JPH11170428A - Gas adsorption inhibiting base material - Google Patents

Gas adsorption inhibiting base material

Info

Publication number
JPH11170428A
JPH11170428A JP36236697A JP36236697A JPH11170428A JP H11170428 A JPH11170428 A JP H11170428A JP 36236697 A JP36236697 A JP 36236697A JP 36236697 A JP36236697 A JP 36236697A JP H11170428 A JPH11170428 A JP H11170428A
Authority
JP
Japan
Prior art keywords
gas
gas adsorption
polysilazane
vacuum
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36236697A
Other languages
Japanese (ja)
Inventor
Fumiaki Aono
文昭 青野
Manabu Ito
学 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benkan Corp
Original Assignee
Benkan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benkan Corp filed Critical Benkan Corp
Priority to JP36236697A priority Critical patent/JPH11170428A/en
Publication of JPH11170428A publication Critical patent/JPH11170428A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the adsorption of gas molecules, and allow gas molecules adsorbed to be removed easily by forming a gas adsorption inhibiting film made by converting polysilazane or a polysilazane-containing composition into ceramics, having as main component silicon dioxide on at least the gas adsorption inhibiting surface of a base material. SOLUTION: A solution formed by dissolving polysilazane or a polysilazane- containing composition with a solvent is applied on at least the gas adsorption inhibiting surface of a base material consisting of metal such as stainless steel, plastics, and the like. Then, the solvent is converted into ceramics by hydrolysis, oxidation decomposition, thermal decomposition, and so on by heat hardening, ordinary temperature hardening, moisture heat hardening, and the like in order to form a gas adsorption inhibitory film consisting mainly of silicon dioxide and containing nitrogen. Thus, a gas adsorption inhibiting film can be obtained easily effectively, can prevent the adsorption of gas molecules and allow gas molecules to leave easily even when gas molecules adsorb thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスの吸着を抑制
するために用い、特に、真空断熱管、真空容器等の各種
の真空構造体や、配管、バルブ、継手等の各種のガス供
給系配管器材に用いるのに適するガス吸着抑制化基材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used to suppress the adsorption of gas, and in particular, to various vacuum structures such as vacuum insulation tubes and vacuum vessels, and various gas supply systems such as pipes, valves and joints. The present invention relates to a gas adsorption suppressing base material suitable for use in piping equipment.

【0002】[0002]

【従来の技術】ステンレス等の金属においては一般的
に、ガス分子が金属表面に吸着し、次いでガス分子が原
子に解離し、次いで原子が金属内部へ移動・溶解(吸
収)する(特に、H2の溶解が著しい。)。ガス分子の
脱離の過程においては、金属表面の物理吸着ガス分子の
脱離後、上記プロセスとは逆に、金属内に溶解されてい
た原子がこれら原子同士および金属表面に吸着していた
分子または原子と再結合し、C、H2、CO、
2、H2O等の脱離ガスとなり放出される。そして、金
属表面におけるガス分子の吸着は、電子的な結合を伴う
結合力の高いガス分子、または原子と金属表面原子との
化学吸着層の上に物理吸着層が存在するため、吸着ガス
の脱離が困難である。
2. Description of the Related Art Generally, in metals such as stainless steel, gas molecules are adsorbed on a metal surface, then the gas molecules are dissociated into atoms, and the atoms move and dissolve (absorb) into the metal (in particular, H). Dissolution of 2 is remarkable.). In the process of desorption of gas molecules, after the desorption of the physisorbed gas molecules on the metal surface, contrary to the above process, the atoms dissolved in the metal are adsorbed to each other and to the metal surface Or recombine with an atom to form C m H n , H 2 , CO,
It is released as desorbed gas such as N 2 and H 2 O. Gas molecules are adsorbed on the metal surface because of the presence of the physical adsorption layer on the gas molecules with high bonding force accompanied by electronic bonding or the chemical adsorption layer between atoms and metal surface atoms. Separation is difficult.

【0003】真空系に用いられるステンレス等の金属製
基材にあっては、排気速度の向上、到達真空度の向上お
よび/または封止された真空系での真空度の維持を図る
ために、金属製基材を高温で長時間、加熱真空脱ガス処
理を行い、基材表面に吸着したガス分子を除去する必要
がある。例えば、高真空雰囲気を必要とする分析装置の
真空チャンバーや、真空排気系の配管部材および真空容
器、真空度を長時間維持する必要性のある真空断熱魔法
瓶などでは、分析装置、または製造装置の立ち上げ前や
製造工程中に加熱真空脱ガス処理を行っており、その所
要時間は長く、また、高温加熱による多大なるエネルギ
ーを必要とし、効率的ではなかった。
[0003] In the case of a metal base material such as stainless steel used for a vacuum system, in order to improve the pumping speed, the ultimate vacuum degree and / or maintain the vacuum degree in a sealed vacuum system, It is necessary to remove the gas molecules adsorbed on the surface of the metal substrate by subjecting the metal substrate to high-temperature, long-time vacuum degassing under heating. For example, in a vacuum chamber of an analyzer that requires a high vacuum atmosphere, a piping member and a vacuum vessel of an evacuation system, a vacuum insulated thermos that needs to maintain a degree of vacuum for a long time, an analyzer, or a manufacturing apparatus. Heat vacuum degassing is performed before startup and during the manufacturing process, the required time is long, and a large amount of energy due to high-temperature heating is required, which is not efficient.

【0004】半導体製造装置用ガス供給系部材に用いら
れるステンレス製基材にあっては、供給ガスの純度を維
持するための一般的な手法として、接ガス面を機械研
摩、電解研摩、電解複合研摩および化学研摩等により平
滑化し、更に、安定化のために不動態化処理を行ってお
り、基材自体についても不純物を極力排除した真空二
重、または三重溶解材等を用いている。そして、装置立
ち上げ時などでは加熱下における真空脱ガスや不活性ガ
スフローなどによるベーキング処理を行い、基材表面に
吸着したガス分子を除去し、プロセス中への不純物ガス
の侵入を極限まで防止している。
In a stainless steel base material used for a gas supply system member for a semiconductor manufacturing apparatus, as a general method for maintaining the purity of a supply gas, a gas contact surface is mechanically polished, electrolytic polished, or electrolytically polished. Smoothing is performed by polishing and chemical polishing, and a passivation treatment is performed for stabilization. The base material itself is made of a vacuum double or triple dissolution material from which impurities are eliminated as much as possible. When the equipment is started, baking is performed by vacuum degassing under heating or an inert gas flow to remove gas molecules adsorbed on the surface of the base material, preventing the intrusion of impurity gases into the process to the utmost. doing.

【0005】ステンレス材料のガス放出率を低減させる
上記以外の方法として、真空炉ベーク処理が用いられて
いる。しかし、この処理方法は、約1050℃の高温で
加熱する必要があることから、特に、大型の真空容器な
どを処理する場合には、多大なエネルギーコストがかか
る。また、1050℃という高温で加熱するため、バニ
シング加工等により硬化処理したフランジや継手などの
金属シール部等は軟化してしまうという問題がある。
[0005] As another method for reducing the gas release rate of stainless steel materials, vacuum furnace baking is used. However, since this processing method requires heating at a high temperature of about 1050 ° C., a large energy cost is required particularly when processing a large vacuum vessel or the like. Further, since heating is performed at a high temperature of 1050 ° C., there is a problem that a metal seal portion such as a flange or a joint hardened by burnishing or the like is softened.

【0006】そこで、従来においては、例えば、特開平
4−157149号公報に記載されているように、ステ
ンレス製真空機器を放電洗浄後、所定の温度で純酸素を
導入することにより、表面に緻密な酸化被膜を形成し、
水素の放出を低減する方法が提案されている。また、特
開平4−183846号公報に記載されているように、
電解研摩したステンレス鋼材を酸素分圧4Pa以下の不
活性ガス、または真空中で、温度900℃以上1200
℃以下の熱処理を行うことによって、所定の厚さおよび
Cr含有量の酸化被膜を形成し、表面からの水分放出量
を低減する方法が提案されている。また、特公平3−2
8515号公報に記載されているように、Al合金等か
ら成る強度付与金属真空用部品の表面を、溶射、溶融メ
ッキ等で被覆して高純度Al層の表面を形成し、この表
面に緻密な酸化被膜を形成させることによって、真空度
低下物質の吸着防止と、水和酸化被膜の生成の抑制を図
る方法が提案されている。
Therefore, conventionally, as described in, for example, Japanese Patent Application Laid-Open No. 4-157149, after vacuum-cleaning a stainless steel vacuum device, pure oxygen is introduced at a predetermined temperature to obtain a dense surface. Oxide film
Methods have been proposed to reduce the release of hydrogen. Further, as described in JP-A-4-183846,
The electrolytically polished stainless steel is heated in an inert gas having an oxygen partial pressure of 4 Pa or less, or in a vacuum, at a temperature of 900 ° C. to 1200 ° C.
A method has been proposed in which an oxide film having a predetermined thickness and a Cr content is formed by performing a heat treatment at a temperature of not more than ℃ to reduce the amount of water released from the surface. In addition, 3-2
As described in JP-A-8515, the surface of a strength-imparting metal vacuum component made of an Al alloy or the like is coated by thermal spraying, hot-dip plating, or the like to form a surface of a high-purity Al layer, and a dense surface is formed on the surface. A method has been proposed in which an oxide film is formed to prevent adsorption of a substance having a reduced degree of vacuum and to suppress formation of a hydrated oxide film.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来例のうち、特開平4−157149号公報および特開
平4−183846号公報に記載された方法は、いずれ
も基材の表面に安定で薄く、緻密な酸化被膜を形成する
ことにより、大気中のガス分子の吸着や化学結合を防止
しようとするものであるが、酸化被膜を形成する前の表
面状態として極めて清浄、かつ平滑な表面が要求され、
また、酸化被膜形成時の精密な雰囲気管理が必要であ
り、処理温度もかなりの高温である場合が多い。そのた
め、生産プロセスが複雑となり、生産性が悪く、結果的
にコスト高になる。また、特公平3−28515号公報
に記載された方法は、高純度Al層の表面に緻密な酸化
被膜層を形成することができても、上記と同様、高純度
Al層を形成する前の表面状態として極めて清浄、かつ
平滑な表面が要求される。また、高純度Al層の形成、
酸化被膜の形成と製造プロセスが複雑であり、生産性が
悪く、コスト高になるという面において満足することが
できない。
However, among the above conventional examples, the methods described in JP-A-4-157149 and JP-A-4-183846 are all stable and thin on the surface of the base material. By forming a dense oxide film, it is intended to prevent adsorption and chemical bonding of gas molecules in the atmosphere, but an extremely clean and smooth surface is required as a surface state before forming an oxide film. ,
In addition, precise control of the atmosphere during the formation of the oxide film is required, and the processing temperature is often quite high. This complicates the production process, lowers productivity and results in higher costs. In addition, the method described in Japanese Patent Publication No. 3-28515 discloses a method in which a dense oxide film layer can be formed on the surface of a high-purity Al layer even before the high-purity Al layer is formed. An extremely clean and smooth surface is required as the surface state. Also, formation of a high-purity Al layer,
The formation of the oxide film and the manufacturing process are complicated, the productivity is poor, and the cost is not satisfactory.

【0008】本発明等は、種々研究した結果、二酸化ケ
イ素などの共有結合物質が、ガス分子を原子状に解離さ
せることがなく、金属材料と比較してガス分子(原子)
を溶解することが少ないため、すなわち、ガス分子の吸
着が主として電子の結合を伴わない物理吸着であるた
め、結果的に吸着ガス分子の脱離が容易であり、しか
も、脱離ガス成分も極めて少なくなり、ガス吸着抑制効
果を発揮することができることが分かった。
According to the present invention and the like, as a result of various studies, it has been found that a covalent bond substance such as silicon dioxide does not dissociate gas molecules into atoms, and gas molecules (atoms) are compared with metal materials.
Is less dissolved, that is, the adsorption of gas molecules is physical adsorption mainly without electron binding, so that the adsorbed gas molecules are easily desorbed, and the desorbed gas components are extremely low. Thus, it was found that the gas adsorption suppressing effect can be exhibited.

【0009】また、高分子材料は一般的にその構造上、
極めて小さい孔が存在するため、その小さな孔への水分
子などの侵入があり、その脱離は困難である。また、一
度脱離させたとしても大気中に曝されることによって、
再度、水分子などの吸着、孔への侵入が起こる。したが
って、高分子材料は真空系、高純度ガス供給系に利用す
るにはあまり望ましい特徴を有していない。しかしなが
ら、高分子材料の表面に上記二酸化ケイ素などの共有結
合物質をコーティングすることによって、水分子などの
孔からの脱離を防止することができるとともに、大気中
に曝された場合のガス吸着の抑制が可能となり、また、
高分子材料の種類によっても様々であるが、アルキル基
などの官能基への水素結合、またはクーロン力結合の防
止が可能となることが分かった。
[0009] In general, polymer materials are structurally
Since very small pores are present, water molecules and the like enter the small pores, and their desorption is difficult. Also, even once desorbed, by being exposed to the atmosphere,
Again, water molecules and the like are adsorbed and penetrate into the pores. Therefore, polymer materials do not have very desirable characteristics for use in vacuum systems and high-purity gas supply systems. However, by coating the surface of the polymer material with a covalent bonding substance such as the above-mentioned silicon dioxide, it is possible to prevent desorption of water molecules and the like from the pores and to prevent gas adsorption when exposed to the atmosphere. Can be controlled, and
Although it varies depending on the type of the polymer material, it has been found that hydrogen bonding to a functional group such as an alkyl group or Coulomb force bonding can be prevented.

【0010】本発明者等は、上記共有結合物質のうち、
機械的強度、電気絶縁性等に優れた二酸化ケイ素に着目
した。従来、この二酸化ケイ素を金属等の基材にコーテ
ィングする手法として、CVD法、スパッタリング法な
どの気相成長法やゾルゲル法などがある。しかしなが
ら、気相成長法では複雑な形状の基板へのコーティング
が困難であるばかりでなく、コーティング層が非常に薄
いため、基材の微細な凹凸を平坦化させることができ
ず、しかも、経済的に安価に生産できる手法とも言えな
い。また、ゾルゲル法では強固なガラス被膜を形成する
ことは困難であり、得られる被膜の緻密性も低い。
[0010] The present inventors have found that among the above-mentioned covalent bonding substances,
Attention was paid to silicon dioxide, which has excellent mechanical strength and electrical insulation. Conventionally, as a method for coating the silicon dioxide on a substrate such as a metal, there are a vapor phase growth method such as a CVD method and a sputtering method, and a sol-gel method. However, in the vapor phase growth method, not only is it difficult to coat a substrate having a complicated shape, but also because the coating layer is extremely thin, fine irregularities on the substrate cannot be flattened. It can not be said that it can be produced at low cost. Further, it is difficult to form a strong glass coating by the sol-gel method, and the resulting coating has low density.

【0011】そこで、本発明者等は、ステンレス、アル
ミニウム、炭素鋼等の各種の金属、各種のプラスチック
等から成る各種の基材にポリシラザン、またはポリシラ
ザン含有組成物を塗布することにより、セラミック化し
た二酸化ケイ素を主成分とし、ガス分子の吸着を防止す
ることができるととともに、吸着したガス分子を容易に
脱離させることができるガス吸着抑制膜を簡単に、かつ
安価に形成することができ、真空脱ガス、ベーキング処
理等の後処理工程の軽減化を図ることができることを見
出し、これに基づき本発明を提供しようとするものであ
る。
Therefore, the present inventors applied ceramics by applying polysilazane or a polysilazane-containing composition to various substrates made of various metals such as stainless steel, aluminum and carbon steel, and various plastics. The main component is silicon dioxide, which can prevent gas molecules from being adsorbed, and can easily and inexpensively form a gas adsorption suppression film capable of easily desorbing the adsorbed gas molecules, It has been found that the number of post-processing steps such as vacuum degassing and baking can be reduced, and the present invention is based on this finding.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明のガス吸着抑制化基材は、基材の少なくともガ
ス吸着抑制面に、ポリシラザン、またはポリシラザン含
有組成物をセラミックス化し、二酸化ケイ素を主成分と
するガス吸着抑制膜が形成されたものである。
According to the present invention, there is provided a gas adsorption suppressing substrate according to the present invention, wherein at least a gas adsorption suppressing surface of a substrate is formed by converting a polysilazane or a polysilazane-containing composition into a ceramic, The main component is a gas adsorption suppressing film formed.

【0013】上記構成において、ガス吸着抑制膜におけ
る窒素の含有量が原子百分率で0.005%〜5%の範
囲で選択されるのが好ましく、また、ガス吸着抑制膜の
厚さが0.05μm〜10μmの範囲で選択されるのが
好ましい。
In the above structure, it is preferable that the nitrogen content in the gas adsorption suppressing film is selected in the range of 0.005% to 5% in atomic percentage, and the thickness of the gas adsorption suppressing film is 0.05 μm. Preferably, it is selected in the range of 10 to 10 μm.

【0014】また、基材を金属、またはプラスチックの
いずれかから選択し、真空構造体、または高純度ガス供
給系配管器材に用いることができる。
Further, the base material is selected from metal or plastic, and can be used for a vacuum structure or a high-purity gas supply system piping device.

【0015】[0015]

【発明の実施の形態】本発明のガス吸着抑制化基材の実
施形態について説明すると、ステンレス鋼等の金属、プ
ラスチック等から成る基材の少なくともガス吸着抑制面
(例えば、基材が板状である場合には、その一面、若し
くは両面、基材が管材である場合には、その内周面、外
周面のいずれか一方、若しくは両方)にポリシラザン、
またはポリシラザン含有組成物を溶媒で溶解した溶液を
塗布し、この溶液を加熱硬化、常温硬化、湿中加熱硬化
等による加水分解(OHとの反応)、酸化分解(O2
の反応)、熱分解等によって分解してセラミックス化
し、二酸化ケイ素(SiO2)を主成分とし、窒素
(N)を含有するガス吸着抑制膜を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the gas adsorption suppressing substrate of the present invention will be described. At least a gas adsorption suppressing surface of a substrate made of metal such as stainless steel, plastic, etc. In some cases, one or both surfaces thereof, and when the base material is a tubular material, one or both of the inner peripheral surface and the outer peripheral surface thereof)
Alternatively, a solution obtained by dissolving a polysilazane-containing composition in a solvent is applied, and the solution is subjected to hydrolysis (reaction with OH), oxidative decomposition (reaction with O 2 ), thermal decomposition by heat curing, room temperature curing, or heat curing in moisture. It is decomposed into ceramics by decomposition or the like to form a gas adsorption suppressing film containing silicon dioxide (SiO 2 ) as a main component and containing nitrogen (N).

【0016】上記ガス吸着抑制化基材として、板材、管
材等、各種の形状、構造に適用することができ、具体的
には、真空断熱管、真空断熱タンク、真空断熱チャンバ
ー、真空断熱容器、真空断熱魔法瓶、分析用真空チャン
バー、真空用配管部材等の真空構造体に適用することが
でき、また、ガス配管、各種のバルブ、継手等の高純度
ガス供給系配管器材に適用することができる。
The above-mentioned substrate for suppressing gas adsorption can be applied to various shapes and structures such as a plate material and a tube material. Specifically, a vacuum heat insulating pipe, a vacuum heat insulating tank, a vacuum heat insulating chamber, a vacuum heat insulating container, It can be applied to vacuum structures such as vacuum insulated thermos, analytical vacuum chamber, vacuum piping member, etc.It can also be applied to high-purity gas supply piping equipment such as gas piping, various valves and fittings. .

【0017】上記ポリシラザンとしては、下記の一般式The polysilazane is represented by the following general formula:

【0018】[0018]

【化1】 Embedded image

【0019】(上記式中、R1、R2、およびR3は、そ
れぞれ独立に水素原子、アルキル基、アルケニル基、シ
クロアルキル基、アリール基、またはこられの基以外で
ケイ素に直結する基が炭素である基、アルキルシリル
基、アルキルアミノ基、アルコキシ基を表わす。ただ
し、R1、R2およびR3の少なくとも1つは水素原子で
ある。)で表わされる単位から成る主骨格を有する数平
均分子量が100〜5万のポリシラザンを用いることが
できる。
(In the above formula, R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group other than these groups directly bonded to silicon. Is a carbon atom, an alkylsilyl group, an alkylamino group or an alkoxy group, provided that at least one of R 1 , R 2 and R 3 is a hydrogen atom.) Polysilazane having a number average molecular weight of 100 to 50,000 can be used.

【0020】または上記一般式のポリシラザンとホウ素
化合物とを反応させて得られる改質ポリシラザン、また
は上記一般式のポリシラザンにニッケル、チタン、白
金、鉄、アルミニウム等の金属を含む変性ポリシラザ
ン、または上記一般式のポリシラザンにAl23、Si
2、ZrO2、MgO等の無機フィラーを含むポリシラ
ザン組成物等を用いることができる。要するに、本発明
におけるポリシラザン、またはポリシラザン含有組成物
としては、基材に塗布することにより、セラミックス化
して二酸化ケイ素を主成分とするガス吸着抑制膜を形成
することができる各種のものを用いることができる。
Alternatively, a modified polysilazane obtained by reacting a polysilazane of the above general formula with a boron compound, a modified polysilazane containing a metal such as nickel, titanium, platinum, iron, or aluminum in the polysilazane of the above general formula; Al 2 O 3 , Si
A polysilazane composition containing an inorganic filler such as O 2 , ZrO 2 , and MgO can be used. In short, as the polysilazane or the polysilazane-containing composition of the present invention, it is possible to use various kinds of materials that can be formed into a ceramic to form a gas adsorption suppressing film containing silicon dioxide as a main component by being applied to a substrate. it can.

【0021】ポリシラザン、またはポリシラザン含有組
成物を溶解して溶液を作成することのできる溶媒として
は、キシレン、ベンゼン、トルエン、アルカン、n−ヘ
プタン、デカン、ケトン、エステル、グリコールエーテ
ル等を用いることができ、これらはポリシラザン、また
はポリシラザン含有組成物に応じて適宜選択される。そ
して、これらの溶媒は、基材に対する塗布の作業性が良
くなるように、また、使用するポリシラザン、またはポ
リシラザン含有組成物の平均分子量、分子量分布、その
構造によって適宜選択することができ、固形分濃度で1
〜50重量%の範囲、好ましくは5〜30重量%の範囲
で混合することができる。
Xylene, benzene, toluene, alkane, n-heptane, decane, ketone, ester, glycol ether and the like can be used as a solvent capable of forming a solution by dissolving polysilazane or a polysilazane-containing composition. These can be selected appropriately according to the polysilazane or the polysilazane-containing composition. These solvents can be appropriately selected depending on the polysilazane used, or the average molecular weight of the polysilazane-containing composition, the molecular weight distribution, and the structure so that the workability of application to the base material is improved. 1 in concentration
It can be mixed in the range of -50% by weight, preferably in the range of 5-30% by weight.

【0022】上記溶液の基材に対する塗布法としては、
スピンコーティング法、ディップコーティング法、スプ
レーコーティング法、フローコーティング法などがあ
る。これらの塗布法のうち、いずれの方法を採用するか
は、基材の形状、膜厚制御、液濃度等を考慮して選択さ
れるが、いずれの塗布法を採用しても、上記従来例の各
種被膜形成方法に比べ、大きな設備は不要で、簡便で複
雑な形状の基材への塗布も容易で、表面の平坦化も容易
である。
As a method for applying the above solution to a substrate,
There are a spin coating method, a dip coating method, a spray coating method, a flow coating method and the like. Which of these coating methods is to be adopted is selected in consideration of the shape of the base material, control of the film thickness, liquid concentration, and the like. Compared with the above-mentioned various film forming methods, large equipment is not required, it is easy to apply to a substrate having a simple and complicated shape, and the surface is easily flattened.

【0023】上記加熱硬化によるガス吸着抑制膜の形成
方法は、ポリシラザン、またはポリシラザン含有組成物
をキシレン等の溶媒で溶解した溶液を加熱することによ
って溶媒を飛散させ、これによって空気中の酸素を取り
込んでガス吸着抑制膜を形成するもので、400℃以上
に加熱すれば完全にセラミックス化する。常温硬化によ
るガス吸着抑制膜の形成方法は、常温での溶媒の揮発に
加えて、空気中の酸素、あるいは空気中の湿気からの酸
素を取り込んで硬化させるものであって、セラミックス
化にはかなり長く時間がかかるが、鉛筆硬度で9H以上
のガス吸着抑制膜を形成することができる。湿中加熱硬
化によるガス吸着抑制膜の形成方法は、100℃前後で
湿気を与えることによって硬化を促進させるもので、硬
化に十分な湿度の目安として80%程度が好ましい。
In the method of forming a gas adsorption suppressing film by heat curing, a solution in which a polysilazane or a polysilazane-containing composition is dissolved in a solvent such as xylene is heated to disperse the solvent, thereby taking in oxygen in the air. To form a gas adsorption suppressing film, and when heated to 400 ° C. or more, it is completely ceramicized. The method of forming the gas adsorption suppressing film by curing at room temperature involves curing by taking in oxygen in the air or oxygen from the moisture in the air in addition to volatilization of the solvent at room temperature, which is quite difficult for ceramics formation. Although it takes a long time, a gas adsorption suppressing film having a pencil hardness of 9H or more can be formed. The method for forming the gas adsorption suppressing film by heat curing in moisture is to accelerate the curing by applying moisture at about 100 ° C., and it is preferable that the humidity sufficient for the curing is about 80%.

【0024】上記ガス吸着抑制膜は、ポリシラザンを用
いることにより必然的に窒素を含有するが、窒素を原子
百分率で0.005%よりも少なくすることは困難であ
り、一方、窒素が原子百分率で5%を超えると二酸化ケ
イ素が不十分となり、所期の硬度等を得ることができな
い。したがって、窒素を原子百分率で0.005%〜5
%の範囲、好ましくは0.005%〜3%の範囲で選択
する。これは上記溶媒の使用量を適宜調整することによ
り得ることができる。
The above-mentioned gas adsorption suppressing film necessarily contains nitrogen by using polysilazane, but it is difficult to make nitrogen less than 0.005% in atomic percentage, while nitrogen is in atomic percentage. If it exceeds 5%, silicon dioxide becomes insufficient, and the desired hardness and the like cannot be obtained. Therefore, nitrogen is added in an atomic percentage of 0.005% to 5%.
%, Preferably in the range of 0.005% to 3%. This can be obtained by appropriately adjusting the amount of the solvent used.

【0025】また、ガス吸着抑制膜の厚さは、無機フィ
ラーを含有していない場合には、0.05μm未満では
基材の微細な凹凸を有する表面をほぼ均一な厚さで完全
に覆い難く、ガス吸着抑制効果を期待することができな
いおそれがあり、5μmを超えると、セラミックス化す
る際にクラックが入るおそれがあり、また、剥離を生じ
るおそれがあるので、0.05μm〜5μmの範囲、よ
り好ましくは0.1μm〜2μmの範囲で選択する。ま
た、無機フィラーを含有している場合、この無機フィラ
ーの粒径が0.1μmより小さいと溶液中で凝集しやす
く、均一に分散され難く、空孔のない緻密な膜を得るに
は0.1μm程度の粒径の無機フィラーを用いるのが好
ましく、したがって、0.1μm以上の膜厚が好まし
い。また、無機フィラーを含有することにより、膜形成
時の体積縮収が緩和され、クラックが入り難くなるの
で、10μm程度までの厚い膜が得られるようになる。
ただし、10μmを超える膜厚では空孔が生じやすく、
均質な膜を得難い。したがって、10μm以下の膜厚が
好ましい。このようにガス吸着抑制膜の膜厚は、無機フ
ィラーを含有していない場合、無機フィラーを含有して
いる場合の両方を含めて0.05μm〜10μmの範囲
で所望の厚さに選択するのが好ましい。このガス吸着抑
制膜の厚さは、上記ポリシラザン溶液の固形分濃度の調
整により任意に設定することができる。
When the thickness of the gas adsorption suppressing film is less than 0.05 μm when it does not contain an inorganic filler, it is difficult to completely cover the surface of the substrate having fine irregularities with a substantially uniform thickness. The effect of suppressing gas adsorption may not be expected, and if it exceeds 5 μm, cracks may occur when ceramics is formed, and peeling may occur, so the range of 0.05 μm to 5 μm More preferably, it is selected in the range of 0.1 μm to 2 μm. When the inorganic filler is contained, if the particle size of the inorganic filler is smaller than 0.1 μm, the inorganic filler is easily aggregated in the solution, is difficult to be uniformly dispersed, and is required to obtain a dense film without voids. It is preferable to use an inorganic filler having a particle size of about 1 μm, and therefore a film thickness of 0.1 μm or more is preferable. Also, by containing an inorganic filler, volume shrinkage during film formation is eased and cracks are less likely to occur, so that a thick film up to about 10 μm can be obtained.
However, if the film thickness exceeds 10 μm, pores are likely to be generated,
It is difficult to obtain a uniform film. Therefore, a film thickness of 10 μm or less is preferable. As described above, the thickness of the gas adsorption suppression film is selected to be a desired thickness in the range of 0.05 μm to 10 μm including both the case where the inorganic filler is not contained and the case where the inorganic filler is contained. Is preferred. The thickness of the gas adsorption suppressing film can be arbitrarily set by adjusting the solid concentration of the polysilazane solution.

【0026】上記構成のガス吸着抑制化基材によれば、
二酸化ケイ素を主成分とするガス吸着抑制膜は上記のよ
うに酸素を取り込んで硬化するので、基材とガス吸着抑
制膜との界面に気泡がなく、しかも、ガス吸着抑制膜は
その硬化時に基材の表面に吸着していたガス分子(H2
O、O2)をその膜内に取り込むので、ガス吸着抑制膜
形成後の基材表面およびその界面は極めて清浄であり、
基材表面および界面から脱離ガス分子がガス吸着抑制膜
を透過して放出されてくることはない。また、上記ガス
吸着抑制膜が安定で緻密であり、ガス分子の吸着エネル
ギーが小さいので、ガス分子の吸着を効率良く防止する
ことができ、しかも、吸着したガス分子を容易に脱離さ
せることができる。したがって、従来と同様の時間でベ
ーキング処理を行う場合には低温で良く、従来と同様の
高温でベーキング処理を行う場合には短時間で良く、ベ
ーキング処理の軽減化、または真空脱ガス処理の軽減化
を図ることができる。そして、上記ガス吸着抑制膜は塗
布法により簡単に、かつ安価に得ることができる。
According to the gas adsorption suppressing substrate having the above structure,
Since the gas adsorption suppressing film containing silicon dioxide as a main component hardens by taking in oxygen as described above, there are no air bubbles at the interface between the base material and the gas adsorption suppressing film, and the gas adsorption suppressing film is not cured when the film is cured. Gas molecules (H 2
O, O 2 ) is taken into the film, so that the substrate surface and its interface after the formation of the gas adsorption suppressing film are extremely clean,
The desorbed gas molecules do not pass through the gas adsorption suppressing film and are released from the substrate surface and the interface. Further, since the gas adsorption suppressing film is stable and dense and has a low gas molecule adsorption energy, the gas molecule adsorption can be prevented efficiently, and the adsorbed gas molecules can be easily desorbed. it can. Therefore, when the baking process is performed in the same time as the conventional case, the temperature may be low, and when the baking process is performed in the same high temperature as the conventional case, the time may be short, and the baking process or the vacuum degassing process may be reduced. Can be achieved. The gas adsorption suppressing film can be easily and inexpensively obtained by a coating method.

【0027】上記本発明のガス吸着抑制化基材を用いた
ガス吸着抑制真空構造体の一例として、真空断熱管に適
用した場合について説明すると、例えば、ステンレス鋼
から成る内管、外管および環状端板が用いられ、外管に
内管が挿入され、外管と内管の両端が環状端板で封塞さ
れて外管と内管との間に真空断熱層が設けられる。この
ような真空断熱管において、内管、外管、環状端板とし
て上記ガス吸着抑制化基材が用いられる。すなわち、内
管の少なくともガス吸着抑制面である外周面と、外管の
少なくともガス吸着抑制面である内周面と、環状端板の
少なくともガス吸着抑制面である内面とにガス吸着抑制
膜が形成されている。
As an example of the gas adsorption suppressing vacuum structure using the gas adsorption suppressing base material of the present invention applied to a vacuum heat insulating pipe, for example, an inner pipe, an outer pipe, and an annular pipe made of stainless steel will be described. An end plate is used, the inner tube is inserted into the outer tube, both ends of the outer tube and the inner tube are sealed with the annular end plates, and a vacuum heat insulating layer is provided between the outer tube and the inner tube. In such a vacuum insulated pipe, the above-mentioned gas adsorption suppressing base material is used as an inner pipe, an outer pipe, and an annular end plate. That is, a gas adsorption suppression film is formed on at least the outer peripheral surface of the inner tube, which is a gas adsorption suppression surface, the outer peripheral surface, which is at least the gas adsorption suppression surface of the outer tube, and the inner surface of the annular end plate, which is at least the gas adsorption suppression surface. Is formed.

【0028】このようにな真空断熱管は、内管の外周
面、外管の内周面、両端の環状端板の内面に、ガス吸着
抑制膜が形成されることにより、真空断熱管の製作時に
内管の外周面、外管の内周面、環状端板の内面が大気に
触れてもガス分子の吸着が少ない。しかも、真空引きに
よって真空断熱層を形成する際には、内管の外周面、外
管の内周面、環状端板の内面にガス分子が吸着していた
としても、この少ないガス分子が100℃程度のベーキ
ング、または加熱真空脱ガス処理で容易に脱離するの
で、多大なエネルギーと長時間を要するベーキング、ま
たは加熱真空脱ガス処理することなく、真空度の高い断
熱層が形成され、真空層を封じた後も長期間に亘って真
空度の維持が可能となり、真空断熱効果が高く、長期間
安定した断熱効果を持つ真空断熱管を効率よく、低コス
トで製作することができる。
Such a vacuum insulated tube is manufactured by forming a gas adsorption suppressing film on the outer peripheral surface of the inner tube, the inner peripheral surface of the outer tube, and the inner surfaces of the annular end plates at both ends. Even when the outer peripheral surface of the inner tube, the inner peripheral surface of the outer tube, and the inner surface of the annular end plate sometimes come into contact with the atmosphere, the adsorption of gas molecules is small. In addition, when the vacuum heat insulating layer is formed by evacuation, even if the gas molecules are adsorbed on the outer peripheral surface of the inner tube, the inner peripheral surface of the outer tube, and the inner surface of the annular end plate, a small amount of the gas molecules is reduced to 100%. It is easily desorbed by baking at about ℃ or heating vacuum degassing, so a heat insulating layer with a high degree of vacuum is formed without baking or heating vacuum degassing requiring a lot of energy and a long time. The degree of vacuum can be maintained for a long time even after the layer is sealed, and a vacuum heat insulating tube having a high vacuum heat insulating effect and a stable heat insulating effect for a long time can be manufactured efficiently and at low cost.

【0029】また、特に、炭素鋼などで構成された真空
断熱管では、内管の内側に流す流体が高温蒸気である場
合、水素ガスが内管を透過して真空層に侵入し、真空度
を低下させるという問題があるが、内管の内周面にもガ
ス吸着抑制膜をコーティングしておくことにより、水素
ガス分子の真空層への侵入を防止することができる。し
たがって、真空層の真空度の低下を防止することがで
き、真空断熱層の断熱効果が阻害されることがない。
In particular, in the case of a vacuum insulated pipe made of carbon steel or the like, when the fluid flowing inside the inner pipe is high-temperature steam, hydrogen gas penetrates the inner pipe and penetrates into the vacuum layer, and the degree of vacuum increases. However, by coating the inner peripheral surface of the inner tube with a gas adsorption suppressing film, it is possible to prevent hydrogen gas molecules from entering the vacuum layer. Therefore, a decrease in the degree of vacuum of the vacuum layer can be prevented, and the heat insulating effect of the vacuum heat insulating layer is not hindered.

【0030】上記本発明のガス吸着抑制化基材を用いた
半導体製造用等の高純度ガス供給系配管器材において
は、例えば、ステンレス鋼から成る基材の接ガス面にガ
ス吸着抑制膜が形成されることにより、配管器材の接ガ
ス面を流れる超高純度ガスのガス分子の吸着が防止さ
れ、例え、ガス分子が吸着しても容易に脱離し、接ガス
面は常に清浄な状態となる。したがって、腐触性ガスを
流すガス供給系配管基材の耐触性の向上を図ることがで
き、また、半導体製造装置等の立上げ時において、ガス
供給系配管器材の接ガス面に吸着しているガス分子を8
0℃前後の低い温度でベーキング処理することにより、
容易に除去することができので、特に、PCTFEやフ
ッ素系ゴム等の高分子材料をシートやパッキンとして用
いているバルブ等に適用することによって従来、シー
ト、パッキンの熱的物性によって制約されていた100
℃前後の温度でもステンレス等の金属材料のベーキング
処理を短時間で容易に行うことができる。これにより、
半導体製造装置等へ供給するガスの純度を所定の純度ま
で短時間で安定的に供給可能となるので、立上げ時間を
大幅に短縮することが可能となり、しかも、器材を低コ
ストで製作することができる。また、高純度ガス供給系
において、供給される高純度ガスの品質を確保すること
ができ、半導体製造用等の高純度ガス供給系の信頼性を
向上させることができる。
In a piping device for a high-purity gas supply system for semiconductor production or the like using the above-mentioned substrate for suppressing gas adsorption of the present invention, for example, a gas adsorption suppressing film is formed on the gas contact surface of a substrate made of stainless steel. By doing so, adsorption of gas molecules of ultra-high purity gas flowing on the gas contact surface of the piping equipment is prevented, and even if the gas molecules are adsorbed, they are easily desorbed and the gas contact surface is always in a clean state. . Therefore, it is possible to improve the contact resistance of the gas supply system piping base material through which the corrosive gas flows, and to adsorb on the gas contact surface of the gas supply system piping equipment when starting up a semiconductor manufacturing apparatus or the like. 8 gas molecules
By baking at a low temperature around 0 ° C,
Conventionally, it has been restricted by the thermal properties of the sheet and the packing by applying a polymer material such as PCTFE or fluorine-based rubber to the sheet or the packing because the valve can be easily removed. 100
Baking treatment of a metal material such as stainless steel can be easily performed in a short time even at a temperature of about ° C. This allows
Since the purity of gas to be supplied to semiconductor manufacturing equipment can be stably supplied to a predetermined purity in a short time, the start-up time can be greatly reduced, and the equipment can be manufactured at low cost. Can be. Further, in the high-purity gas supply system, the quality of the supplied high-purity gas can be ensured, and the reliability of the high-purity gas supply system for semiconductor production or the like can be improved.

【0031】[0031]

【実施例】次に、本発明のガス吸着抑制化基材の具体的
な実施例について説明する。 (実施例1)両端にフランジを設けた長さ150mm、
内径10.77mm、外径12.7mmのステンレスパ
イプ(住金ステンレス鋼管製:SUS316L TP−
SCBA)を用い、一方のフランジにはドレン口とバル
ブ付きの閉塞板のフランジを接続した。そして、まず、
上記フランジ付きパイプをバルブ側が下側に位置するよ
うにして縦方向にセットした。次に、ペルヒドロポリシ
ラザン(上記化1のの一般式でR1、R2およびR3に水
素原子を有する)の10%キシレン溶液(エヌ・イーケ
ムキャット製:商品名/HERVIC標準タイプ)をフ
ランジ付きパイプにその上側開放部から流し込んで充填
した。次に、バルブを開放して閉塞板のドレン口から1
0cm/minの速度で溶液を排出した。排出後、フラ
ンジ付きパイプから閉塞板等を取り外し、フランジ付き
パイプを乾燥炉内において80℃で10分間、乾燥させ
た。続いて、加熱炉内において400℃で3時間の加熱
硬化処理を行った後、大気中で自然に冷却してフランジ
付きパイプの内周面にガス吸着抑制膜を形成した。
Next, specific examples of the substrate for suppressing gas adsorption according to the present invention will be described. (Example 1) 150 mm in length provided with flanges at both ends,
Stainless steel pipe with inner diameter of 10.77 mm and outer diameter of 12.7 mm (Sumikin stainless steel pipe: SUS316L TP-
SCBA), and one flange was connected to a flange of a closing plate with a drain port and a valve. And first,
The above-mentioned flanged pipe was set vertically so that the valve side was located on the lower side. Next, a 10% xylene solution of perhydropolysilazane (having hydrogen atoms at R 1 , R 2 and R 3 in the general formula of Chemical Formula 1 ) (product name: HERVIC standard type, manufactured by NE Chemcat) was flanged. The pipe was filled by pouring from its upper opening. Next, open the valve and open the drain port
The solution was discharged at a speed of 0 cm / min. After discharging, the obstruction plate and the like were removed from the flanged pipe, and the flanged pipe was dried in a drying furnace at 80 ° C. for 10 minutes. Subsequently, after performing a heat curing treatment at 400 ° C. for 3 hours in a heating furnace, the mixture was naturally cooled in the air to form a gas adsorption suppressing film on the inner peripheral surface of the pipe with the flange.

【0032】(実施例2)ペルヒドロポリシラザンの1
5%キシレン溶液を用いた以外は上記実施例1と同様に
してフランジ付きパイプの内周面にガス吸着抑制膜を形
成した。
Example 2 1 of perhydropolysilazane
A gas adsorption suppressing film was formed on the inner peripheral surface of the flanged pipe in the same manner as in Example 1 except that a 5% xylene solution was used.

【0033】(実施例3)ペルヒドロポリシラザンの2
0%キシレン溶液を用いた以外は上記実施例1と同様に
してフランジ付きパイプの内周面にガス吸着抑制膜を形
成した。
Example 3 2 of perhydropolysilazane
A gas adsorption suppressing film was formed on the inner peripheral surface of the flanged pipe in the same manner as in Example 1 except that a 0% xylene solution was used.

【0034】上記実施例1〜3のガス吸着抑制膜を走査
型電子顕微鏡(SEM)で観察したところ、クラックな
どの発生がない良好な状態でガス吸着抑制膜が形成され
ていることが確認された。また、ガス吸着抑制膜の表面
の組成分布をエネルギー分散形X線分析装置(EDX)
により分析したところ、得られたガス吸着抑制膜は一様
に均質な窒素含有の二酸化ケイ素膜であり、その純度も
分析したエリアの平均値で99.5%であることが確認
された。また、塗膜の厚みを試料断面のSEM像から概
略測定したところ、平均膜厚は実施例1では0.3μ
m、実施例2では0.8μm、実施例3では1.5μm
であった。また、実施例1〜3におけるいずれのガス吸
着抑制膜も密度は約2.2(g/cm3)で、石英ガラ
スの2.4(g/cm3)よりは低く、アルカリガラス
の1.9(g/cm3)よりは高く、また、緻密性は、
エッチングレート(nm/min)で約80であり、市
販のゾルゲルコーティング(450℃燃成)が35.
0、熱酸化二酸化ケイ素膜が10であるのに比べて極め
て高く、表面硬度は鉛筆硬度で9H以上有する。
When the gas adsorption suppressing films of Examples 1 to 3 were observed with a scanning electron microscope (SEM), it was confirmed that the gas adsorption suppressing films were formed in a good condition without cracks or the like. Was. In addition, the composition distribution on the surface of the gas adsorption suppressing film is determined by an energy dispersive X-ray analyzer (EDX).
As a result, it was confirmed that the obtained gas adsorption suppression film was a uniformly uniform nitrogen-containing silicon dioxide film, and its purity was 99.5% as an average value of the analyzed area. When the thickness of the coating film was roughly measured from the SEM image of the cross section of the sample, the average film thickness was 0.3 μm in Example 1.
m, 0.8 μm in Example 2, and 1.5 μm in Example 3.
Met. In addition, the density of any of the gas adsorption suppressing films in Examples 1 to 3 was about 2.2 (g / cm 3 ), lower than 2.4 (g / cm 3 ) of quartz glass, and 1.0 (g / cm 3 ) of alkali glass. 9 (g / cm 3 ), and the compactness is
The etching rate (nm / min) is about 80, and the commercial sol-gel coating (fired at 450 ° C.) is 35.
0, which is extremely higher than that of the thermally oxidized silicon dioxide film, and has a surface hardness of 9H or more in pencil hardness.

【0035】上記実施例1、2、3の試料の真空下にお
ける放出ガス速度(基材表面からの脱離ガス速度と基材
内部からの放出ガス速度を合わせた速度を総称して放出
ガス速度と称す)の評価を実施した。この評価におい
て、ガス吸着抑制膜を有しない比較例試料と比較した。
Emission gas velocity of the samples of Examples 1, 2 and 3 under vacuum (the sum of the velocity of the desorption gas from the substrate surface and the velocity of the emission gas from inside the substrate is referred to as the emission gas velocity Evaluation). In this evaluation, comparison was made with a comparative sample having no gas adsorption suppressing film.

【0036】(評価1)まず、すべての試料の状態を極
力同じ条件にするために、各試料を湿度30%、温度2
5℃に調整されたドライボックス内に24時間保存し、
各試料の表面にガス分子を充分に吸着・吸収させた。そ
の後、各試料をドライボックスから取り出し、各試料の
一端にバルブを介して真空ポンプを接続し、他端に絶対
圧真空計を接続して密閉状態とし、各試料の放出ガス速
度の評価を行った。すなわち、バルブを開き、真空ポン
プを駆動させて各試料から真空排気しながら各試料を5
℃/minの昇温速度で350℃迄加熱し、350℃で
1時間の加熱真空脱ガス処理を行った。その後、冷却時
間を冷却開始から2時間として25℃迄冷却させた。冷
却終了後、バルブを閉じて各試料側を密閉系とし、系内
の圧力変化を絶対圧真空計で時系列的に測定した。図1
に圧力を時間の関数としてその結果を示した。
(Evaluation 1) First, in order to keep the state of all the samples as same as possible, each sample was conditioned at a humidity of 30% and a temperature of 2%.
Stored in a dry box adjusted to 5 ° C for 24 hours,
Gas molecules were sufficiently adsorbed and absorbed on the surface of each sample. Thereafter, each sample was taken out of the dry box, a vacuum pump was connected to one end of each sample via a valve, and an absolute pressure gauge was connected to the other end to make a sealed state. Was. That is, while opening the valve and driving the vacuum pump to evacuate each sample, 5
The sample was heated to 350 ° C. at a rate of temperature rise of 350 ° C./min, and subjected to a heating vacuum degassing process at 350 ° C. for 1 hour. Thereafter, the cooling time was set to 2 hours from the start of cooling, and the system was cooled to 25 ° C. After cooling, the valves were closed to make each sample side a closed system, and the pressure change in the system was measured in a time series with an absolute pressure gauge. FIG.
Shows the results of pressure as a function of time.

【0037】図1より、ガス吸着抑制膜をコーティング
した本発明実施例1、2、3の試料は明らかにガス吸着
抑制膜をコーティングしていない比較例試料に対し、圧
力の上昇が遅いことを確認することができ、このことは
それだけ試料からの放出ガスが少ないことを意味してい
る。また、放出ガス速度を具体的な数値で比較しても表
1から明らかなように、コーティングありの本発明実施
例1、2、3の試料はそれぞれ5.3×10-11、3.
2×10-11、1.9×10-11、であるのに対し、コー
ティングなしの比較例試料は8.8×10-10であり、
本発明実施例1、2、3は比較例よりも一桁以上も優れ
ていることを確認することができた。
FIG. 1 shows that the pressure rise of the samples of Examples 1, 2 and 3 of the present invention coated with the gas adsorption suppressing film was obviously slower than that of the comparative sample not coated with the gas adsorption suppressing film. This can be confirmed, which means that the amount of gas emitted from the sample is smaller. As apparent from Table 1, the samples of Examples 1, 2, and 3 having a coating were 5.3 × 10 −11 and 3, respectively, as apparent from Table 1.
2 × 10 −11 , 1.9 × 10 −11 , whereas the comparative sample without the coating has 8.8 × 10 −10 ,
It was confirmed that Examples 1, 2, and 3 of the present invention were superior to Comparative Examples by one order of magnitude or more.

【0038】[0038]

【表1】 [Table 1]

【0039】(評価2)四重極質量分析計(QMS)を
用いて本発明実施例1、2、3の試料と比較例試料から
放出されてくるガス分子の強度(イオン電流値)を温度
毎に測定した。評価1と同様、まず、すべての試料の状
態を極力同じ条件にするために、各試料とも湿度30
%、温度25℃に調整されたドライボックス内に24時
間保存し、表面にガス分子を充分に吸着・吸収させた。
その後、ドライボックスから取り出した各試料を圧力調
整バルブを介してQMSに接続し、各試料内の圧力を1
×10-4Torrで一定に保った状態で、5℃/min
の昇温速度で350℃迄加熱しながら、その時に各試料
から放出されてくる各温度毎のガス分子を測定した。図
2に本発明実施例1、2、3の試料の結果を示し(各実
施例1、2、3共に測定結果はほとんど同じであるの
で、その代表例を示している。)、図3に比較例試料の
測定結果を示した。図2、図3において縦軸がイオン電
流、横軸が温度である。
(Evaluation 2) Using a quadrupole mass spectrometer (QMS), the intensity (ion current value) of gas molecules emitted from the samples of Examples 1, 2, and 3 of the present invention and the sample of Comparative Example was measured with temperature. It was measured every time. As in the case of the evaluation 1, first, in order to keep all the samples in the same condition as much as possible, the humidity of each sample was set to 30%.
%, And stored for 24 hours in a dry box adjusted to a temperature of 25 ° C. to sufficiently adsorb and absorb gas molecules on the surface.
Thereafter, each sample taken out of the dry box was connected to QMS via a pressure adjustment valve, and the pressure in each sample was reduced to 1%.
5 ° C./min while keeping constant at × 10 −4 Torr
While heating up to 350 ° C. at the temperature rising rate, gas molecules emitted from each sample at each temperature at that time were measured. FIG. 2 shows the results of the samples of Examples 1, 2, and 3 of the present invention (measurement results are almost the same in each of Examples 1, 2, and 3; therefore, representative examples are shown), and FIG. The measurement results of the comparative sample are shown. 2 and 3, the vertical axis represents the ion current, and the horizontal axis represents the temperature.

【0040】図2、図3より、コーティングの有無に関
係なく、脱離ガス成分の主なものは、H2O、H2、CO
/N2、O2、CO2であり、また、そのほとんどがH2
であることが分かる。しかしながら、脱離ガス成分の違
いこそないものの、温度に対する放出挙動はコーティン
グの有無により大きく違うことを確認することができ
る。コーティングありの本発明実施例1、2、3の試料
におけるH2Oに対する脱離量は、昇温に伴って急激に
上昇するものの70℃前後を境に徐々に減少する。これ
に対してコーティングなしの比較例試料においては、昇
温と共に200℃位までは徐々に上昇し、200℃を超
えたあたりから一段と多く放出される傾向を示してい
る。また、H2についても同様に、200℃を境に急激
に放出量が多くなっており、その量は本発明実施例1、
2、3の試料と比較して圧倒的に多い。一方、O2につ
いては、比較例試料では170℃位から減少する傾向が
見られる。これはステンレス材の酸化が促進されたため
に現れた挙動であり、コーティングありの本発明実施例
1、2、3の試料では特に見られなかった現象である。
したがって、表面の二酸化ケイ素系コーティング膜は非
常に安定で、かつ、緻密であることが理解できる。
2 and 3 that the main desorbed gas components are H 2 O, H 2 , CO 2 irrespective of the presence or absence of the coating.
/ N 2 , O 2 , and CO 2 , and most of them are H 2 O
It turns out that it is. However, although there is no difference in the desorbed gas components, it can be confirmed that the release behavior with respect to temperature greatly differs depending on the presence or absence of the coating. The amount of desorbed H 2 O in the coated samples of Examples 1, 2 and 3 of the present invention rapidly increased with increasing temperature, but gradually decreased around 70 ° C. On the other hand, in the comparative sample without the coating, the temperature gradually rises up to about 200 ° C. as the temperature rises, and the tendency is to release more from around 200 ° C. Similarly, the release amount of H 2 was also rapidly increased around 200 ° C., and the release amount was similar to that of Example 1 of the present invention.
It is overwhelmingly large compared to a few samples. On the other hand, O 2 tends to decrease from around 170 ° C. in the comparative sample. This is a behavior that appeared due to the accelerated oxidation of the stainless steel material, and was not particularly observed in the samples of Examples 1, 2, and 3 of the present invention having a coating.
Therefore, it can be understood that the silicon dioxide-based coating film on the surface is very stable and dense.

【0041】評価2より評価1を検証すると、コーティ
ングありの本発明実施例1、2、3の試料は、放出ガス
成分の支配的要因となっているH2Oの脱離を100℃
以下の低温で容易に行うことができるので、H2Oの脱
離に高温(200℃以上)を必要とするコーティングな
しの比較例試料と比較して、H2Oの充分な脱離が可能
であり、結果的に上記脱ガス後の25℃における放出ガ
ス量がコーティングなしの比較例より少なくなったもの
と判断できる。このことから、二酸化ケイ素系コーティ
ング膜は脱ガス因子の主成分となるH2O分子を代表
に、表面に吸着した分子を低いエネルギーで容易に脱離
できる、いわゆるガス分子との吸着エネルギーが非常に
小さいという特徴を有しているものと判断することがで
きる。
When the evaluation 1 is verified from the evaluation 2, the samples of Examples 1, 2 and 3 having a coating show that the desorption of H 2 O which is a dominant factor of the released gas component is 100 ° C.
It can be performed easily at low temperatures below, as compared with Comparative Sample uncoated require high temperature (200 ° C. or higher) to elimination of H 2 O, H 2 O sufficient elimination possible As a result, it can be determined that the released gas amount at 25 ° C. after the degassing was smaller than that of the comparative example without the coating. From this, the silicon dioxide coating film has a very low adsorption energy with gas molecules, which can easily desorb molecules adsorbed on the surface with low energy, typically H 2 O molecules which are the main components of degassing factors. Can be determined to have a characteristic of being extremely small.

【0042】[0042]

【発明の効果】以上要するに本発明によれば、ガス分子
の吸着を効果的に防止することができ、しかも、ガス分
子が吸着したとしてもこのガス分子を容易に脱離させる
ことができるガス吸着抑制膜を簡単に、かつ効率良く得
ることができ、したがって、真空脱ガス処理、ベーキン
グ処理等の軽減化を図ることができるとともに、製造コ
ストの低下を図ることができる。
In summary, according to the present invention, the adsorption of gas molecules can be effectively prevented, and even if the gas molecules are adsorbed, the gas molecules can be easily desorbed. The suppression film can be obtained easily and efficiently, so that the vacuum degassing process, the baking process, and the like can be reduced, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガス吸着抑制化基材の実施例1、2、
3と比較例の真空下における放出ガス速度と圧力との関
係を示すグラフである。
FIG. 1 is a diagram showing Examples 1 and 2 of a substrate for suppressing gas adsorption according to the present invention.
3 is a graph showing the relationship between the pressure and the released gas velocity under vacuum in Comparative Example 3 and Comparative Example.

【図2】本発明実施例から放出してくる各温度毎のガス
分子の測定結果を示すグラフである。
FIG. 2 is a graph showing measurement results of gas molecules emitted from each embodiment of the present invention at each temperature.

【図3】比較例から放出してくる各温度毎のガス分子の
測定結果を示すグラフである。
FIG. 3 is a graph showing measurement results of gas molecules emitted from a comparative example at each temperature.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材の少なくともガス吸着抑制面に、ポ
リシラザン、またはポリシラザン含有組成物をセラミッ
クス化し、二酸化ケイ素を主成分とするガス吸着抑制膜
が形成されたガス吸着抑制化基材。
1. A gas adsorption-suppressed substrate in which polysilazane or a polysilazane-containing composition is ceramicized on at least a gas adsorption-suppressing surface of the substrate, and a gas adsorption-suppressing film containing silicon dioxide as a main component is formed.
【請求項2】 ガス吸着抑制膜における窒素の含有量が
原子百分率で0.005%〜5%の範囲で選択される請
求項1記載のガス吸着抑制化基材。
2. The gas adsorption suppressing substrate according to claim 1, wherein the nitrogen content in the gas adsorption suppressing film is selected in the range of 0.005% to 5% by atomic percentage.
【請求項3】 ガス吸着抑制膜の厚さが0.05μm〜
10μmの範囲で選択される請求項1または2記載のガ
ス吸着抑制化基材。
3. The thickness of the gas adsorption suppressing film is 0.05 μm or more.
The gas adsorption suppressing base material according to claim 1, wherein the base material is selected in a range of 10 μm.
【請求項4】 基材が金属、またはプラスチックのいず
れかから選択され、真空構造体、または高純度ガス供給
系配管器材に用いられる請求項1ないし3のいずれかに
記載のガス吸着抑制化基材。
4. The gas adsorption suppressing group according to claim 1, wherein the base material is selected from metal or plastic, and the base material is used for a vacuum structure or piping equipment for a high-purity gas supply system. Wood.
JP36236697A 1997-12-12 1997-12-12 Gas adsorption inhibiting base material Withdrawn JPH11170428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36236697A JPH11170428A (en) 1997-12-12 1997-12-12 Gas adsorption inhibiting base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36236697A JPH11170428A (en) 1997-12-12 1997-12-12 Gas adsorption inhibiting base material

Publications (1)

Publication Number Publication Date
JPH11170428A true JPH11170428A (en) 1999-06-29

Family

ID=18476667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36236697A Withdrawn JPH11170428A (en) 1997-12-12 1997-12-12 Gas adsorption inhibiting base material

Country Status (1)

Country Link
JP (1) JPH11170428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501014B1 (en) * 1999-10-08 2002-12-31 Tdk Corporation Coated article and solar battery module
EP1713577A2 (en) * 2003-11-20 2006-10-25 Sigma-Aldrich Co. Polysilazane thermosetting polymers for use in chromatographic systems and applications

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501014B1 (en) * 1999-10-08 2002-12-31 Tdk Corporation Coated article and solar battery module
EP1713577A2 (en) * 2003-11-20 2006-10-25 Sigma-Aldrich Co. Polysilazane thermosetting polymers for use in chromatographic systems and applications
EP1713577A4 (en) * 2003-11-20 2008-05-28 Sigma Aldrich Co Polysilazane thermosetting polymers for use in chromatographic systems and applications
US7815864B2 (en) 2003-11-20 2010-10-19 Sigma-Aldrich Co. Polysilazane thermosetting polymers for use in chromatographic systems and applications
US7875738B2 (en) 2003-11-20 2011-01-25 Sigma-Aldrich Co. Polysilazane thermosetting polymers for use in chromatographic systems and applications
US8088350B2 (en) 2003-11-20 2012-01-03 Sigma-Aldrich Co. Llc Polysilazane thermosetting polymers for use in chromatographic systems and applications
US8092770B2 (en) 2003-11-20 2012-01-10 Sigma-Aldrich Co. Llc Polysilazane thermosetting polymers for use in chromatographic systems and applications
JP2014065300A (en) * 2003-11-20 2014-04-17 Sigma-Aldrich Co Llc Polysilazane thermosetting polymers for use in chromatographic systems and applications

Similar Documents

Publication Publication Date Title
CA2559042C (en) Tantalum carbide-coated carbon material and production method thereof
KR101295174B1 (en) Film formation method, film formation apparatus, and method for using film formation apparatus
KR20180100734A (en) Coatings for enhancement of properties and performance of substrate articles and apparatus
US7867627B2 (en) Process for the modification of substrate surfaces through the deposition of amorphous silicon layers followed by surface functionalization with organic molecules and functionalized structures
JPH1050685A (en) Cvd apparatus and cleaning thereof
JPH0578844A (en) Amorphous thin film having solid lubricity and its production thereof
US7935167B2 (en) Composite ceramic body, method of manufacturing the same and ceramic filter assembly
Nakayama et al. Rapid and Repeatable Self‐Healing Superoleophobic Porous Aluminum Surface Using Infiltrated Liquid Healing Agent
JP2008308701A (en) Tantalum carbide-covered carbon material and process for producing the same
JP2001172795A (en) Aluminum composite and method for surface-treating aluminum composite
JPH11170428A (en) Gas adsorption inhibiting base material
US20180347039A1 (en) Aerosol Assisted CVD For Industrial Coatings
US20160289824A1 (en) Article including a coating and process including an article with a coating
JPH02138469A (en) Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source
JP5274065B2 (en) Oxide film formation method
JP4312357B2 (en) Method for nitriding metal aluminum-containing substrate
WO2011135786A1 (en) Insulation coating method for metal base, insulation coated metal base, and semiconductor manufacturing apparatus using same
KR20190005324A (en) Method for SiC Coating of Graphite Base Substrate
JP3197008B2 (en) Silicon polymer insulating film on semiconductor substrate and method for forming the film
CN114929925A (en) Metal body having magnesium fluoride region formed thereon
JP4421180B2 (en) Surface treatment method and vacuum containers
JP4312356B2 (en) Method and apparatus for nitriding metal aluminum-containing substrate
TWI807892B (en) Spherical yttrium oxyfluoride-based powder, its preparation method and yttrium oxyfluoride-based coating
JPH0610135A (en) Production of carbon film
JP5212607B2 (en) Method for forming rare earth oxide film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040205

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301