JP3182558B2 - Evaluation of bone mineral density by ultrasonic measurement - Google Patents

Evaluation of bone mineral density by ultrasonic measurement

Info

Publication number
JP3182558B2
JP3182558B2 JP00057998A JP57998A JP3182558B2 JP 3182558 B2 JP3182558 B2 JP 3182558B2 JP 00057998 A JP00057998 A JP 00057998A JP 57998 A JP57998 A JP 57998A JP 3182558 B2 JP3182558 B2 JP 3182558B2
Authority
JP
Japan
Prior art keywords
bone
trabecular
density
bone mineral
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00057998A
Other languages
Japanese (ja)
Other versions
JPH11192223A (en
Inventor
和幸 松井
文雄 野方
幸雄 広瀬
Original Assignee
株式会社センサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社センサ filed Critical 株式会社センサ
Priority to JP00057998A priority Critical patent/JP3182558B2/en
Priority to KR1019980048718A priority patent/KR100329173B1/en
Publication of JPH11192223A publication Critical patent/JPH11192223A/en
Application granted granted Critical
Publication of JP3182558B2 publication Critical patent/JP3182558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • A61B5/4509Bone density determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Rheumatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超音波計測によって、
骨塩量を評価することができる装置に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to an ultrasonic
The present invention relates to a device capable of evaluating the amount of bone mineral.

【0002】[0002]

【従来の技術】我が国では人口の高齢化がかなりの速度
で進んでいる。この傾向は今後も進むと推察され、平成
32年には65歳以上人口の割合が25.5%と国民の
4人に1人の割合が高齢者という超高齢社会が到来する
と予測されている。このため、加齢と共に発症率が増加
する骨粗しょう症患者の急増は、医療分野において大き
な問題となってくる。骨粗しょう症は、骨のカルシウム
などの成分が少なくなり骨量の減少を生じ、強度低下に
起因するひび割れや破損が起こりやすくなる病気で、女
性で60歳以上の約30%、男性で約10%の人が該当
するといわれている。
2. Description of the Related Art In Japan, the population is aging at a considerable speed. It is presumed that this trend will continue in the future, and it is predicted that a super-aged society will arrive in 2020, where the ratio of the population aged 65 and over is 25.5% and one in four people is the elderly. . For this reason, a rapid increase in osteoporosis patients whose incidence increases with aging becomes a serious problem in the medical field. Osteoporosis is a disease in which components such as calcium in bones decrease, resulting in a decrease in bone mass, and tend to cause cracking and breakage due to a decrease in strength. About 30% of women over 60 years old and about 10% of men. It is said that% of people correspond.

【0003】近年、二重エネルギーX線吸収法(DX
A)などの普及により、身体のほとんどの部位の骨塩量
が計測できるようになった。しかしながら、放射線は生
体には大変有害であり、骨粗しょう症の可能性が高いと
予測される約50歳から60歳以上の人や、閉径後の女
性などを対象に、放射線によるリスクを負いながらの評
価であった。
In recent years, dual energy X-ray absorption (DX)
With the spread of A) and the like, it has become possible to measure the amount of bone mineral in most parts of the body. However, radiation is very harmful to living organisms, and it poses a risk to radiation for people aged approximately 50 to 60 years or older and women who have been closed, who are predicted to have a high possibility of osteoporosis. It was a good evaluation.

【0004】そこで、人体に無害である超音波を用いて
骨粗しょう症を評価する方法も提案されている。例え
ば、超音波を患者(被検者)に送波して透過した受波信
号から骨内部の音速や減衰率を求め、これらを骨の症状
の評価指標としたものが提案されている(例えば特開平
6−339478号、特開平6−47044号、特開平
8−280677号、特願平9−142887号等)。
[0004] Therefore, a method of evaluating osteoporosis using ultrasound which is harmless to the human body has been proposed. For example, a method has been proposed in which ultrasonic waves are transmitted to a patient (subject) and the sound velocity and attenuation rate inside the bone are determined from a received signal transmitted therethrough, and these are used as evaluation indexes for bone symptoms (eg, JP-A-6-339478, JP-A-6-47044, JP-A-8-280677, Japanese Patent Application No. 9-142887, etc.).

【0005】[0005]

【発明が解決しようとする課題】骨粗しょう症患者およ
びその治療費は年々増加すると推測されている。しかし
ながら、骨粗しょう症に対する効果的な治療法はまだな
いが、早い時期に診断して発見することで、骨量および
骨強度の減少を評価し、骨折の発生を予防することが重
要となる。したがって、予防医学の見知から、X線被爆
を避けた定期検診としての骨塩量(BMD)評価が望ま
れている。そこで、本発明は、骨粗しょう症の進行状態
を超音波によって計測し、骨塩量を求め、骨量および骨
強度の評価ができる装置を提供することを目的としたも
のである。
It is estimated that osteoporosis patients and their treatment costs increase year by year. However, although there is no effective treatment for osteoporosis yet, it is important to diagnose and discover early to assess the loss of bone mass and strength and prevent fractures. Therefore, from the knowledge of preventive medicine, it is desired to evaluate bone mineral density (BMD) as a regular checkup avoiding X-ray exposure. Therefore, an object of the present invention is to provide an apparatus that measures the progress of osteoporosis by ultrasound, determines the amount of bone mineral, and can evaluate the amount of bone and the strength of bone.

【0006】[0006]

【課題を解決するための手段】本発明は、人体に無害で
ある超音波を用いて、患者(被検者)の骨内部の情報
(骨塩量)を計測できるようにしたものである。具体的
には、超音波により骨内部(踵骨)の透過伝播速度を計
測して骨梁線密度を求める。次いで、骨梁線密度から骨
梁面積率を求める。さらに骨梁面積率とDXAの相関関
係を求めることにより、骨塩量を超音波計測で評価する
ことができるようにしたものである。
SUMMARY OF THE INVENTION According to the present invention, information (bone mineral content) inside the bones of a patient (examinee) can be measured using ultrasonic waves which are harmless to the human body. Specifically, the trabecular bone density is determined by measuring the transmission propagation speed inside the bone (calcaneus) using ultrasonic waves. Next, the trabecular area ratio is determined from the trabecular linear density. Further, by obtaining a correlation between the trabecular area ratio and DXA, the amount of bone mineral can be evaluated by ultrasonic measurement.

【0007】[0007]

【作用】超音波によって骨内部を計測し、骨塩量を求
め、骨量および骨強度の評価をすることで、X線被爆を
避けた定期検診としての骨塩量評価と骨強度評価法の確
立が期待できる。具体的には、骨粗しょう症の進行状態
を早い時期に診断して発見することで、骨量および骨強
度の減少を評価し、骨折の発生を予防することが可能と
なる。
[Action] By measuring the inside of the bone with ultrasound, calculating the amount of bone mineral, and evaluating the bone mass and bone strength, the bone mineral evaluation and bone strength evaluation method as a regular checkup avoiding X-ray exposure We can expect establishment. Specifically, by diagnosing and discovering the progress of osteoporosis at an early stage, it is possible to evaluate a decrease in bone mass and bone strength and prevent the occurrence of a fracture.

【0008】[0008]

【実施例】本発明を実施する骨粗しょう症の進行状態を
評価する装置のシステム例を図面に基づいて説明する
と、図1において、1は評価プログラムが内蔵されたコ
ンピュータ本体(CPU)、2はディスプレイ(CR
T)、3はプリンター、4は入力用のKEYボード、5
は患者(被検者)の足をのせる足台や超音波送受信器に
接続された超音波探触子を具備した計測部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A system example of an apparatus for evaluating the progress of osteoporosis embodying the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a computer main body (CPU) having an evaluation program incorporated therein; Display (CR
T), 3 is a printer, 4 is a key board for input, 5
Is a measuring unit provided with a footrest on which the foot of a patient (subject) is placed and an ultrasonic probe connected to an ultrasonic transceiver.

【0009】図2は超音波送受信器7に接続された超音
波探触子を含む計測部とコンピュータとの接続関係の電
気回路構成図を示すもので、超音波探触子5a、5bは
それぞれリレー基板6を介し超音波送受信器7に接続さ
れている。超音波探触子5aからの電気パルス信号は圧
電素子によって超音波信号に変換され超音波探触子5b
に向け送波される。超音波探触子5bでは再び超音波信
号を圧電素子によって電気信号に変換する。前記超音波
送受信器7は、フィルタ8、増幅器9を介しA/Dコン
バータ10に接続されていて、そのうち、フィルタ8は
超音波送受信器7のRF信号から低周波、高周波分を除
去し、増幅器9へ信号を送り、一方、A/Dコンバータ
10は増幅器9からの信号をデジタル信号に変換し、C
PU1へデータを送るものである。また、前記CPU1
は超音波送受信器7からの信号をもとに、演算処理して
海綿骨の骨密度や弾性係数を推定する。さらに、前記超
音波送受信器7はCPU1に接続され、一方このCPU
1はCRT2やプリンター3にも接続され、演算処理さ
れた結果をそれぞれこれらの装置に出力したり、記憶保
持したりするものである。
FIG. 2 shows an electric circuit diagram of a connection relationship between a measuring unit including an ultrasonic probe connected to the ultrasonic transceiver 7 and a computer, and the ultrasonic probes 5a and 5b are respectively shown. It is connected to an ultrasonic transceiver 7 via a relay board 6. The electric pulse signal from the ultrasonic probe 5a is converted into an ultrasonic signal by a piezoelectric element, and the ultrasonic probe 5b
Is transmitted toward. The ultrasonic probe 5b converts the ultrasonic signal into an electric signal again by the piezoelectric element. The ultrasonic transceiver 7 is connected to an A / D converter 10 via a filter 8 and an amplifier 9. The filter 8 removes low frequency and high frequency components from the RF signal of the ultrasonic transceiver 7, and 9 while the A / D converter 10 converts the signal from the amplifier 9 to a digital signal,
This is for sending data to PU1. The CPU 1
Estimates the bone density and elastic modulus of cancellous bone by performing arithmetic processing based on the signal from the ultrasonic transceiver 7. Further, the ultrasonic transceiver 7 is connected to the CPU 1 while the CPU 1
Numeral 1 is also connected to the CRT 2 and the printer 3, and outputs the result of the arithmetic processing to these devices and stores and holds the result.

【0010】超音波によって計測するに際し、一対の超
音波探触子5a、5bを水平方向に当てて測定部(踵
骨)を計測する。前記CPU1では、予め送受信の超音
波探触子5a、5b間の距離がわかっているので、計測
された超音波の透過時間から、超音波が骨内部を透過す
る伝播速度が算出される。
When measuring by ultrasonic waves, a pair of ultrasonic probes 5a and 5b are applied in a horizontal direction to measure a measuring part (calcaneus). In the CPU 1, since the distance between the transmitting and receiving ultrasonic probes 5a and 5b is known in advance, the propagation speed at which the ultrasonic wave passes through the inside of the bone is calculated from the measured transmission time of the ultrasonic wave.

【0011】求められた超音波伝播速度から、次式によ
って骨梁線密度CuがX方向(超音波探触子5a、5b
を水平方向)について求められる。ここで、骨梁線密度
Cuとは、一次元的(長さ方向)にみた骨髄(液体)と
骨質(固体)とに対する骨質(固体)の含まれる部分の
割合をいう。骨粗しょう症を評価するには踵骨が最適な
部位(海綿骨が約95%を占めている)である。これは
骨折の要因となる骨量減少が先ず海綿骨に現れるからで
ある。
From the obtained ultrasonic propagation velocity, the trabecular bone density Cu is calculated in the X direction (the ultrasonic probes 5a, 5b
In the horizontal direction). Here, the trabecular bone density Cu refers to the ratio of a portion containing bone (solid) to bone marrow (liquid) and bone (solid) in a one-dimensional (longitudinal) direction. The calcaneus is the optimal site for evaluating osteoporosis (cancellous bone accounts for about 95%). This is because the loss of bone mass that causes a fracture first appears in cancellous bone.

【0012】[0012]

【数1】 但し、Vb:超音波骨内伝播速度 Va:超音波骨髄伝播速度(1500m/s) Vc:超音波骨質伝播速度(3000m/s)(Equation 1) Vb: Ultrasonic bone bone propagation velocity Va: Ultrasonic bone marrow propagation velocity (1500 m / s) Vc: Ultrasonic bone substance propagation velocity (3000 m / s)

【0013】ところで、人体の骨量構造において、踵骨
の内外側方面では方向性が見られない。つまり、x、y
方向の骨梁線密度Cuは変わらない(Cux=Cu
y)。したがって、一対の超音波探触子5a、5bを水
平方向に当てて測定部(踵骨)を計測することで、骨量
および骨梁形状を二次元的に取り扱うことができる。
By the way, in the bone mass structure of the human body, no directionality is observed on the medial and lateral sides of the calcaneus. That is, x, y
The trabecular linear density Cu in the direction does not change (Cux = Cu
y). Therefore, by measuring the measurement part (calcaneus) by applying the pair of ultrasonic probes 5a and 5b in the horizontal direction, the bone mass and the trabecular shape can be handled two-dimensionally.

【0014】そこで、予め自然骨(人骨)の骨梁線密度
Cuを超音波により計測したものに対して、骨髄を除去
した後、切断して断面の骨梁形状を写真撮影し、その写
真を画像処理することで、海綿骨の断面積As、骨梁の
面積Abをそれぞれ算出し、次式より骨梁面積率Aiを
求める。
In view of the above, the bone density of natural bone (human bone) previously measured by ultrasonic wave, Cu, is removed from the bone marrow, and then cut to take a photograph of the cross-sectional trabecular shape. By performing image processing, the cross-sectional area As of the cancellous bone and the area Ab of the trabecular bone are respectively calculated, and the trabecular area ratio Ai is obtained from the following equation.

【0015】[0015]

【数2】 (Equation 2)

【0016】次いで、骨梁面積率Aiを患者(被検者)
の測定部(踵骨)に超音波を送波することにより求める
ための準備として、次式に示すように画像処理から得ら
れる骨梁線密度Ciを定義する。ここで、骨梁面積率A
iとは、一定面積における骨質(固体)と骨髄(液体)
とに対する骨質(固体)の含まれる割合をいう。これ
は、骨内部の情報(骨量、骨梁形状)として二次元的に
表すためのものである。
Next, the trabecular area ratio Ai is determined for the patient (subject).
As a preparation for transmitting the ultrasonic wave to the measuring unit (calcaneus), a trabecular bone density Ci obtained from the image processing is defined as shown in the following equation. Here, trabecular area ratio A
i is bone material (solid) and bone marrow (liquid) in a certain area
And the ratio of bone (solid) to the total. This is for two-dimensionally expressing the information (bone mass, trabecular shape) inside the bone.

【0017】[0017]

【数3】 (Equation 3)

【0018】図3には超音波により計測した骨梁線密度
Cuと画像処理から得られた骨梁線密度Ciの関係を示
す。図からもわかるように、超音波により計測した骨梁
線密度Cuと画像処理から得られた骨梁線密度Ciとの
間には、ほぼ一義的な関係があり、その関係は次式のよ
うな近似式で求められる。
FIG. 3 shows the relationship between the trabecular bone density Cu measured by ultrasonic waves and the trabecular bone density Ci obtained by image processing. As can be seen from the figure, there is a substantially unique relationship between the trabecular bone density Cu measured by the ultrasonic wave and the trabecular bone density Ci obtained from the image processing. It can be obtained by an approximate expression.

【0019】[0019]

【数4】 (Equation 4)

【0020】このとき、超音波によって計測した骨梁線
密度Cuと画像処理から得られた骨梁線密度Ciの定義
から、両者の関係は原点と(1,1)を通るものとして
求めた。すなわち、超音波を患者(被検者)の骨内部に
送波することで、骨梁線密度Cuが求まり、上記の近似
式によって画像処理から得られる骨梁線密度Ciを、第
3式によって骨梁面積率Aiを算出することができる。
At this time, from the definition of the trabecular bone density Cu measured by ultrasonic waves and the trabecular bone density Ci obtained by the image processing, the relationship between the two was determined as passing through the origin and (1, 1). That is, by transmitting ultrasonic waves to the inside of the bone of the patient (subject), the trabecular bone density Cu is determined, and the trabecular bone density Ci obtained from the image processing by the above approximate expression is calculated as
The trabecular area ratio Ai can be calculated by equation (3).

【0021】次いで、先に算出された骨梁面積率Aiよ
り、骨塩量BMDを評価する。骨梁面積率Aiを測定し
た患者(被検者)に対して、DXAによって踵骨と脊椎
の骨塩量BMDを計測し、同一患者(被検者)の骨梁面
積率Aiと骨塩量BMDの相関関係について調査した。
図4には超音波により計測した骨梁面積率AiとDXA
によって計測した踵骨と脊椎の骨塩量BMDの関係を示
す。図からもわかるように、超音波により計測した骨梁
面積率AiとDXAによって計測した踵骨と脊椎の骨塩
量BMDの間には、相関関係があり、その関係は第5式
(骨梁面積率Aiと踵骨の骨塩量BMDの関係)、第6
式(骨梁面積率Aiと脊椎の骨塩量BMDの関係)のよ
うな近似式で求められる。
Next, the bone mineral density BMD is evaluated from the trabecular area ratio Ai calculated previously. For the patient (subject) whose trabecular area ratio Ai was measured, the bone mineral density BMD of the calcaneus and spine was measured by DXA, and the trabecular area ratio Ai and the bone mineral density of the same patient (subject) were measured. The correlation of BMD was investigated.
FIG. 4 shows trabecular area ratio Ai and DXA measured by ultrasonic waves.
1 shows the relationship between the calcaneus and the bone mineral density BMD of the spine measured by the above method. As can be seen from the figure, there is a correlation between the trabecular bone area ratio Ai measured by the ultrasonic wave and the bone mineral density BMD of the calcaneus and the vertebra measured by the DXA. Relationship between area ratio Ai and bone mineral density BMD of calcaneus), sixth
It is obtained by an approximate expression such as an expression (the relationship between the trabecular area ratio Ai and the amount of bone mineral BMD in the spine).

【0022】[0022]

【数5】 (Equation 5)

【0023】[0023]

【数6】 (Equation 6)

【0024】上述の通り、超音波によって計測される骨
梁面積率Aiを求めることで、患者(被検者)の踵骨と
脊椎の骨塩量BMD評価(予測)ができる。このように
して、骨梁面積率Aiを定期的に検診し、その値を管理
(骨弾性係数を基本としたモニタリングシートを作成)
することで、X線被爆を避けた骨粗しょう症診断が可能
となり、骨の力学的評価方法の確立が期待できる(図
5)。
As described above, by calculating the trabecular area ratio Ai measured by ultrasonic waves, it is possible to evaluate (predict) the bone mineral density BMD of the calcaneus and spine of the patient (subject). In this way, the trabecular area ratio Ai is regularly examined and its value is managed (a monitoring sheet based on the bone elastic modulus is created).
By doing so, it becomes possible to diagnose osteoporosis while avoiding X-ray exposure, and it is expected that a method for mechanically evaluating bones will be established (FIG. 5).

【0025】[0025]

【発明の効果】本発明は上述のように、プログラムされ
たコンピュータによって、骨塩量を評価する装置であっ
て、超音波によって骨内部を計測し、骨塩量を求め、骨
量および骨強度の評価をすることで、X線被爆を避けた
定期検診としての骨塩量評価と骨強度評価法の確立が期
待できる。具体的には、骨粗しょう症の進行状態を早い
時期に診断して発見することで、骨量および骨強度の減
少を評価し、骨折の発生を予防することが可能となる。
As described above, the present invention is an apparatus for evaluating the amount of bone mineral by means of a programmed computer, which measures the inside of bone by ultrasonic waves, finds the amount of bone mineral, and calculates the amount of bone and bone strength. The evaluation of bone mineral density and the establishment of a bone strength evaluation method can be expected as a regular checkup avoiding X-ray exposure. Specifically, by diagnosing and discovering the progress of osteoporosis at an early stage, it is possible to evaluate a decrease in bone mass and bone strength and prevent the occurrence of a fracture.

【0026】また、X線被爆を避けた定期的な検診をす
ることで、医師や保健婦は患者(被検者)の時間的な健
康状態を把握できるようになる。さらに、医師や保健婦
などは、患者(被検者)の骨粗しょう症の進行状態を把
握したうえでの、日常・食生活、運動面など対して的確
なアドバイスおよび治療をすることができる効果を奏す
る。
In addition, by performing regular medical examinations avoiding X-ray exposure, doctors and public health nurses can grasp the temporal health of patients (examinees). In addition, doctors and public health nurses can understand the progress of osteoporosis in patients (subjects) and can provide appropriate advice and treatment for daily, dietary, exercise, etc. To play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の骨粗しょう症を評価する際における装
置の概略構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of an apparatus for evaluating osteoporosis according to the present invention.

【図2】本発明のシステム装置の電気回路の構成を示す
説明図である。
FIG. 2 is an explanatory diagram showing a configuration of an electric circuit of the system device of the present invention.

【図3】超音波により計測した骨梁線密度Cuと画像処
理から得られた骨梁線密度Ciの関係を示した説明図で
ある。
FIG. 3 is an explanatory diagram showing a relationship between a trabecular bone density Cu measured by ultrasonic waves and a trabecular bone density Ci obtained by image processing.

【図4】超音波により計測した骨梁面積率AiとDXA
によって計測した踵骨と脊椎の骨塩量BMDの関係を示
した説明図である。
FIG. 4 shows trabecular area ratio Ai and DXA measured by ultrasonic waves.
FIG. 5 is an explanatory diagram showing a relationship between the calcaneus and the bone mineral amount BMD of the spine measured by the method.

【図5】定期的な検診結果を記したモニタリングシート
の説明図である。
FIG. 5 is an explanatory diagram of a monitoring sheet in which the results of a regular examination are described.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 プログラムされたコンピュータによって
骨塩量を評価する装置であって、超音波により骨内部の
透過伝播速度を計測して骨梁線密度を求める手段と、骨
内部の実画像から得られた骨梁線密度と超音波より計測
した骨梁線密度との関係により骨内部の実画像から得ら
れた骨梁線密度を求め、これを基に骨梁面積率を算出す
る手段と、さらに、骨梁面積率とX線により計測した骨
塩量との関係に基づき骨塩量BMD値を算出する手段と
を備えたことを特徴とする骨塩量の評価装置。
1. An apparatus for evaluating bone mineral density by a programmed computer, comprising: means for measuring a transmission propagation velocity inside a bone by ultrasonic waves to obtain a trabecular bone density; Means for calculating the trabecular bone density obtained from the actual image of the inside of the bone by the relationship between the trabecular linear density measured and the trabecular linear density measured from the ultrasound, and calculating the trabecular area percentage based on this, And a means for calculating a bone mineral density BMD value based on a relationship between a trabecular bone area ratio and a bone mineral density measured by X-rays.
【請求項2】 コンピュータによって骨塩量を評価する
プログラムを記録した記録媒体であって、超音波により
骨内部の透過伝播速度を計測して骨梁線密度を算出し、
骨内部の実画像から得られた骨梁線密度と超音波より計
測した骨梁線密度との関係により骨内部の実画像から得
られた骨梁線密度を求め、これを基に骨梁面積率を算出
させ、さらに、骨梁面積率とX線により計測した骨塩量
との関係に基づき骨塩量BMD値を算出させることを特
徴とする骨塩量の評価プログラムを記録した記録媒体。
2. A recording medium on which a program for evaluating a bone mineral content is recorded by a computer, wherein a penetration propagation velocity in a bone is measured by an ultrasonic wave to calculate a trabecular bone density.
The trabecular line density obtained from the actual image inside the bone was obtained from the relationship between the trabecular line density obtained from the actual image inside the bone and the trabecular line density measured by ultrasound, and the trabecular area was determined based on this. A recording medium on which a bone mineral density evaluation program is recorded, wherein a bone mineral density evaluation program is calculated based on a relationship between a trabecular bone area rate and a bone mineral density measured by X-rays.
JP00057998A 1998-01-06 1998-01-06 Evaluation of bone mineral density by ultrasonic measurement Expired - Fee Related JP3182558B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP00057998A JP3182558B2 (en) 1998-01-06 1998-01-06 Evaluation of bone mineral density by ultrasonic measurement
KR1019980048718A KR100329173B1 (en) 1998-01-06 1998-11-13 Bone Evaluation Method by Ultrasonic Measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00057998A JP3182558B2 (en) 1998-01-06 1998-01-06 Evaluation of bone mineral density by ultrasonic measurement

Publications (2)

Publication Number Publication Date
JPH11192223A JPH11192223A (en) 1999-07-21
JP3182558B2 true JP3182558B2 (en) 2001-07-03

Family

ID=11477635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00057998A Expired - Fee Related JP3182558B2 (en) 1998-01-06 1998-01-06 Evaluation of bone mineral density by ultrasonic measurement

Country Status (2)

Country Link
JP (1) JP3182558B2 (en)
KR (1) KR100329173B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019339090B2 (en) * 2018-09-10 2022-09-01 Kyocera Corporation Estimation apparatus, estimation system, and estimation program

Also Published As

Publication number Publication date
JPH11192223A (en) 1999-07-21
KR19990066817A (en) 1999-08-16
KR100329173B1 (en) 2002-08-22

Similar Documents

Publication Publication Date Title
Pisani et al. Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques
Laugier Instrumentation for in vivo ultrasonic characterization of bone strength
Njeh et al. Prediction of human femoral bone strength using ultrasound velocity and BMD: an in vitro study
Protopappas et al. Ultrasonic monitoring of bone fracture healing
JP2965153B2 (en) Ultrasonic evaluation method and apparatus for evaluating the state of bone in a living body
US4926870A (en) Method and apparatus for ultrasonic analysis of bone strength in vivo
KR20140035932A (en) Ultrasound apparatus for assessing the quality of a patient's bone tissue
Wawrzyk et al. The role of ultrasound imaging of callus formation in the treatment of long bone fractures in children
Wright et al. The use of transmission ultrasonics to assess bone status in the human newborn
Laugier An overview of bone sonometry
JP5960699B2 (en) Device operating method and device for assessing bone mineral density
Damilakis et al. Ultrasound velocity through the cortex of phalanges, radius, and tibia in normal and osteoporotic postmenopausal women using a new multisite quantitative ultrasound device
Njeh et al. Factors influencing the speed of sound through the proximal phalanges
Shrivastava et al. Assessment of bone condition by acoustic emission technique: A review
JP3182558B2 (en) Evaluation of bone mineral density by ultrasonic measurement
EP0705565A1 (en) Method and apparatus for evaluating the progress of osteoporosis by ultrasonic signals
Holi et al. Quantitative ultrasound technique for the assessment of osteoporosis and prediction of fracture risk
KR100548182B1 (en) Device and Method for Bone Mineral Density Measurement by Using Broadband Ultrasonic Reflection
KR102303922B1 (en) Method for estimating bone mineral density and bone structure using ultrasonic attenuation coefficient and phase velocity
Glinkowski et al. Clinical experiences with ultrasonometric measurement of fracture healing
KR100581229B1 (en) Method for Measuring the Density of Shinbone by Using Lamb Wave
JPH10295693A (en) Evaluation method for osteoporosis by ultrasonic wave and its device
JP2664628B2 (en) Bone evaluation device for calcaneus
JPH11169352A (en) Bone strength measuring method and equipment
Kaufman et al. New ultrasound system for bone assessment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees