JPH11166179A - Phosphor and production thereof - Google Patents

Phosphor and production thereof

Info

Publication number
JPH11166179A
JPH11166179A JP9333067A JP33306797A JPH11166179A JP H11166179 A JPH11166179 A JP H11166179A JP 9333067 A JP9333067 A JP 9333067A JP 33306797 A JP33306797 A JP 33306797A JP H11166179 A JPH11166179 A JP H11166179A
Authority
JP
Japan
Prior art keywords
phosphor
oxide
repeated
intermetallic compound
active element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9333067A
Other languages
Japanese (ja)
Inventor
Tatsuo Yamaura
辰雄 山浦
Shigeo Ito
茂生 伊藤
Hitoshi Toki
均 土岐
Vladimir Morodokovich
ウラジミール モロドコヴィチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KIBAN ZAIRYO KENKYUSHO
Futaba Corp
International Center for Materials Research
Original Assignee
KOKUSAI KIBAN ZAIRYO KENKYUSHO
Futaba Corp
International Center for Materials Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KIBAN ZAIRYO KENKYUSHO, Futaba Corp, International Center for Materials Research filed Critical KOKUSAI KIBAN ZAIRYO KENKYUSHO
Priority to JP9333067A priority Critical patent/JPH11166179A/en
Priority to FR9814940A priority patent/FR2771749B1/en
Priority to KR1019980052156A priority patent/KR100334499B1/en
Publication of JPH11166179A publication Critical patent/JPH11166179A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Abstract

PROBLEM TO BE SOLVED: To produce a phosphor which comprises nanocrystals of an oxide activated by a rate earth element. SOLUTION: The temp. of an intermetallic compd. alloy Y0.96 Eu0.04 Ni5 is elevated and lowered periodically between 25 deg.C and 150 deg.C in a hydrogen atmosphere of 1.5 MPa. When going back and forth between Y0.96 Eu0.04 Ni5 and Y0.96 Eu0.04 Ni5 H6 is repeated 200 times, the average particle size becomes 2 μm. The same heating and cooling is repeated at 400 deg.C to reduce the particle size to a nanometer order. Y0.96 Eu0.04 Ni5 H6 → (Y0.96 Eu0.04 )H2 +5Ni+2H2 ↑. The oxidation is carried out in air at 250 deg.C to give an oxide/metal nano composite, 2(Y0.96 Eu0.04 )H2 +10Ni+2.502 → (Y0.96 Eu0.04 )2 O3 +10Ni+2H2 O↑. The surface of this phosphor is not stained by by-products, and hence the phosphor emits red light at a high luminescent efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、稀土類元素で活性
化された超微粒子酸化物結晶蛍光体の製造方法の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for manufacturing an ultrafine oxide crystal phosphor activated with a rare earth element.

【0002】[0002]

【従来の技術】稀土類元素で活性化された酸化物の超微
粒子結晶(nanocrystal、以下ナノ結晶と呼ぶ) からなる
蛍光体の製造方法が、アメリカ特許5637258 号に開示さ
れている。このナノ結晶酸化物はゾル−ゲル法に似た方
法で製造される。このゾル−ゲル法に似た方法は、Y-Eu
n-butoxide [Y-Eu(On-Bu)x のブタノール(C4H9OH)溶液
を使用し、室温で行われる。
2. Description of the Related Art US Pat. No. 5,637,258 discloses a method for producing a phosphor comprising ultrafine crystal (nanocrystal) of an oxide activated by a rare earth element. This nanocrystalline oxide is produced in a manner similar to the sol-gel method. A method similar to this sol-gel method is Y-Eu
The reaction is performed at room temperature using a solution of n-butoxide [Y-Eu (On-Bu) x in butanol (C 4 H 9 OH)].

【0003】イットリウムと活性化元素(activator ele
ment) であるEuのブトキサイド溶液(n-butoxide soluti
on) は次のように準備する。Y n-butoxideの合成は、金
属Naとiso-propanolとの反応によりNa iso-propoxide
を作り YCl3を加えてY iso-propoxide を得る。
[0003] Yttrium and activator ele
ment) of butoxide solution of Eu (n-butoxide soluti
on) is prepared as follows. Y n-butoxide is synthesized by the reaction of metallic Na with iso-propanol.
And add YCl 3 to get Y iso-propoxide.

【0004】YCl3 + 3NaOi-Pr → Y(Oi-Pr)3 + 3NaClYCl 3 + 3NaOi-Pr → Y (Oi-Pr) 3 + 3NaCl

【0005】この溶液にn-Butanol を加えてiso-propyl
基をn-butyl 基に置換し共沸蒸留してY n-butoxideを得
る。
[0005] Iso-propyl is added to this solution by adding n-Butanol.
The group is replaced with an n-butyl group and subjected to azeotropic distillation to obtain Y n-butoxide.

【0006】 Y(O i-Pr)3 + n-BuOH → Y(O n-Bu)3 + i-PrOH[0006] Y (O i-Pr) 3 + n-BuOH → Y (O n-Bu) 3 + i-PrOH

【0007】Eu等の付活材のn-butoxideの合成は、Y bu
toxideと同様にして行える。合成されたY と付活材Euの
各n-butoxideを117 ℃で混合すれば、イットリウムと活
性化元素(activator element) であるEuのブトキサイド
溶液(n-butoxide solution) が得られる。
The synthesis of n-butoxide as an activator such as Eu
This can be done in the same way as toxide. When the synthesized Y and each n-butoxide of the activator Eu are mixed at 117 ° C., an n-butoxide solution of yttrium and Eu as an activator element is obtained.

【0008】稀土類元素で活性化された酸化物のナノ結
晶(nanocrys-tal)からなる蛍光体の従来の合成方法につ
いて、以上のようにして得られたY-Eu n-butoxide [Y-E
u(On-Bu)x]のブタノール(C4H9OH)溶液を使用した場合に
ついて説明する。
A conventional method for synthesizing a phosphor comprising nanocrystals (nanocrys-tal) of an oxide activated with a rare earth element has been described with reference to Y-Eun-butoxide [YE
[(U-On-Bu) x] butanol (C 4 H 9 OH) solution will be described.

【0009】Y-Eu n-butoxide/butanol 溶液に酢酸を加
えて次のように酢酸化する。
Acetic acid is added to the Y-Eun-butoxide / butanol solution to effect acetic acid as follows.

【0010】 Y-Eu(O n-Bu)x + CH3COOH → Y-Eu(O-COCH3)x + n-BuOH[0010] Y-Eu (O n-Bu) x + CH 3 COOH → Y-Eu (O-COCH 3 ) x + n-BuOH

【0011】この反応は混合して0.5 〜1.0 時間置くこ
とにより、Y-Eu酢酸塩とn-ブタノールが生成する。pHは
〜8.0 でアルカリ性であるが、酢酸の添加によりpHが下
がり〜5.0 になる。
[0011] In this reaction, the mixture is allowed to stand for 0.5 to 1.0 hour to produce Y-Eu acetate and n-butanol. The pH is alkaline at ~ 8.0, but the addition of acetic acid lowers the pH to ~ 5.0.

【0012】この溶液に水を加えて、加水分解によりY-
Euの水酸化物を形成する。
Water is added to this solution, and Y-
Forms Eu hydroxide.

【0013】 Y-Eu(O-COCH3) x + n-BuOH + H2O → Y-Eu(OH)3 + OH[0013] Y-Eu (O-COCH 3 ) x + n-BuOH + H 2 O → Y-Eu (OH) 3 + OH

【0014】このY-Euの水酸化物が含まれる溶液にNaOH
水溶液を85℃で加え、pH=13.5 にすると、Eu付活の酸化
イットリウムのナノ結晶が沈殿する。(Y2O3:Eu)
NaOH is added to the solution containing the hydroxide of Y-Eu.
When an aqueous solution is added at 85 ° C. and the pH is set to 13.5, Eu-activated yttrium oxide nanocrystals precipitate. (Y 2 O 3 : Eu)

【0015】沈殿したナノ結晶粒子は水とアセトンで洗
い、有機の副生成物を除去する。粒子は乾燥後、希NaOH
で洗う。
The precipitated nanocrystalline particles are washed with water and acetone to remove organic by-products. After drying the particles, dilute NaOH
Wash with.

【0016】[0016]

【発明が解決しようとする課題】以上説明したように、
稀土類元素で活性化された酸化物のナノ結晶蛍光体を製
造する従来の方法によれば、種々の溶剤を用いた反応プ
ロセスを経るために、最終的に得られた蛍光体の粒子の
表面が有機の副生成物によって汚染されてしまう。この
ため、蛍光体の粒子の表面で汚染物質が発光エネルギー
を吸収して蛍光体の発光が抑制される現象(非発光緩
和)が起こるという問題があった。
As described above,
According to a conventional method for producing a nanocrystalline phosphor of an oxide activated with a rare earth element, the surface of the finally obtained phosphor particles is subjected to a reaction process using various solvents. Are contaminated by organic by-products. For this reason, there has been a problem that a phenomenon in which the contaminant absorbs luminescence energy on the surface of the phosphor particles and the luminescence of the phosphor is suppressed (non-luminescence relaxation) occurs.

【0017】たとえ、この副生成物を除去するために焼
成を行っても、微細な蛍光体の粒子の間に加熱された副
生成物が入り込んでしまうために完全な除去は行えな
い。
Even if baking is performed to remove this by-product, complete removal cannot be performed because the heated by-product enters between fine phosphor particles.

【0018】本発明は、稀土類元素で活性化された酸化
物のナノ結晶からなり、その表面が副生成物によって汚
染されていない蛍光体を製造する方法を提供することを
目的としている。
It is an object of the present invention to provide a method for producing a phosphor comprising nanocrystals of an oxide activated with a rare earth element, the surface of which is not contaminated by by-products.

【0019】[0019]

【課題を解決するための手段】請求項1に記載された蛍
光体の製造方法は、活性元素を導入した金属間化合物合
金に対し水素ガス中で水素化と脱水素の操作を繰り返し
て与え、次にこれを酸化することにより活性元素を含む
ナノ結晶金属酸化物を得ることを特徴としている。
According to a first aspect of the present invention, there is provided a method for producing a phosphor, wherein an intermetallic compound alloy into which an active element is introduced is repeatedly subjected to hydrogenation and dehydrogenation operations in hydrogen gas. Next, this is oxidized to obtain a nanocrystalline metal oxide containing an active element.

【0020】請求項2に記載された蛍光体の製造方法
は、請求項1記載の蛍光体の製造方法において、前記金
属間化合物が稀土類金属と遷移金属を含むことを特徴と
している。
[0020] According to a second aspect of the present invention, in the method for manufacturing a phosphor of the first aspect, the intermetallic compound contains a rare earth metal and a transition metal.

【0021】請求項3に記載された蛍光体の製造方法
は、請求項1記載の蛍光体の製造方法において、前記活
性元素が稀土類金属から選択されることを特徴としてい
る。
According to a third aspect of the present invention, there is provided a method for manufacturing a phosphor according to the first aspect, wherein the active element is selected from rare earth metals.

【0022】請求項4に記載された蛍光体の製造方法
は、請求項1記載の蛍光体の製造方法において、水素化
と脱水素の前記操作の繰り返しが、少なくとも200回
以上行われることを特徴としている。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a phosphor according to the first aspect, wherein the above operations of hydrogenation and dehydrogenation are repeated at least 200 times or more. And

【0023】請求項5に記載された蛍光体は、請求項1
記載の蛍光体の製造方法によって製造されるものであ
り、活性元素を含む金属間化合物のナノ結晶金属酸化物
を含むことを特徴としている。
The phosphor according to claim 5 is the phosphor according to claim 1.
It is manufactured by the method for manufacturing a phosphor described above, and is characterized by containing a nanocrystalline metal oxide of an intermetallic compound containing an active element.

【0024】[0024]

【発明の実施の形態】従来の製造方法では、種々の溶剤
を用いた反応プロセスを経るために、最終的に得られた
蛍光体の粒子の表面が有機の副生成物によって汚染され
てしまい、これによって非発光緩和が起きてしまう。そ
こで本発明では、表面汚染の問題を解決するために、無
溶剤プロセスを採用した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional manufacturing method, since the surfaces of the finally obtained phosphor particles are contaminated with organic by-products through a reaction process using various solvents, This causes non-light emission relaxation. Therefore, in the present invention, a solventless process is employed to solve the problem of surface contamination.

【0025】まず、LaNi5, YCu5 等、多くの金属間化合
物(Intermetallic Compounds) は、穏やかな温度と圧力
で水素を吸着(水素化物生成)し、また水素を脱離(水
素化物分解)する。水素化と水素脱離の繰り返しによ
り、金属間化合物はサブμm サイズのメッシュやひげ構
造に変わる。200 ℃より高い温度で水素で処理すると金
属間化合物の水素化分解が起こり、LaH2のような水素化
物形成金属の水素化物と、Niのような水素化しない金属
に不均化する。
First, many intermetallic compounds such as LaNi 5 and YCu 5 adsorb hydrogen (form hydride) and desorb hydrogen (form hydride) at moderate temperatures and pressures. . By intermittent hydrogenation and hydrogen desorption, the intermetallic compound changes to a sub-μm size mesh or whisker structure. Treatment with hydrogen at temperatures higher than 200 ° C. causes hydrogenolysis of intermetallic compounds, disproportionating to hydrides of hydride-forming metals such as LaH 2 and non-hydrogenated metals such as Ni.

【0026】このような知見を基に鋭意研究をすすめた
結果、水素化する前の金属間化合物に付活材原子を導入
し、これに対して水素化と水素脱離を繰り返し、最終的
に酸化して金属酸化物の粉を形成することにより、従来
の蛍光体に比べて発光効率が改善された発光性無機酸化
物ナノ粒子を含む表面の清浄な物質を得られることが判
明した。
As a result of intensive research based on such knowledge, activator atoms were introduced into the intermetallic compound before hydrogenation, and hydrogenation and hydrogen desorption were repeated for this, and finally, It has been found that by oxidizing to form a metal oxide powder, it is possible to obtain a surface-clean substance containing luminescent inorganic oxide nanoparticles having improved luminous efficiency as compared with conventional phosphors.

【0027】本発明によれば、稀土類元素と遷移元素を
ベースとしてEuやPrやCeのような活性元素を適当量含む
金属間化合物に対し、水素ガス雰囲気において水素化と
脱水素化の操作を繰り返す。次に、酸素雰囲気において
酸化することにより、発光性の混合酸化物粉が得られ
る。
According to the present invention, an intermetallic compound containing an appropriate amount of an active element such as Eu, Pr or Ce based on a rare earth element and a transition element is subjected to a hydrogenation and dehydrogenation operation in a hydrogen gas atmosphere. repeat. Next, by oxidizing in an oxygen atmosphere, a luminescent mixed oxide powder is obtained.

【0028】[0028]

【実施例】(1) 第1実施例 金属間化合物合金Y0.96Eu0.04Ni5を1.5MPaの水素雰囲気
で温度を25℃から150℃まで周期的に上げ下げする。反
応は次のように進む。
EXAMPLES (1) First Example The temperature of an intermetallic compound alloy Y 0.96 Eu 0.04 Ni 5 is periodically raised and lowered from 25 ° C. to 150 ° C. in a 1.5 MPa hydrogen atmosphere. The reaction proceeds as follows.

【0029】Y0.96Eu0.04Ni5 ⇔ Y0.96Eu0.04Ni5H6 Y 0.96 Eu 0.04 Ni 5 ⇔ Y 0.96 Eu 0.04 Ni 5 H 6

【0030】この反応を繰り返すと粒径が小さくなる。
200回繰り返すと平均粒径は2μmになる。試料粒子
の内部をnmサイズの超微粒子からなる2つの相(即ち(Y
0.96Eu0.04)H2 とNi)に分けるためにさらに400 ℃で繰
り返しを行う。
When this reaction is repeated, the particle size becomes smaller.
After 200 repetitions, the average particle size becomes 2 μm. The inside of the sample particles is divided into two phases (ie, (Y
Repeat at 400 ° C. to separate 0.96 Eu 0.04 ) H 2 and Ni).

【0031】 Y0.96Eu0.04Ni5H6 → (Y0.96Eu0.04)H2 + 5Ni + 2H2Y 0.96 Eu 0.04 Ni 5 H 6 → (Y 0.96 Eu 0.04 ) H 2 + 5Ni + 2H 2

【0032】最終段階として空気中250 ℃で酸化して、
水素化物/金属ナノ複合物を、酸化物/金属ナノ複合物
にする。
As a final step, it is oxidized in air at 250 ° C.
The hydride / metal nanocomposite is turned into an oxide / metal nanocomposite.

【0033】2(Y0.96Eu0.04)H2 + 10Ni + 2.5O2→ (Y
0.96Eu0.04)2O3 + 10Ni + 2H2O↑
2 (Y 0.96 Eu 0.04 ) H 2 + 10Ni + 2.5O 2 → (Y
0.96 Eu 0.04 ) 2 O 3 + 10Ni + 2H 2 O ↑

【0034】この蛍光体の表面は副生成物に汚染されて
おらず、高い発光効率で赤色に発光する。
The surface of the phosphor is not contaminated with by-products and emits red light with high luminous efficiency.

【0035】(2) 第2実施例 金属間化合物合金La0.95Ce0.05Cu5 を0.2MPaの水素雰囲
気で温度を25℃から100 ℃まで周期的に上げ下げする。
反応は次のように進む。
(2) Second Embodiment The temperature of the intermetallic compound alloy La 0.95 Ce 0.05 Cu 5 is periodically raised and lowered from 25 ° C. to 100 ° C. in a hydrogen atmosphere of 0.2 MPa.
The reaction proceeds as follows.

【0036】 La0.95Ce0.05Cu5 ⇔ La0.95Ce0.05Cu5H6 La 0.95 Ce 0.05 Cu 5 ⇔ La 0.95 Ce 0.05 Cu 5 H 6

【0037】1000回繰り返すと平均粒径は1μmに
なる。最終段階として、合金を空気中400 ℃で酸化し
て、酸化物/酸化物ナノ複合物にする。それは試料粒子
を、粒子の内部がnmサイズの塊からなる、2つの相(即
ち(La0.45Ce0.05)2O3 とCuO )に分けるためである。
After repeating 1,000 times, the average particle size becomes 1 μm. As a final step, the alloy is oxidized at 400 ° C. in air to form an oxide / oxide nanocomposite. This is because the sample particles are divided into two phases (i.e., (La 0.45 Ce 0.05 ) 2 O 3 and CuO 2 ) in which the inside of the particles is composed of a lump of nm size.

【0038】2La0.95Ce0.05Cu5 + 6.50O2 → (La0.95Ce
0.05)2O3 + 10CuO
2La 0.95 Ce 0.05 Cu 5 + 6.50 O 2 → (La 0.95 Ce
0.05 ) 2 O 3 + 10 CuO

【0039】この蛍光体の表面は副生成物に汚染されて
おらず、高い発光効率で青色又は青緑色に発光する。
The surface of the phosphor is not contaminated with by-products and emits blue or blue-green light with high luminous efficiency.

【0040】[0040]

【発明の効果】本発明によれば、稀土類元素で活性化さ
れた酸化物のナノ結晶からなる蛍光体において、表面が
清浄で高い発光効率を実現することができた。
According to the present invention, a phosphor composed of nanocrystals of an oxide activated with a rare earth element has a clean surface and high luminous efficiency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土岐 均 千葉県茂原市大芝629 双葉電子工業株式 会社内 (72)発明者 モロドコヴィチ ウラジミール 神奈川県川崎市高津区坂戸3−2−1 K SP東棟601 株式会社国際基盤材料研究 所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hitoshi Toki 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Corporation (72) Inventor Morodokovich Vladimir 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa K East Building 601 International Fundamental Materials Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 活性元素を導入した金属間化合物合金に
対し水素ガス中で水素化と脱水素の操作を繰り返して与
え、次にこれを酸化することにより活性元素を含むナノ
結晶金属酸化物を得ることを特徴とする蛍光体の製造方
法。
An intermetallic compound alloy into which an active element has been introduced is repeatedly subjected to hydrogenation and dehydrogenation operations in hydrogen gas, and then oxidized to form a nanocrystalline metal oxide containing the active element. A method for producing a phosphor, comprising:
【請求項2】 前記金属間化合物は稀土類金属と遷移金
属を含む請求項1記載の蛍光体の製造方法。
2. The method according to claim 1, wherein the intermetallic compound contains a rare earth metal and a transition metal.
【請求項3】 前記活性元素は稀土類金属から選択され
る請求項1記載の蛍光体の製造方法。
3. The method according to claim 1, wherein the active element is selected from rare earth metals.
【請求項4】 水素化と脱水素の前記操作の繰り返し
は、少なくとも200回以上行われる請求項1記載の蛍
光体の製造方法。
4. The method for producing a phosphor according to claim 1, wherein the operations of hydrogenation and dehydrogenation are repeated at least 200 times.
【請求項5】 請求項1記載の蛍光体の製造方法によっ
て製造され、活性元素を含む金属間化合物のナノ結晶金
属酸化物を含む蛍光体。
5. A phosphor produced by the method for producing a phosphor according to claim 1, comprising a nanocrystalline metal oxide of an intermetallic compound containing an active element.
JP9333067A 1997-12-03 1997-12-03 Phosphor and production thereof Pending JPH11166179A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9333067A JPH11166179A (en) 1997-12-03 1997-12-03 Phosphor and production thereof
FR9814940A FR2771749B1 (en) 1997-12-03 1998-11-27 LUMINOPHORE AND PROCESS FOR PRODUCING THE SAME
KR1019980052156A KR100334499B1 (en) 1997-12-03 1998-12-01 Phosphor and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9333067A JPH11166179A (en) 1997-12-03 1997-12-03 Phosphor and production thereof

Publications (1)

Publication Number Publication Date
JPH11166179A true JPH11166179A (en) 1999-06-22

Family

ID=18261904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9333067A Pending JPH11166179A (en) 1997-12-03 1997-12-03 Phosphor and production thereof

Country Status (3)

Country Link
JP (1) JPH11166179A (en)
KR (1) KR100334499B1 (en)
FR (1) FR2771749B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106948A1 (en) * 2005-04-01 2006-10-12 Mitsubishi Chemical Corporation Alloy powder for aw material of inorganic functional material and phosphor
JP2007262122A (en) * 2006-03-27 2007-10-11 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same
JP2010222587A (en) * 2005-04-01 2010-10-07 Mitsubishi Chemicals Corp Method of manufacturing phosphor
US8123980B2 (en) 2006-05-19 2012-02-28 Mitsubishi Chemical Corporation Nitrogen-containing alloy and method for producing phosphor using same
JP2012207228A (en) * 2012-07-09 2012-10-25 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622439A1 (en) * 1993-04-20 1994-11-02 Koninklijke Philips Electronics N.V. Quantum sized activator doped semiconductor particles
US5637258A (en) * 1996-03-18 1997-06-10 Nanocrystals Technology L.P. Method for producing rare earth activited metal oxide nanocrystals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106948A1 (en) * 2005-04-01 2006-10-12 Mitsubishi Chemical Corporation Alloy powder for aw material of inorganic functional material and phosphor
JP2010222587A (en) * 2005-04-01 2010-10-07 Mitsubishi Chemicals Corp Method of manufacturing phosphor
US7824573B2 (en) 2005-04-01 2010-11-02 Mitsubishi Chemical Corporation Alloy powder for material of inorganic functional material precursor and phosphor
US8460580B2 (en) 2005-04-01 2013-06-11 Mitsubishi Chemical Corporation Alloy powder for raw material of inorganic functional material and phosphor
KR101346580B1 (en) * 2005-04-01 2014-01-02 미쓰비시 가가꾸 가부시키가이샤 Alloy powder for aw material of inorganic functional material and phosphor
US8801970B2 (en) 2005-04-01 2014-08-12 Mitsubishi Chemical Corporation Europium- and strontium-based phosphor
JP2007262122A (en) * 2006-03-27 2007-10-11 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same
US8123980B2 (en) 2006-05-19 2012-02-28 Mitsubishi Chemical Corporation Nitrogen-containing alloy and method for producing phosphor using same
US8636920B2 (en) 2006-05-19 2014-01-28 Mitsubishi Chemical Corporation Nitrogen-containing alloy and method for producing phosphor using same
JP2012207228A (en) * 2012-07-09 2012-10-25 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same

Also Published As

Publication number Publication date
KR100334499B1 (en) 2002-06-20
KR19990062676A (en) 1999-07-26
FR2771749B1 (en) 2000-06-23
FR2771749A1 (en) 1999-06-04

Similar Documents

Publication Publication Date Title
CN110711581B (en) Copper-based composite metal oxide mesomorphic microsphere and preparation method and application thereof
KR100334500B1 (en) Phosphor and method for producing same
CN112582167A (en) Method for preparing nano-scale rare earth magnetic refrigeration material by laser ablation
JPH11166179A (en) Phosphor and production thereof
CN101362605B (en) Rare-earth nano oxide preparation method
CN110628431A (en) Bismuth orthosilicate nano luminescent material with yolk-eggshell structure and preparation method thereof
JP5175464B2 (en) Method for producing metal boride fine powder
CN102337116B (en) Metal nano particle-coated oxide core-shell luminescent material and preparation method thereof
JP2004323656A (en) Manufacturing process of spherical phosphorescent material and spherical phosphorescent material
JP2013532743A (en) Silicate luminescent material doped with metal nanoparticles and preparation method thereof
JP2004099383A (en) Method of manufacturing rare earth oxide phosphor
JP2000336353A (en) Production of fluorescent aluminate
ZHANG et al. Synthesis and characterization of needle-like BaAl2O4: Eu, Dy phosphor via
Kang et al. Y 2 SiO 5: Tb phosphor particles prepared from colloidal and aqueous solutions by spray pyrolysis
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
JP2015532930A (en) Zinc aluminate luminescent material and method for producing the same
CN104204133A (en) Zinc aluminate material and method for preparing same
JP2003519073A (en) Method for producing rare earth borate and application of the borate to luminous body
JP2003027058A (en) Manufacturing method for ultrafine particle of rare earth oxysulfide
CN104755587A (en) Aluminate luminescent material and preparation method therefor
CN104736665A (en) Silicate luminescent material and preparation method therefor
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
TWI373508B (en)
JP2005120283A (en) Method for producing fine particle
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method