に上昇
した。即ち、本発明の接種剤においては、高分子合成微
生物と植物根共生微生物とを、ただ単に同時に液体培養
するだけで得られたものであるにも関わらず、植物根共
生微生物が高分子合成微生物の生産する高分子物質によ
り十分に保護され、これらの植物根共生微生物の植物へ
の感染が比較的短期間で進行したことがわかる。
As is clear from Tables 1 and 2, by using the inoculant of the present invention, the infection rate of the plant root symbiotic microorganism to the plant can be determined by whether it is mycorrhizal fungi or rhizobial fungi. Regardless of whether they were ectomycorrhizal fungi or endomycorrhizal fungi, they increased more reliably than when these fungi were added directly to the soil. That is, in the inoculant of the present invention, the polymer-synthetic microorganism and the plant-symbiotic microorganism are obtained by simply performing liquid culture simultaneously, but the plant-symbiotic microorganism is a polymer-synthetic microorganism. Thus, it can be seen that infection of plants with these plant root symbiotic microorganisms progressed in a relatively short period of time.

【0031】[0031]

【発明の効果】本発明の接種剤においては、それ単独で
は植物へ感染しにくい有用な植物根共生微生物を微生物
生産性高分子物質で内包することで、その植物への感染
率の大幅な上昇を達成した。
EFFECT OF THE INVENTION In the inoculant of the present invention, a useful plant root symbiotic microorganism which is difficult to infect a plant by itself is encapsulated in a microorganism-producing polymer substance, thereby greatly increasing the infection rate to the plant. Achieved.

【0032】しかも、植物根共生微生物の培養・増殖工
程と、この植物根共生微生物を微生物生産性高分子物質
で内包する工程とは、わずか1段階で行うことができる
ため、この接種剤は極めて簡易に作成することができ
る。
In addition, the step of culturing and growing the symbiotic plant root microorganisms and the step of encapsulating the symbiotic plant root microorganisms with the microorganism-producing polymer substance can be performed in only one stage. It can be easily created.

【0033】また、微生物生産性高分子物質として生分
解性のものを用いれば、この接種剤は、土壌に散布等し
ても、一定期間が経過すれば完全に分解されてしまうた
め、その使用により環境への負荷がかかるおそれがな
い。
Further, if a biodegradable polymer substance is used as the microorganism-producing polymer substance, this inoculant is completely decomposed after a certain period of time even if it is sprayed on the soil. Therefore, there is no possibility that the load on the environment is imposed.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 微生物生産性の高分子物質で植物根共生
微生物を内包したことを特徴とする、植物への接種剤。
1. An inoculant for a plant, comprising a plant-root symbiotic microorganism in a microorganism-producing polymer substance.
【請求項2】 高分子合成微生物と植物根共生微生物と
を同時に液体培養することにより得られる、請求項1記
載の植物への接種剤。
2. The inoculant for a plant according to claim 1, which is obtained by simultaneously performing liquid culture of a polymer-synthesizing microorganism and a plant-symbiotic microorganism.
【請求項3】 微生物生産性の高分子物質が水不溶性か
つ生分解性のものである、請求項1または2に記載の植
物への接種剤。
3. The inoculant according to claim 1, wherein the microorganism-producing polymer substance is water-insoluble and biodegradable.
【請求項4】 水不溶性かつ生分解性の高分子物質が微
生物セルロースである、請求項3に記載の植物への接種
剤。
4. The inoculant according to claim 3, wherein the water-insoluble and biodegradable polymer substance is microbial cellulose.
【請求項5】 植物根共生微生物が菌根菌または根粒菌
である、請求項1、2、3または4に記載の植物への接
種剤。
5. The inoculant for a plant according to claim 1, wherein the plant root symbiotic microorganism is a mycorrhizal fungus or a rhizobial fungus.
【請求項6】 その形状が粒状またはシート状である、
請求項1、2、3、4または5に記載の植物への接種
剤。
6. The shape is granular or sheet-like,
An inoculant for a plant according to claim 1, 2, 3, 4, or 5.
【請求項7】 高分子合成微生物と植物根共生微生物と
を同時に液体培養しつつ、高分子合成微生物から生産さ
れる高分子物質で植物根共生微生物を内包することを特
徴とする、微生物生産性の高分子物質で植物根共生微生
物が内包された植物への接種剤の作成方法。
7. Microbial productivity comprising simultaneously culturing a polymer-synthesizing microorganism and a plant-root symbiotic microorganism in a liquid culture, and encapsulating the plant-root symbiotic microorganism with a polymer substance produced from the polymer-synthesizing microorganism. A method for preparing an inoculant for a plant in which a plant-root symbiotic microorganism is encapsulated with a high molecular substance.
JP33466197A 1997-12-04 1997-12-04 Inoculant for plants containing plant root symbiotic microorganisms Expired - Fee Related JP3328924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33466197A JP3328924B2 (en) 1997-12-04 1997-12-04 Inoculant for plants containing plant root symbiotic microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33466197A JP3328924B2 (en) 1997-12-04 1997-12-04 Inoculant for plants containing plant root symbiotic microorganisms

Publications (2)

Publication Number Publication Date
JPH11171716A true JPH11171716A (en) 1999-06-29
JP3328924B2 JP3328924B2 (en) 2002-09-30

Family

ID=18279858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33466197A Expired - Fee Related JP3328924B2 (en) 1997-12-04 1997-12-04 Inoculant for plants containing plant root symbiotic microorganisms

Country Status (1)

Country Link
JP (1) JP3328924B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795071A1 (en) * 2005-12-07 2007-06-13 Incotec International B.V. Modified active-ingredient-containing pellets/capsules

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568682A (en) * 1979-07-03 1981-01-29 Nakada Hiroto Composition of active rhizobia
JPH01193203A (en) * 1988-01-28 1989-08-03 Akio Tanii Control of common scab of potato by bacterium
JPH02288815A (en) * 1988-11-15 1990-11-28 Osaka Gas Co Ltd Plant root coating composition and coating method
JPH0383523A (en) * 1989-08-28 1991-04-09 Lion Corp Method for promoting injection with mycorrhiza bacterium vesicullar arbuscula
JPH05213707A (en) * 1991-09-06 1993-08-24 Osaka Gas Co Ltd Agent for inoculating microorganism
JPH06141848A (en) * 1992-11-05 1994-05-24 Yuukishitsu Hiryo Seibutsu Kassei Riyou Gijutsu Kenkyu Kumiai Material for inoculating leguminous bacteria and method for inoculating the same
JPH07231781A (en) * 1994-02-24 1995-09-05 Osaka Gas Co Ltd Microorganism inoculum and growth of mycorrhiza microorganism
JPH07289085A (en) * 1994-04-22 1995-11-07 Idemitsu Kosan Co Ltd Culture of plant
JPH07298777A (en) * 1994-05-02 1995-11-14 Bio Polymer Res:Kk Artificial soil composition
JPH08143410A (en) * 1994-11-22 1996-06-04 Osaka Gas Co Ltd Symbiotic plant with useful microorganism

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568682A (en) * 1979-07-03 1981-01-29 Nakada Hiroto Composition of active rhizobia
JPH01193203A (en) * 1988-01-28 1989-08-03 Akio Tanii Control of common scab of potato by bacterium
JPH02288815A (en) * 1988-11-15 1990-11-28 Osaka Gas Co Ltd Plant root coating composition and coating method
JPH0383523A (en) * 1989-08-28 1991-04-09 Lion Corp Method for promoting injection with mycorrhiza bacterium vesicullar arbuscula
JPH05213707A (en) * 1991-09-06 1993-08-24 Osaka Gas Co Ltd Agent for inoculating microorganism
JPH06141848A (en) * 1992-11-05 1994-05-24 Yuukishitsu Hiryo Seibutsu Kassei Riyou Gijutsu Kenkyu Kumiai Material for inoculating leguminous bacteria and method for inoculating the same
JPH07231781A (en) * 1994-02-24 1995-09-05 Osaka Gas Co Ltd Microorganism inoculum and growth of mycorrhiza microorganism
JPH07289085A (en) * 1994-04-22 1995-11-07 Idemitsu Kosan Co Ltd Culture of plant
JPH07298777A (en) * 1994-05-02 1995-11-14 Bio Polymer Res:Kk Artificial soil composition
JPH08143410A (en) * 1994-11-22 1996-06-04 Osaka Gas Co Ltd Symbiotic plant with useful microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795071A1 (en) * 2005-12-07 2007-06-13 Incotec International B.V. Modified active-ingredient-containing pellets/capsules

Also Published As

Publication number Publication date
JP3328924B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
Azcón et al. Mycorrhizal dependency of a representative plant species in Mediterranean shrublands (Lavandula spica L.) as a key factor to its use for revegetation strategies in desertification-threatened areas
US5697186A (en) Flocculated microbial inoculants for delivery of agriculturally beneficial microorganisms
Reddell et al. Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply
CN101306427A (en) Method for increasing organic pollutant degradation efficiency in soil
JP2001199782A (en) Method for producing fertilizer and compost having crumb structure
CN115340968B (en) New application of pseudomonas microphylla and method thereof, pseudomonas microphylla 21.1.9.2-14 and products thereof
JP2829325B2 (en) Antibacterial and anti-nematode agents, plant cell activators and microorganisms therefor
JPH0819407B2 (en) Soil conditioner for plant cultivation, production method and use method thereof
CN105532411A (en) Method for storing arbuscular mycorrhizal fungi
CN109769568A (en) A kind of method of opencast coal mine dump restoration of the ecosystem
JP2012080829A (en) Greening material and method for producing the same
CN110771631B (en) Method for preventing and treating nematode diseases by using composite nematode-killing microorganisms
EP0294053A2 (en) Composition for agricultural use
CN111849856A (en) Indoca chlamydospore, P.indoca spore bacterial agent and preparation method thereof
JP3328924B2 (en) Inoculant for plants containing plant root symbiotic microorganisms
CN112877220B (en) Trichoderma harsii and application thereof
JPH07298777A (en) Artificial soil composition
Oh et al. Comparative structural study of Quercus serrata and Q. acutissima formed by Pisolithus tinctorius and Hebeloma cylindrosporum
JPH07231781A (en) Microorganism inoculum and growth of mycorrhiza microorganism
Vasanthakrishna et al. Selection of efficient VA mycorrhizal fungi for inoculating Casuarina equisetifolia
JP2005000145A (en) Microorganism for controlling plant virus, plant virus-controlling agent composed of the same and method for controlling plant virus by using the same
JP6384087B2 (en) Plant cultivation method
WO1994019924A1 (en) Flocculated microbial inoculants for delivery of agriculturally beneficial microorganisms
TWI692524B (en) Cultivated material composition
RU2426778C2 (en) Strain of legume bacteria bradyrhizobium japonicum 206 vkpm v-9505, virulent to recognised varieties of soya

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees