JPH11169352A - Bone strength measuring method and equipment - Google Patents

Bone strength measuring method and equipment

Info

Publication number
JPH11169352A
JPH11169352A JP34235797A JP34235797A JPH11169352A JP H11169352 A JPH11169352 A JP H11169352A JP 34235797 A JP34235797 A JP 34235797A JP 34235797 A JP34235797 A JP 34235797A JP H11169352 A JPH11169352 A JP H11169352A
Authority
JP
Japan
Prior art keywords
bone
vibration
femur
frequency
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34235797A
Other languages
Japanese (ja)
Inventor
Yukio Nakatsuchi
幸男 中土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP34235797A priority Critical patent/JPH11169352A/en
Publication of JPH11169352A publication Critical patent/JPH11169352A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an effective means of measuring univasively the strength of the neck of the femur in particular. SOLUTION: The bone strength measuring method is designed to measure the strength of a bone from a resonance frequency obtained by applying impact to one end of the bone, detecting the waveform of vibration produced from the application of impact, and obtaining a resonance frequency of torsional vibration by the frequency analysis of the detected waveform of vibration. The bone strength measuring device is furnished with an impulse hammer 10 intended for applying impulsive impact to a bone, a bone vibration detector 11 incorporating a three-axis acceleration sensor, and an FFT analyzer 13 that analyzes acceleration detection signals outputted from the three-axis acceleration sensor in the bone vibration detector 11 and detects the resonance frequency of torsional vibration of the bone.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体の大腿骨のよ
うな骨の強度を骨に衝撃を与えたときに生じるねじれ振
動の特性から定量化し、評価できるようにした骨の強度
の測定方法および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the strength of a bone, such as a femur of a living body, which can be quantified and evaluated from the characteristics of torsional vibration generated when an impact is applied to the bone. And a measuring device.

【0002】四肢長管骨の骨折は交通災害、労働災害な
らびにスポーツ外傷などによって頻繁に生ずる疾患であ
る。一方で人口の高齢化社会を迎えて骨粗鬆症患者が増
加しており、栄養のアンバランスや運動量の減少による
若年者の骨の発育障害も報告されている。これらは軽微
な外力によって容易に骨折を起こしてくる。このため、
骨折の予防的観点から骨組織の質的変化を簡便に知り得
る測定方法の開発が望まれている。また四肢長管骨の骨
折の治療においては、確実に骨接合の得られる適切な治
療法が選択され、早期に機能回復が得られるようにしな
ければならない。それには骨の癒合程度を定量化し、そ
の癒合度に対応する後療法が過不足なく処方されること
が望ましい。本発明は、そのための有効な測定手段を提
供するものである。
[0002] Fractures of long limb bones are frequently caused by traffic accidents, occupational accidents, and sports injuries. On the other hand, the number of osteoporosis patients is increasing with the aging of the population, and it has been reported that the growth of bones in young people due to nutritional imbalance and decrease in the amount of exercise. These are easily broken by a slight external force. For this reason,
From the viewpoint of preventing fractures, it is desired to develop a measurement method that can easily determine the qualitative change in bone tissue. In the treatment of long limb long bone fractures, it is necessary to select an appropriate treatment method that ensures osteosynthesis, and to ensure early recovery of function. To this end, it is desirable that the degree of bone fusion be quantified and post-therapy corresponding to the degree of fusion be prescribed without excess or deficiency. The present invention provides an effective measuring means for that purpose.

【0003】[0003]

【従来の技術】従来、生体の骨の損傷状態や骨粗鬆症な
どの変化の診断については、レントゲン写真が主な手段
となっている。しかしレントゲン写真による診断は、損
傷の形態を把握するには適しているが損傷の程度あるい
は治癒経過の定量的な診断には適していない。
2. Description of the Related Art Conventionally, radiography has been the main means for diagnosing changes in the state of bone damage or osteoporosis of a living body. However, radiographic diagnosis is suitable for understanding the form of damage, but is not suitable for quantitative diagnosis of the degree of damage or the healing process.

【0004】また従来、音響や振動を利用して骨の特性
を調べる方法もあった。その一つの方法は超音波伝導を
利用する診断方法であるが、この方法では、骨折部位か
らの信号と骨を取り巻く筋肉等の軟部組織からの信号と
の区別が難しく、生体の骨の状態を定量的に評価するこ
とはできないとの報告がなされている。
[0004] Conventionally, there has also been a method of examining the characteristics of bone using sound or vibration. One of these methods is a diagnostic method that uses ultrasonic conduction.However, this method makes it difficult to distinguish between signals from a fracture site and signals from soft tissues such as muscles surrounding the bone, and makes it difficult to determine the state of a bone in a living body. It has been reported that it cannot be quantitatively evaluated.

【0005】振動を利用する骨の診断方法としては、骨
の曲げ振動からの定量的な評価方法の研究がなされてき
た。この方法は、外部からの骨の長軸方向に直角の強制
振動あるいはインパルス衝撃を与え、骨の曲げ振動の固
有振動数の変化から骨の状況、特に骨折した骨の回復過
程を定量的に評価することを狙ったものである。しかし
この診断方法には、大きな問題点として、皮下軟部組織
に取り囲まれた生体内の骨のそのものの振動を非侵襲的
に検出することが難しいことがある。
As a method of diagnosing bone using vibration, studies have been made on a quantitative evaluation method based on bending vibration of bone. In this method, a forced vibration or impulse shock is applied at right angles to the longitudinal direction of the bone from the outside, and the natural condition of the bending vibration of the bone is changed to quantitatively evaluate the state of the bone, especially the recovery process of the fractured bone. It is aimed at doing. However, a major problem with this diagnostic method is that it is difficult to non-invasively detect the vibration of bone itself in a living body surrounded by soft tissue under the skin.

【0006】[0006]

【発明が解決しようとする課題】骨粗鬆症では、骨が疎
となり骨皮質も薄くなって、転倒などの軽微な負荷によ
り容易に大腿骨の頚部が骨折を起こす。他の骨折に比べ
大腿骨頚部骨折では、歩行能力が著しく低下したり、寝
たきりとなるおそれがあるなど高齢化社会においては、
憂慮すべき点が多い。大腿骨頚部は厚い筋肉や関節包に
覆われた深部にあるため、従来、その力学特性を測定す
る有効な方法が知られていなかった。
In osteoporosis, the bones become thin and the bone cortex becomes thin, and the neck of the femur is easily broken by a slight load such as falling. In an aging society such as a femoral neck fracture, walking ability may be significantly reduced or bedridden compared to other fractures.
There are many points of concern. Since the neck of the femur is located in a deep part covered with thick muscles and joint capsules, no effective method for measuring its mechanical properties has been known.

【0007】本発明は、特に大腿骨頚部の強度を非侵襲
的に測定できる手段を提供することを目的としている。
An object of the present invention is to provide a means capable of noninvasively measuring the strength of the femoral neck.

【0008】[0008]

【課題を解決するための手段】本発明者は、大腿骨に振
動を与えた際に特有のねじれ振動が発生し、そのねじれ
振動の共鳴振動数が、大腿骨頚部の強度に相関するこ
と、およびこのねじれの共鳴振動が皮下軟部組織の薄い
大転子や大腿骨下端部にもあらわれることを見出した。
本発明は、これを利用して、大腿骨遠位の外側上顆を加
振し、大転子部に設置した振動センサによりねじれの共
鳴振動を検出し、その振動数の低下の程度から大腿骨頚
部の骨の強度低下を測定するものである。
The present inventor has determined that when a vibration is applied to the femur, a specific torsional vibration is generated, and the resonance frequency of the torsional vibration correlates with the strength of the femoral neck. We also found that the resonance vibration of this torsion also appeared in the subtrochanteric soft trochanter and the lower end of the femur.
The present invention utilizes this to vibrate the lateral epicondyle distal to the femur, detects torsional resonance vibrations with a vibration sensor installed on the greater trochanter, and determines from the degree of frequency decrease the thighs. It measures the decrease in the strength of the bone at the bone neck.

【0009】図1は、本発明の原理説明図である。図1
において、1は測定対象の大腿骨、2は骨頭、3は頚
部、4は大転子、5は骨幹、6は内顆、7は内側上顆、
8は外顆、9は外側上顆、10は加速度センサを内蔵し
たインパルスハンマー、11はX,Y,Z3軸の加速度
センサを内蔵した骨振動検出器、12は4チャネルの高
入力インピーダンスの電荷増幅器、13はFFT解析
器、14は処理装置である。
FIG. 1 is a diagram illustrating the principle of the present invention. FIG.
, 1 is the femur to be measured, 2 is the head, 3 is the neck, 4 is the greater trochanter, 5 is the diaphysis, 6 is the medial condyle, 7 is the medial epicondyle,
8 is the epicondyle, 9 is the lateral epicondyle, 10 is an impulse hammer with a built-in acceleration sensor, 11 is a bone vibration detector with a built-in X, Y and Z-axis acceleration sensor, and 12 is a 4-channel high input impedance charge An amplifier, 13 is an FFT analyzer, and 14 is a processing device.

【0010】骨振動検出器11は、大腿骨1の大転子4
の部分を皮膚表面から押し付けるように設置されてお
り、インパルスハンマー10が外側上顆9を叩いたとき
の衝撃により発生する骨のねじれ振動や曲げ振動をX,
Y,Zの3軸方向における加速度波形として検出する。
検出された3軸方向の各加速度波形の信号は、それぞれ
4チャネルの電荷増幅器12の3つのチャネルに入力さ
れる。またインパルスハンマー10に内蔵されている加
速度センサー(図示省略)から衝撃時に出力される加速
度波形の信号は、電荷増幅器12の残りの1つのチャネ
ルに入力される。
The bone vibration detector 11 is a trochanter 4 of the femur 1
Is pressed against the skin surface, and the torsional vibration and bending vibration of the bone generated by the impact when the impulse hammer 10 strikes the lateral epicondyle 9 are X,
It is detected as an acceleration waveform in three Y-axis directions.
The signals of the detected acceleration waveforms in the three axial directions are input to three channels of the four-channel charge amplifier 12, respectively. An acceleration waveform signal output from an acceleration sensor (not shown) built in the impulse hammer 10 at the time of impact is input to the remaining one channel of the charge amplifier 12.

【0011】各加速度波形信号は、4チャネルの電荷増
幅器で増幅されて、それぞれFFT解析器13に入力さ
れる。FFT解析器13は、インパルスハンマー10の
作動による衝撃発生を内蔵加速度センサからの加速度波
形信号により検出し、その衝撃発生タイミングで、大転
子4の部分に設置した骨振動検出器11からの各加速度
波形信号を高速フーリエ変換し、周波数解析を行う。こ
の周波数解析により検出されたねじれ振動の共鳴振動数
は、処理装置14へ入力され大腿骨の頚部3の強度を求
める処理が行われる。
Each acceleration waveform signal is amplified by a four-channel charge amplifier and input to the FFT analyzer 13. The FFT analyzer 13 detects the occurrence of an impact due to the operation of the impulse hammer 10 based on the acceleration waveform signal from the built-in acceleration sensor, and detects each impact from the bone vibration detector 11 installed on the greater trochanter 4 at the timing of the impact. Fast Fourier transform of the acceleration waveform signal to perform frequency analysis. The resonance frequency of the torsional vibration detected by the frequency analysis is input to the processing device 14 and the processing for obtaining the strength of the neck 3 of the femur is performed.

【0012】次に、本発明によるねじれ振動を利用した
大腿骨頚部の強度測定方法の原理について詳述する。 摘出ヒト湿潤大腿骨の振動特性の観察 本発明者は、大腿骨頚部の力学的特性をその振動特性か
ら評価することを目的として、摘出されたヒト大腿骨の
モーダル解析を行った。
Next, the principle of the method for measuring the strength of the femoral neck using torsional vibration according to the present invention will be described in detail. Observation of Vibration Characteristics of Extirpated Human Wet Femur The present inventor performed a modal analysis of the extirpated human femur for the purpose of evaluating the mechanical characteristics of the femoral neck from the vibration characteristics.

【0013】図2はその実験システムの概要図である。
図2において、20は支持部、21は支持部20に吊る
された測定対象の大腿骨、22は加速度センサ内蔵のイ
ンパルスハンマー、23は3軸の加速度センサ、24は
4チャネルの電荷増幅器、25はモーダル解析器であ
る。
FIG. 2 is a schematic diagram of the experimental system.
2, reference numeral 20 denotes a support, 21 denotes a femur to be measured suspended from the support 20, 20 denotes an impulse hammer with a built-in acceleration sensor, 23 denotes a three-axis acceleration sensor, 24 denotes a 4-channel charge amplifier, and 25 denotes a charge amplifier. Is a modal analyzer.

【0014】モーダル解析には解剖実習用死体標本から
摘出した5本のヒト大腿骨を用いた。大腿骨の骨幹部の
前面、後外側面、後内側面をそれぞれ5等分して18点
の記録点とし、さらに大腿骨の頚部で12点の記録点を
定めた。そして大腿骨下端の外顆を原点とする3次元座
標上の点としてモーダル解析器25に入力した。30の
記録点上に順次3軸の加速度センサ23を貼り付け、各
点を移動させながらそのつど原点を加速度センサ内蔵型
インパルスハンマー22で加振し、30点すべての応答
を得た。各加速度センサからの信号は4チャネル電荷増
幅器24を通してモーダル解析器25に送り、波形解析
を行った。得られる周波数応答関数をもとに振動モード
を動画処理し、モーダル解析器25のディスプレイ上で
観察した。
For the modal analysis, five human femurs extracted from a cadaver specimen for dissection training were used. The anterior, posterolateral, and posterior medial surfaces of the diaphyseal part of the femur were each divided into five equal parts to obtain 18 recording points, and 12 recording points were determined at the neck of the femur. Then, it was input to the modal analyzer 25 as a point on the three-dimensional coordinates with the origin of the outer condyle at the lower end of the femur. A three-axis acceleration sensor 23 was sequentially pasted on the 30 recording points, and the origin was vibrated by the impulse hammer 22 with a built-in acceleration sensor while moving each point, and responses were obtained for all 30 points. A signal from each acceleration sensor was sent to a modal analyzer 25 through a four-channel charge amplifier 24 to perform a waveform analysis. The vibration mode was subjected to moving image processing based on the obtained frequency response function, and observed on the display of the modal analyzer 25.

【0015】モーダル解析の結果、振幅の形と振動面か
ら大腿骨には3つの振動モードがあることが確認され
た。振動のアニメーションを分析し、低周波側から順
に、前額面(体に平行な面)上で振動する左右振動、矢
状面(体に垂直な面)で前後に振動する前後振動、およ
びねじれ振動であることがわかった。
As a result of the modal analysis, it was confirmed that the femur has three vibration modes based on the shape of the amplitude and the vibration surface. Analyzing the animation of the vibration, the left-right vibration oscillating on the frontal plane (plane parallel to the body), the longitudinal vibration oscillating back and forth on the sagittal plane (plane perpendicular to the body), and the torsional vibration in order from the low frequency side It turned out to be.

【0016】図3は、この摘出ヒト大腿骨についてのモ
ーダル解析結果の振動モードを示す。図中、(a)は大
腿骨上に配置した記録点1〜30の位置を示し、(b)
は左右振動(270Hz)の振動モード、(c)は前後
振動(307.5Hz)の振動モード、(d)はねじれ振
動(480Hz)の振動モードを表している。図の
(b),(c)に示すように、左右振動と前後振動で
は、骨幹部に2つの節をもつ両端自由の一次の曲げ振動
モードを呈している。この2つの振動モードは振動数に
大きな差はなく、ともに(d)のねじれ振動数よりも低
かった。ねじれ振動には大転子部と大腿骨下端に振幅の
腹がみられた。また大転子部と大腿骨下端の回転方向は
互いに逆方向になってねじれていた。
FIG. 3 shows a vibration mode as a result of modal analysis on the extracted human femur. In the figure, (a) shows the positions of the recording points 1 to 30 arranged on the femur, and (b)
FIG. 4A shows a vibration mode of left-right vibration (270 Hz), FIG. 5C shows a vibration mode of front-back vibration (307.5 Hz), and FIG. 5D shows a vibration mode of torsional vibration (480 Hz). As shown in (b) and (c) of the drawing, the left-right vibration and the front-back vibration exhibit a first-order free primary bending vibration mode having two nodes in the diaphysis. The two vibration modes did not differ greatly in frequency, and both were lower than the torsional frequency in (d). In the torsional vibration, a belly of amplitude was found at the greater trochanter and the lower end of the femur. Also, the rotation directions of the greater trochanter and the lower end of the femur were opposite to each other and twisted.

【0017】ほぼ円筒形をした脛骨でのモーダル解析で
はほとんどねじれ振動がみられないことから、大腿骨に
おいてねじれ振動が励起される原因としては、大腿骨頚
部の頚体角(図1において骨幹軸と頚部軸のなす角度、
約125度)と前捻角(大腿骨を上方からみたとき、大
腿骨頚部軸は前額面に対して約10度前方にねじれてい
る)を有する大腿骨頚部の形状が考えられる。
Since almost no torsional vibration is observed in the modal analysis of the substantially cylindrical tibia, the torsional vibration in the femur is caused by the neck angle of the femoral neck (the diaphyseal axis in FIG. 1). Angle between the neck axis
A shape of the femoral neck having a anteversion angle (about 125 degrees) and a anteversion angle (when viewed from above, the femoral neck axis is twisted about 10 degrees forward with respect to the frontal plane) is conceivable.

【0018】G:横弾性係数、L:長さ、ρ:密度、
n:モードとすると、ねじれの周波数f0
G: transverse elastic modulus, L: length, ρ: density,
n: In the mode, the torsional frequency f 0 is

【0019】[0019]

【数1】 (Equation 1)

【0020】で表される。したがって、横弾性係数が低
下するとねじれ振動数も低下することがわかる。 大腿骨のねじれ振動と大腿骨頚部の強度(ねじりこわ
さ)との関係の解析 ねじれ振動は、頚体角および前捻角を有する大腿骨頚部
の特徴的な形状と、大腿骨両端部の質量が大きいことに
よって生じていると推察された。そこで、大腿骨頚部の
強度(ねじりこわさ)を低下させた場合にどのようにね
じれ振動が変化するかを実験した。解剖実習用死体標本
から摘出した合計8本のヒト大腿骨を用いて、大腿骨頚
部に漸次割を入れ(4本は大腿骨頚部、4本は転子間部
に割を入れた)、割の深さとねじれの共鳴振動数の関係
について調べた。図4はその実験システムの概要図であ
る。
## EQU1 ## Therefore, it can be seen that the torsional frequency decreases as the transverse elastic coefficient decreases. Analysis of the relationship between torsional vibration of the femur and the strength (torsion stiffness) of the femoral neck Torsional vibration is based on the characteristic shape of the femoral neck with cervical angle and anteversion angle and the mass of both ends of the femur. It was presumed that it was caused by a big thing. Therefore, an experiment was conducted on how torsional vibration changes when the strength (torsion stiffness) of the femoral neck is reduced. Using a total of eight human femurs extracted from a cadaver specimen for dissection training, a femoral neck was gradually divided (four femoral necks and four were intertrochanteric), The relationship between the depth of the torsion and the resonance frequency of the torsion was investigated. FIG. 4 is a schematic diagram of the experimental system.

【0021】図4において、26は振動吸収用のスポン
ジシート、27はスポンジシート26上に載置された大
腿骨、28は大腿骨頚部、29は転子間部、30は加速
度センサ内蔵のインパルスハンマー、31は1軸の加速
度センサ、32は2チャネルの電荷増幅器、33はFF
T解析器である。
In FIG. 4, 26 is a sponge sheet for absorbing vibration, 27 is a femur placed on the sponge sheet 26, 28 is a femoral neck, 29 is a trochanter, 30 is an impulse with a built-in acceleration sensor. Hammer, 31 is a uniaxial acceleration sensor, 32 is a 2-channel charge amplifier, 33 is FF
T analyzer.

【0022】実験の結果、図5のグラフに示すように、
大腿骨頚部(femoral neck)28に割を入れた場合、割
の深さが大きくなるにしたがって骨幹部の左右振動およ
びねじれ振動ともその共鳴振動数は減少していった。し
かし、ねじれ振動の共鳴振動数は左右振動のそれよりも
割の深さが小さい時点から急激な減少を示した。すなわ
ち、左右振動は頚部に入れた割の深さが約60%までは
変化せず、それを超えると大きく減少し始めるのに対
し、ねじれの振動数は割の深さが約20%の時点からす
でに減少を始め、深さが50%を超える時点から急激に
減少した。頚部を完全に切り落としたあとの左右振動の
振動数は、割を入れる前の値よりも大きな値を示した。
この傾向は頚部切断実験を行った4本の大腿骨すべてで
見られた。一方、転子間部(intertrochanter)29に割
を入れた場合は図6のグラフに示されるが、ここでも、
両振動の減少のパターンは、頚部切割実験と同様であ
り、実験を行った4本の大腿骨は同じ結果であった。
As a result of the experiment, as shown in the graph of FIG.
When the femoral neck 28 was split, the resonance frequency of both the left-right and torsional vibrations of the diaphysis decreased as the split depth increased. However, the resonance frequency of the torsional vibration showed a sharp decrease from a point in time when the depth was smaller than that of the left-right vibration. In other words, the left-right vibration does not change until the depth of the split placed in the neck is about 60%, and when it exceeds that, it starts to decrease greatly, whereas the frequency of torsion is at the time when the split depth is about 20%. From the point where the depth exceeded 50%. The frequency of the left-right vibration after the neck was completely cut off was larger than the value before cutting.
This tendency was observed in all four femurs subjected to cervical amputation experiments. On the other hand, the case where the intertrochanter 29 is broken is shown in the graph of FIG.
The pattern of reduction of both vibrations was similar to the neck fracture experiment, and the four femurs in the experiment had the same results.

【0023】以上、摘出ヒト湿潤大腿骨の振動特性の観
察と大腿骨のねじれ振動と大腿骨頚部の強度との関係の
解析の結果から、以下の結論が導かれる。すなわち、
(a)摘出ヒト大腿骨では加振により3個の振動モード
が励起される。(b)そのうち、ねじれ振動は他の2個
の曲げ振動モードより高い周波数側にあり、大腿骨頚部
の力学的強度に最も鋭敏に変動する。(c)ねじれ振動
の共鳴振動数は大腿骨頚部のうち狭義の頚部および転子
間のいずれにおいても、それらの部位での力学的強度が
低下するとともに鋭敏に低下する。
As described above, the following conclusions are derived from the results of the observation of the vibration characteristics of the isolated human wet femur and the analysis of the relationship between the torsional vibration of the femur and the strength of the femoral neck. That is,
(A) In the isolated human femur, three vibration modes are excited by vibration. (B) Among them, the torsional vibration is on the higher frequency side than the other two bending vibration modes, and varies most sharply in the mechanical strength of the femoral neck. (C) The resonance frequency of the torsional vibration decreases sharply and sharply in the narrow part of the femoral neck and between the trochanter and the mechanical strength at those parts.

【0024】[0024]

【発明の実施の形態】前述した摘出大腿骨のモーダル解
析結果は、ねじれ振動の振幅の腹が大転子部と大腿骨下
端にあり、そこで最大振幅が得られることを示してい
る。これらの部位は、生体においては皮下組織が薄く、
振動測定での加振および信号検出には適している。ま
た、ねじれ振動数は2つの骨幹部の曲げ振動数よりは常
に高周波数側にあり、両者は生体においても分離可能で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The results of the above-mentioned modal analysis of the extracted femur indicate that the antinodes of the amplitude of the torsional vibration are at the greater trochanter and the lower end of the femur, where the maximum amplitude is obtained. In these sites, the subcutaneous tissue is thin in the living body,
It is suitable for excitation and signal detection in vibration measurement. In addition, the torsional frequency is always on the higher frequency side than the bending frequencies of the two diaphysis, and both can be separated even in a living body.

【0025】以下に、生体での大腿骨ねじれ振動を測定
した実施例について説明する。対象は、信州大学病院、
厚生連新町病院、上条記念病院の各整形外科を受診し、
本検査についてのインフォームドコンセントが得られた
健常人および大腿骨頚部骨折患者とした。測定肢位は、
被験者をベッド上に仰臥位とし上体および足底はベッド
上もしくはスポンジ上に載せて、股関節約70度、膝関
節約120度の屈曲位とした。大腿骨下端外顆を加速度
センサ内蔵型インパルスハンマーで加振し、大転子部も
しくは大腿骨下端外顆に予荷重約1.5kgf をかけて用手
的に設置した加速度センサにより応答波形を検出した。
これらの信号を2チャンネルFFT解析器に送り、周波
数応答関数より共鳴振動数を求めた。その結果、健常人
では信号検出部を大転子部にしても下端内顆にしても、
いずれの部位でもねじれ振動が検出された。
An embodiment in which the torsional vibration of the femur in a living body is measured will be described below. The target is Shinshu University Hospital,
We receive each orthopedic surgery of Koseiren Shinmachi Hospital, Kamijo Memorial Hospital,
Healthy subjects and patients with femoral neck fractures who received informed consent for this test were used. The measurement position is
The subject was placed in a supine position on the bed, and the upper body and soles were placed on the bed or sponge, and the hip joint was bent at about 70 degrees and the knee joint at about 120 degrees. The lower extremity condyle of the femur is vibrated by an impulse hammer with a built-in acceleration sensor, and the response waveform is detected by an acceleration sensor manually installed with a preload of about 1.5 kgf applied to the greater trochanter or the lower extremity condyle of the femur. did.
These signals were sent to a two-channel FFT analyzer, and the resonance frequency was determined from the frequency response function. As a result, in a healthy person, the signal detection unit may be the greater trochanter or the lower end condyle,
The torsional vibration was detected at any part.

【0026】図7は、70歳の女性についての健常大腿
骨の共鳴振動測定データであり、大腿骨下端外顆を加振
し下端内顆で検出した。仰臥位で膝および股関節屈曲位
をとり、足底はベッド上に置いた肢位で測定した。21
0Hzの大きいピークは大腿骨のねじれ振動の共鳴振動
数を表し、100Hzの小ピークは大腿骨骨幹部の共鳴
振動数を表している。
FIG. 7 shows the resonance vibration measurement data of a healthy femur of a 70-year-old woman. The lower condyle of the lower femur was vibrated and detected at the lower condyle. The knee and hip flexion positions were taken in the supine position, and the sole was measured with the limb placed on the bed. 21
The large peak at 0 Hz represents the resonance frequency of the torsional vibration of the femur, and the small peak at 100 Hz represents the resonance frequency of the femoral shaft.

【0027】図8は、28歳の男性についての健常大腿
骨の共鳴振動測定データであり、大腿骨下端外顆を加振
し大転子部で検出した。仰臥位で膝および股関節屈曲位
をとり、足底はベッドより浮かしスポンジ上に置いて測
定した。380Hzのピークは大腿骨のねじれ振動の共
鳴振動数、180Hzのピークは大腿骨骨幹部の共鳴振
動数、480Hzのピークはその二次モードを表してい
る。
FIG. 8 shows resonance vibration measurement data of a healthy thigh bone of a 28-year-old man. The lower condyle of the lower femur was vibrated and detected at the greater trochanter. The knee and hip flexion positions were taken in the supine position, and the sole was lifted from the bed and placed on a sponge for measurement. The peak at 380 Hz represents the resonance frequency of the torsional vibration of the femur, the peak at 180 Hz represents the resonance frequency of the femoral shaft, and the peak at 480 Hz represents its secondary mode.

【0028】図9は、67歳の女性についての大腿骨頚
部骨折例の共鳴振動測定データであり、受傷後20日目
にcannulated hip screws で内固定されたケースであ
る。術後2カ月での正常側(上段)および骨折側(下
段)の大腿骨のねじれ振動を測定した。測定は大腿骨下
端外顆を加振し、下端内顆で信号を検出した。
FIG. 9 shows resonance vibration measurement data of a femoral neck fracture in a 67-year-old woman. The case was fixed internally with cannulated hip screws 20 days after the injury. Two months after the operation, the torsional vibration of the normal (upper) and fracture side (lower) femurs was measured. For the measurement, the lower extremity of the femur was vibrated, and a signal was detected at the lower end condyle.

【0029】以上の生体での大腿骨ねじれ振動の測定結
果より、1)生体ではできるだけ大腿骨の両端の拘束条
件を軽減して自由な肢位をとることで、大腿骨のねじれ
振動の測定が可能であること。2)加振を大腿骨下端で
行った場合、ねじれ振動の検出部位は、大腿骨下端内顆
および大転子部で信号の検出ができること。これは摘出
大腿骨のモーダル解析の結果とも一致した。3)生体に
おいても、ねじれ振動数は大腿骨頚部の強度を反映して
いると考えられること。これは頚部骨折例での骨癒合の
進行とともに、ねじれ振動数が上昇すること、高齢女性
は20歳代男性より明らかに振動数が低いことなどがこ
れを示唆している。しかし、ねじれ振動数は(1)式で
示されるごとく、大腿骨の形状や質量の影響を受けるこ
とから、ねじれ振動数にこれらのパラメータを加味し
た、大腿骨頚部の強度と高い相関をもつ、新たな指標を
みいだす必要がある。
From the measurement results of the torsional vibration of the femur in the living body described above, 1) the torsional vibration of the femur can be measured by reducing the restraining conditions at both ends of the femur as much as possible in the living body and taking a free limb position. It is possible. 2) When the excitation is performed at the lower end of the femur, signals can be detected at the lower condyles of the lower end of the femur and the greater trochanter at the torsional vibration detection site. This was consistent with the results of the modal analysis of the extracted femur. 3) The torsional frequency should be considered to reflect the strength of the femoral neck in the living body. This suggests that the torsional frequency increases with the progress of bone fusion in the case of neck fracture, and that the frequency of elderly women is clearly lower than that of men in their 20s. However, since the torsional frequency is affected by the shape and mass of the femur as shown in the equation (1), the torsional frequency has a high correlation with the strength of the femoral neck by adding these parameters to the torsional frequency. It is necessary to find new indicators.

【0030】現在、臨床において大腿骨頚部骨折の危険
予知に最も用いられている指標は、Dual X-ray Absorpt
iometry(DXA)法による大腿骨頚部骨塩密度(bone m
ineral density, BMD)である。これまでの研究者の
報告では、骨強度における骨密度の関与は約80%程度
とされている。骨強度には骨密度に加え、大腿骨の形
状、特に骨皮質の厚さ、および骨塩を結合している基質
の性質などが関与している
Currently, the most frequently used index for predicting the risk of femoral neck fracture in clinical practice is Dual X-ray Absorpt.
femoral neck bone mineral density (bone m) by iometry (DXA) method
ineral density, BMD). Previous reports by researchers have suggested that the contribution of bone density to bone strength is about 80%. Bone strength involves, in addition to bone density, the shape of the femur, especially the thickness of the bone cortex, and the nature of the matrix that binds bone mineral

【0031】[0031]

【発明の効果】従来骨強度の診断において最も信頼度が
高いとされているレントゲン学的方法は、骨折という力
学的な破綻を推定する上では限界がある上、侵襲的検査
であり、また高価な装置を要する欠点があった。それに
比して、本発明は非破壊的な力学的検査であり、安価な
装置で測定可能である利点がある。
The radiographic method conventionally regarded as the most reliable in the diagnosis of bone strength has limitations in estimating the mechanical failure of fracture, is an invasive test, and is expensive. There is a drawback that requires a special device. On the other hand, the present invention is a nondestructive mechanical test, and has an advantage that it can be measured with an inexpensive device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による装置の原理説明図である。FIG. 1 is a diagram illustrating the principle of an apparatus according to the present invention.

【図2】摘出大腿骨モーダル解析システムの概要図であ
る。
FIG. 2 is a schematic diagram of an extracted femoral modal analysis system.

【図3】摘出大腿骨の振動モードの解析例を示す説明図
である。
FIG. 3 is an explanatory diagram showing an analysis example of a vibration mode of an extracted femur.

【図4】大腿骨踝部切割実施システムの概要図である。FIG. 4 is a schematic diagram of a femoral malleolar cutting execution system;

【図5】大腿骨踝部の切割によるねじれ振動数および左
右振動数の変化を示すグラフである。
FIG. 5 is a graph showing changes in torsional frequency and left / right frequency due to the splitting of the femoral malleolus.

【図6】大腿骨転子間部の切割によるねじれ振動数およ
び左右振動数の変化を示すグラフである。
FIG. 6 is a graph showing changes in the torsional frequency and the left-right frequency due to cutting of the intertrochanteric region of the femur.

【図7】70歳女性の健常大腿骨の共鳴振動測定例を示
すグラフである。
FIG. 7 is a graph showing an example of measuring resonance vibration of a healthy femur of a 70-year-old woman.

【図8】28歳男性の健常大腿骨の共鳴振動測定例を示
すグラフである。
FIG. 8 is a graph showing an example of measuring resonance vibration of a healthy femur of a 28-year-old man.

【図9】大腿骨頸部骨折した67歳女性の共鳴振動測定
例を示すグラフである。
FIG. 9 is a graph showing an example of resonance vibration measurement of a 67-year-old woman who has had a femoral neck fracture.

【符号の説明】[Explanation of symbols]

1:大腿骨 2:骨顆 3:頸部 4:大転子 5:骨幹 6:内顆 7:内側上顆 8:外顆 9:外側上顆 10:インパルスハンマー 11:骨振動検出器 12:電荷増幅器 13:FFT解析器 14:処理装置 1: femur 2: bone condyle 3: neck 4: major trochanter 5: diaphysis 6: medial condyle 7: medial epicondyle 8: lateral condyle 9: lateral epicondyle 10: impulse hammer 11: bone vibration detector 12: Charge amplifier 13: FFT analyzer 14: Processor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 骨の一端に衝撃を加え、その結果発生す
る振動の波形を検出し、検出した振動波形を周波数解析
してねじれ振動の共鳴振動数を求め、その共鳴振動数の
高さから、骨強度を測定することを特徴とする骨強度の
測定方法。
An impact is applied to one end of a bone, a waveform of a vibration generated as a result is detected, and a frequency of the detected vibration waveform is analyzed to determine a resonance frequency of the torsional vibration. And measuring the bone strength.
【請求項2】 大腿骨の下端外顆に衝撃を加え、その結
果大腿骨に発生する振動の波形を大転子部または下端内
顆で検出し、検出した振動波形を周波数解析してねじれ
振動の共鳴振動数を求め、その共鳴振動数の高さから大
腿骨頚部の強度を測定することを特徴とする骨強度の測
定方法。
2. A shock is applied to a lower extremity condyle of a femur, and a vibration waveform generated in the femur as a result is detected by a greater trochanter or lower end condyle, and the detected vibration waveform is subjected to frequency analysis to torsional vibration. Measuring the strength of the neck of the femur from the height of the resonance frequency.
【請求項3】 骨インパルス衝撃印加用のインパルスハ
ンマーと、 3軸の加速度センサを内蔵した骨振動検出器と、 骨振動検出器内の3軸の加速度センサからそれぞれ出力
される加速度検出信号を解析して骨のねじれ振動の共鳴
周波数を検出するFFT解析器とを備えていることを特
徴とする骨強度の測定装置。
3. A bone impulse hammer for applying a bone impulse shock, a bone vibration detector incorporating a three-axis acceleration sensor, and an acceleration detection signal output from each of the three-axis acceleration sensors in the bone vibration detector are analyzed. And a FFT analyzer for detecting a resonance frequency of torsional vibration of the bone.
JP34235797A 1997-12-12 1997-12-12 Bone strength measuring method and equipment Pending JPH11169352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34235797A JPH11169352A (en) 1997-12-12 1997-12-12 Bone strength measuring method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34235797A JPH11169352A (en) 1997-12-12 1997-12-12 Bone strength measuring method and equipment

Publications (1)

Publication Number Publication Date
JPH11169352A true JPH11169352A (en) 1999-06-29

Family

ID=18353106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34235797A Pending JPH11169352A (en) 1997-12-12 1997-12-12 Bone strength measuring method and equipment

Country Status (1)

Country Link
JP (1) JPH11169352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539884A (en) * 2005-05-05 2008-11-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for assessing fracture risk
JP2010029241A (en) * 2008-07-25 2010-02-12 Furuno Electric Co Ltd Shape detection device, shape detection method and bone strength diagnostic device using shape detection device
US7879043B2 (en) 2006-11-28 2011-02-01 Robert Michael Meneghini System and method for preventing intraoperative fracture in cementless hip arthroplasty
CN105147494A (en) * 2015-08-14 2015-12-16 西北工业大学 Rodent limb long bone mechanics loading experimental device
CN110022759A (en) * 2016-09-29 2019-07-16 奥斯特尔公司 Probe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539884A (en) * 2005-05-05 2008-11-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for assessing fracture risk
JP4918086B2 (en) * 2005-05-05 2012-04-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Diagnostic instrument for assessing bone
US7879043B2 (en) 2006-11-28 2011-02-01 Robert Michael Meneghini System and method for preventing intraoperative fracture in cementless hip arthroplasty
US8236005B2 (en) 2006-11-28 2012-08-07 Robert Michael Meneghini System and method for preventing intraoperative fracture in cementless hip arthroplasty
JP2010029241A (en) * 2008-07-25 2010-02-12 Furuno Electric Co Ltd Shape detection device, shape detection method and bone strength diagnostic device using shape detection device
CN105147494A (en) * 2015-08-14 2015-12-16 西北工业大学 Rodent limb long bone mechanics loading experimental device
CN110022759A (en) * 2016-09-29 2019-07-16 奥斯特尔公司 Probe

Similar Documents

Publication Publication Date Title
Protopappas et al. Ultrasonic monitoring of bone fracture healing
US5402781A (en) Method and apparatus for determining bone density and diagnosing osteoporosis
Augat et al. Biomechanical methods for the assessment of fracture repair
MARKEL et al. Noninvasive monitoring techniques for quantitative description of callus mineral content and mechanical properties.
Panjabi et al. Correlations of radiographic analysis of healing fractures with strength: a statistical analysis of experimental osteotomies
Wong et al. Review of techniques for monitoring the healing fracture of bones for implementation in an internally fixated pelvis
Tower et al. Resonant frequency analysis of the tibia as a measure of fracture healing
Mattei et al. Vibration testing procedures for bone stiffness assessment in fractures treated with external fixation
Mattei et al. Fracture healing monitoring by impact tests: Single case study of a fractured tibia with external fixator
Nakatsuchi et al. Assessment of fracture healing in the tibia using the impulse response method
Benirschke et al. The use of resonant frequency measurements for the noninvasive assessment of mechanical stiffness of the healing tibia
Hirasawa et al. Biomechanical monitoring of healing bone based on acoustic emission technology
Shrivastava et al. Assessment of bone condition by acoustic emission technique: A review
JPH11169352A (en) Bone strength measuring method and equipment
Cunningham Vibration analysis
EP0705565A1 (en) Method and apparatus for evaluating the progress of osteoporosis by ultrasonic signals
Glinkowski et al. Clinical experiences with ultrasonometric measurement of fracture healing
Fellinger et al. Early detection of delayed union in lower leg fractures using a computerised analysis of mechanical vibration reactions of bone for assessing the state of fracture healing
Bhavsar et al. Bone fracture sensing using ultrasound pitch–catch measurements: a proof-of-principle study
JP2690064B2 (en) Bone elasticity tester for living body
RU2302199C1 (en) Method for investigating biomechanical joint properties
Arpinar et al. Correlation between mechanical vibration analysis and dual energy X-ray absorptiometry (DXA) in the measurement of in vivo human tibial bone strength
JPH10295693A (en) Evaluation method for osteoporosis by ultrasonic wave and its device
RU2289317C2 (en) Method for registering biomechanical properties of long tubular bones
JP3182558B2 (en) Evaluation of bone mineral density by ultrasonic measurement

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Effective date: 20060912

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A02