JPH11165030A - Method for recovering sulfuric acid and sulfur trioxide in waste gas - Google Patents

Method for recovering sulfuric acid and sulfur trioxide in waste gas

Info

Publication number
JPH11165030A
JPH11165030A JP9335521A JP33552197A JPH11165030A JP H11165030 A JPH11165030 A JP H11165030A JP 9335521 A JP9335521 A JP 9335521A JP 33552197 A JP33552197 A JP 33552197A JP H11165030 A JPH11165030 A JP H11165030A
Authority
JP
Japan
Prior art keywords
exhaust gas
air preheater
desulfurizing agent
sulfuric acid
dust collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9335521A
Other languages
Japanese (ja)
Inventor
Yoritoshi Ookubo
頼聡 大久保
Kikuo Tokunaga
喜久男 徳永
Yuichi Fujioka
祐一 藤岡
Toshimitsu Ichinose
利光 一ノ瀬
Masashi Hishida
正志 菱田
Katsuyuki Ueda
勝征 植田
Jiyunji Aiba
淳二 合庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9335521A priority Critical patent/JPH11165030A/en
Publication of JPH11165030A publication Critical patent/JPH11165030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the corrosion of an air preheater, etc., by providing a reaction zone where CaCO3 powder is added and reacted with the SO3 , etc., in the waste gas and a dust collector for collecting the unreacted CaCO3 on the downstream side of the reaction zone in a waste combustion gas passage between the outlet of the economizer of a combustion furnace and the air preheater. SOLUTION: The waste combustion gas formed by burning a sulfur-contg. fuel is passed through a denitrator 16, an air preheater 6, an electric precipitator 8 and a wet desulfurizer 9 and treated. In this case, a reaction zone 19 where CaCO3 powder is added and reacted with the SO3 , etc., in the waste gas and a dust collector 11 on the downstream side are arranged in a flue 5 extended from the economizer 4 to air preheater 6. The CaCO3 powder is introduced into the reaction zone 19 from a spray nozzle using compressed air. The introduced desulfurizing agent reacts with the SO3 , etc., in the combustion gas, and the SO3 , etc., are removed. The powder of the desulfurizing agent is recovered by the dust collector 11, introduced into a recovery hopper 12 and partly recycled as the desulfurizing agent of the wet desulfurizer 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は化石燃料を燃料とす
る火力発電プラントなどの硫黄含有燃料燃焼排ガス処理
設備における燃焼排ガス中に含まれる硫酸及び無水硫酸
の除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing sulfuric acid and sulfuric anhydride contained in flue gas in a sulfur-containing fuel flue gas treatment facility such as a thermal power plant using fossil fuel as a fuel.

【0002】[0002]

【従来の技術】硫黄を含有する化石燃料を燃料とする図
7に示すような構成の火力発電プラントにおいて、燃焼
炉1にて発生する燃焼排ガスは、図中の矢印で示すよう
に再熱器・過熱器3、節炭器4を経て煙道5に導かれ、
脱硝装置16で脱硝し、空気予熱器6で熱回収を行い、
電気集塵装置8でダストを除去した後、湿式脱硫装置9
で脱硫処理されて煙突10から大気中に放出される。な
お、図中の2は燃焼炉1のバーナ、7は燃焼用空気ダク
トである。燃焼排ガスには炭酸ガス、水蒸気、酸素、窒
素、未燃分等の通常の燃焼排ガス成分以外に亜硫酸ガス
(SO2 )、亜硫酸ガスの一部が酸化された無水硫酸
(SO3 )及び硫酸(H2 SO4 )などの硫黄化合物が
含まれている。これらの硫黄化合物のうちSO3 (煙道
内で水と反応してH2 SO4 を生成する)及びH2 SO
4 (以下、SO3 とH2 SO4 とを併せてSO3 等と称
する)は、排ガス通路上に設けられた煙道5、空気予熱
器6、電気集塵装置8、煙突10等の表面温度の低い部
材に高濃度H2 SO4 として凝縮付着し、大きな腐食損
傷を起こす原因となる。このような腐食を防ぐ方法とし
て、煙道5内において燃焼排ガス中に炭酸カルシウム粉
末(CaCO3 )を加圧空気で噴霧し、燃焼ガス中のS
3 を気体で存在する間に脱硫除去し低減する方法(特
開平9−75661号公報)、消石灰(Ca(O
H)2 )のスラリを煙道5内に噴霧してSO3 等を脱流
除去する方法(特開昭58−36623号公報)などが
提案されている。
2. Description of the Related Art In a thermal power plant having a structure as shown in FIG. 7 using fossil fuel containing sulfur as fuel, combustion exhaust gas generated in a combustion furnace 1 is reheated as indicated by an arrow in the figure. -It is led to the flue 5 via the superheater 3 and the economizer 4,
Denitration is performed by the denitration device 16 and heat recovery is performed by the air preheater 6.
After dust is removed by the electrostatic precipitator 8, the wet desulfurizer 9
And discharged from the chimney 10 into the atmosphere. In the drawing, reference numeral 2 denotes a burner of the combustion furnace 1, and reference numeral 7 denotes a combustion air duct. The combustion exhaust gas includes sulfur dioxide gas (SO 2 ), sulfuric anhydride (SO 3 ) in which a part of the sulfur sulfite gas is oxidized, and sulfuric acid (SO 3 ) in addition to ordinary combustion exhaust gas components such as carbon dioxide, water vapor, oxygen, nitrogen, and unburned components. H 2 SO 4 ). Of these sulfur compounds, SO 3 (reacts with water in the flue to produce H 2 SO 4 ) and H 2 SO
4 (hereinafter, SO 3 and H 2 SO 4 are collectively referred to as SO 3, etc.) are the surfaces of the flue 5, air preheater 6, electric precipitator 8, chimney 10, etc. provided on the exhaust gas passage. High-concentration H 2 SO 4 is condensed and adhered to a member having a low temperature, which causes large corrosion damage. As a method for preventing such corrosion, calcium carbonate powder (CaCO 3 ) is sprayed into flue gas in a flue gas 5 with pressurized air, and S
A method for desulfurizing and removing O 3 in the presence of gas (Japanese Patent Laid-Open No. 9-75661), slaked lime (Ca (O
H) A method of spraying the slurry of 2 ) into the flue 5 to remove and remove SO 3 and the like (JP-A-58-36623) has been proposed.

【0003】前記のような方法により、ボイラ煙道の低
温部材におけるSO3 等を原因とする腐食被害を防止す
るために、煙道にCaCO3 等の脱硫剤(SO3 等を除
去するための物質、以下、単に脱硫剤と称する)を導入
する場合、以下に述べる理由により十分な効果が得られ
ないという欠点があった。 (イ)脱硫剤投入位置が空気予熱器よりも下流にあるた
め、空気予熱器の硫酸腐食を防止する効果はない(特開
平9−75661号公報)。 (ロ)SO3 等の濃度が小さくCaCO3 との接触時間
が短いため、十分な反応効率、CaCO3 の利用効率を
得るためには大量の脱硫剤の添加を必要とする(特開平
9−75661号公報)。 (ハ)CaCO3 を投入することにより排ガスに含まれ
る粉塵量が増加し、煙道下流域における灰付着や閉塞が
起こりやすくなる(特開平9−75661号及び特開昭
58−36623号公報)。
[0003] In order to prevent corrosion damage caused by SO 3 or the like in the low temperature member of the boiler flue by the above-mentioned method, a desulfurizing agent such as CaCO 3 (for removing SO 3 or the like) is added to the flue. When a substance (hereinafter simply referred to as a desulfurizing agent) is introduced, there is a drawback that a sufficient effect cannot be obtained for the following reasons. (A) Since the desulfurizing agent introduction position is located downstream of the air preheater, there is no effect of preventing sulfuric acid corrosion of the air preheater (Japanese Patent Application Laid-Open No. 9-75661). (B) Since the concentration of SO 3 or the like is small and the contact time with CaCO 3 is short, a large amount of desulfurizing agent needs to be added in order to obtain sufficient reaction efficiency and CaCO 3 utilization efficiency. No. 75661). (C) By adding CaCO 3 , the amount of dust contained in the exhaust gas increases, and ash adhesion and blockage in the downstream of the flue tend to occur (Japanese Patent Application Laid-Open Nos. 9-75661 and 58-36623). .

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような従
来技術の実状に鑑み、硫黄含有燃料の燃焼排ガス中のS
3 等の濃度を低減させて酸露点を低下させ、空気予熱
器等における腐食を防止することができる燃焼排ガス中
のSO3 等の除去方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation of the prior art, and has been developed in view of the fact that sulfur contained in a combustion exhaust gas of a sulfur-containing fuel is reduced.
An object of the present invention is to provide a method for removing SO 3 and the like in combustion exhaust gas, which can reduce the concentration of O 3 and the like to lower the acid dew point and prevent corrosion in an air preheater and the like.

【0005】[0005]

【課題を解決するための手段】本発明は硫黄含有燃料を
燃焼させた燃焼排ガスを、燃焼炉からの燃焼排ガス通路
に上流側から順に設けられた脱硝装置、空気予熱器、電
気集塵装置及び湿式脱硫装置に通して処理するに際し、
燃焼炉の節炭器出口から空気予熱器までの間の燃焼排ガ
ス通路に、CaCO3 の粉末を添加して排ガス中のSO
3 等と反応させる反応領域と、該反応領域の後流側で未
反応のCaCO3 を捕集する集塵装置とを設け、前記反
応領域において排ガス中のSO3 等をCaCO3 と反応
させて除去し、集塵装置で捕集したCaCO3 を前記反
応領域に添加するCaCO3 の一部として循環使用する
ことを特徴とする排ガス中のSO3 等の除去方法であ
る。
SUMMARY OF THE INVENTION The present invention is directed to a denitration apparatus, an air preheater, an electric dust collector, and an exhaust gas, which are provided in order from the upstream in a flue gas passage from a combustion furnace in a flue gas produced by burning a sulfur-containing fuel. When processing through a wet desulfurization unit,
CaCO 3 powder was added to the flue gas passage between the economizer outlet of the combustion furnace and the air preheater to add SO2 in the flue gas.
A reaction region for reacting with 3 etc., and a dust collecting device for collecting unreacted CaCO 3 on the downstream side of the reaction region are provided, and SO 3 etc. in exhaust gas is reacted with CaCO 3 in the reaction region. This is a method for removing SO 3 or the like in exhaust gas, characterized in that CaCO 3 removed and collected by a dust collector is recycled as part of CaCO 3 to be added to the reaction zone.

【0006】前記本発明の方法において、集塵装置にお
いて捕集したCaCO3 の一部を、燃焼排ガス通路の下
流側に設けられた湿式脱硫装置で使用する脱硫剤の一部
として使用することにより、未反応のCaCO3 の利用
効率を向上させることができる。CaCO3 粒子の反応
は表面から進行するため、反応が進につれてその粒子の
反応活性は低下する。そのため、ある程度反応の進行し
たCaCO3 粒子は粉砕して湿式脱硫に使用した方が、
全体として利用効率が高いことになる。
In the method of the present invention, a part of the CaCO 3 collected in the dust collector is used as a part of a desulfurizing agent used in a wet desulfurizer provided downstream of the flue gas passage. In addition, the utilization efficiency of unreacted CaCO 3 can be improved. Since the reaction of CaCO 3 particles proceeds from the surface, the reaction activity of the particles decreases as the reaction proceeds. Therefore, it is better to pulverize CaCO 3 particles that have undergone a certain degree of reaction and use them for wet desulfurization.
Overall utilization efficiency is high.

【0007】燃焼排ガス中の硫黄(S)分は、熱力学平
衡計算結果によると酸化雰囲気において以下のような化
学反応を起こす。
[0007] According to the thermodynamic equilibrium calculation result, the sulfur (S) component in the combustion exhaust gas causes the following chemical reaction in an oxidizing atmosphere.

【化1】 S+O2 →SO2 (1000〜1400℃) SO2 +1/2O2 →SO3 (400〜10
00℃) SO3 +H2 O→H2 SO4 (400℃以
下) すなわち、燃料に含有されている硫黄分は燃焼炉中での
燃焼過程にて酸化され(式)、主としてSO2 として
存在する。燃焼炉の下流で雰囲気温度が400〜500
℃になると平衡が式の右側に完全に移動し、SO3
安定に生成するようになる。さらに雰囲気温度が400
℃以下になるとSO3 とH2 Oが反応してH2 SO4
スの生成が始まる(式)。
Embedded image S + O 2 → SO 2 (1000-1400 ° C.) SO 2 + 1 / 2O 2 → SO 3 (400-10
(00 ° C.) SO 3 + H 2 O → H 2 SO 4 (400 ° C. or less) That is, the sulfur contained in the fuel is oxidized in the combustion process in the combustion furnace (formula) and mainly exists as SO 2 . Atmospheric temperature of 400 to 500 downstream of the combustion furnace
When the temperature reaches ° C, the equilibrium completely shifts to the right side of the equation, and SO 3 is generated stably. In addition, the ambient temperature is 400
When the temperature falls below ℃, SO 3 and H 2 O react to start generating H 2 SO 4 gas (formula).

【0008】温度が400℃以下となる節炭器出口以降
で燃焼排ガス中にCaCO3 の粉末を導入すれば、及
び式のようにCaCO3 がSO3 等と反応し、SO3
及びH2 SO4 の除去が可能である。
[0008] By introducing the powder of CaCO 3 in combustion exhaust gas at a temperature of 400 ° C. or less and comprising economizer outlet later, and CaCO 3 is reacted with SO 3 and the like as in Equation, SO 3
And H 2 SO 4 can be removed.

【化2】 CaCO3 +SO3 →CaSO4 +CO2 ) CaCO3 +H2 SO4 →CaSO4 +H2 O+
CO2
(CaCO 3 + SO 3 → CaSO 4 + CO 2 ) CaCO 3 + H 2 SO 4 → CaSO 4 + H 2 O +
CO 2

【0009】煙道内にCaCO3 を添加混合することに
より煙道内燃焼排ガス中のSO3 等を除去する本発明の
方法において、技術的な特徴点は以下の(1)〜(4)
のとおりである。 (1)節炭器出口から空気予熱器入口までの間にCaC
3 の粉末を添加して排ガス中のSO3 等と反応させる
反応領域を設け、煙道内燃焼排ガス中に脱硫用のCaC
3 粉体を添加投入しSO3 等と反応させて除去する。
節炭器から空気予熱器の間でCaCO3 を添加して燃焼
排ガス中のSO3 等の濃度を低減させることにより、空
気予熱器以降の煙道内設備(空気予熱器、電気集塵装
置、各種熱交換器、湿式脱硫装置等)の腐食を抑えるこ
とが可能となる。これにより、空気予熱器出口のガス温
度を従来より低く設定できるため、排ガスの熱回収効率
が大きく向上する。なお、添加位置は脱硝装置以降が望
ましい。
In the method of the present invention for removing SO 3 and the like in flue gas in a flue by adding and mixing CaCO 3 in the flue, technical features of the present invention are as follows (1) to (4).
It is as follows. (1) CaC between the economizer outlet and the air preheater inlet
A reaction region for adding O 3 powder and reacting with SO 3 etc. in the exhaust gas is provided, and CaC for desulfurization is contained in the flue gas in the flue.
O 3 powder is added and added to react with SO 3 or the like and removed.
By adding CaCO 3 between the economizer and the air preheater to reduce the concentration of SO 3 etc. in the combustion exhaust gas, the equipment in the flue after the air preheater (air preheater, electric precipitator, various Heat exchangers, wet desulfurization devices, etc.). As a result, the gas temperature at the outlet of the air preheater can be set lower than before, and the heat recovery efficiency of the exhaust gas is greatly improved. The addition position is desirably after the denitration device.

【0010】反応領域に添加するCaCO3 粉体の量
は、排ガス中のSO3 等に対し新規投入分が1〜3当
量、後述する集塵装置で回収し、循環させる分が3〜1
0当量の範囲とする。これにより燃焼排ガス中のSO3
等の約80%以上を除去することができる。
The amount of CaCO 3 powder to be added to the reaction zone is such that the newly added amount is 1 to 3 equivalents to SO 3 and the like in the exhaust gas, and the amount to be collected and circulated by a dust collector described later is 3 to 1 equivalent.
The range is 0 equivalent. As a result, SO 3 in the combustion exhaust gas
About 80% or more can be removed.

【0011】(2)空気予熱器の前に集塵装置を設け、
若干の反応生成物であるCaSO4 を含む未反応のCa
CO3 粉末をガス流より分離回収する。これにより、集
塵装置よりも下流側での粉塵濃度の低下が可能となり、
脱硫剤の付着による熱伝達の阻害や圧力損失の増大等を
防止し、空気予熱器や電気集塵装置の負担が軽減でき
る。なお、反応領域で添加したCaCO3 の80〜10
0%程度がこの集塵装置で回収される。
(2) A dust collector is provided in front of the air preheater,
Unreacted Ca containing some reaction product CaSO 4
CO 3 powder is separated and recovered from the gas stream. This makes it possible to reduce the dust concentration downstream of the dust collector.
It is possible to prevent the heat transfer and the pressure loss from increasing due to the attachment of the desulfurizing agent, and to reduce the burden on the air preheater and the electric dust collector. In addition, 80 to 10 of CaCO 3 added in the reaction zone.
About 0% is collected by this dust collector.

【0012】(3)前記(2)において回収したCaC
3 粉末の一部を、煙道内の反応領域内に添加するCa
CO3 の一部として循環使用する。回収したCaCO3
粉末の一部を反応領域内に戻して脱硫反応領域における
脱硫剤(CaCO3 )の濃度を高く保つことにより、脱
硫反応効率及び脱硫剤の単位量当たりの利用効率を大き
くすることができる。
(3) CaC recovered in (2) above
A portion of the O 3 powder is added to the reaction zone
Recycled as part of CO 3 . Recovered CaCO 3
By returning a part of the powder into the reaction region and keeping the concentration of the desulfurizing agent (CaCO 3 ) in the desulfurizing reaction region high, it is possible to increase the desulfurizing reaction efficiency and the utilization efficiency of the desulfurizing agent per unit amount.

【0013】(4)上記(2)において回収したCaC
3 粉末の一部、例えば20〜50%を、排ガス下流部
に設置した湿式脱硫装置に脱硫原料として供給すること
により、未反応のCaCO3 を有効利用し、脱硫剤とし
ての利用効率を大きくすることができる。脱硫装置での
使用形態としては、回収した一部CaSO4 を含むCa
CO3 を焼成してCaOとし、水と混合してCa(O
H)2 スラリとして使用するのが一般的である。
(4) CaC recovered in (2) above
By supplying a part of the O 3 powder, for example, 20 to 50%, as a desulfurization raw material to a wet desulfurization device installed downstream of the exhaust gas, unreacted CaCO 3 is effectively used, and the utilization efficiency as a desulfurization agent is greatly increased. can do. As a mode of use in the desulfurization device, the Ca containing partially recovered CaSO 4
CO 3 is calcined to CaO, mixed with water and Ca (O
H) It is generally used as a 2 slurry.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の第
1の実施形態に係るSO3 等の除去方法を適用した排ガ
ス処理システムの系統図である。図1において、図7に
示した従来例と異なる点は、SO3 等の濃度が大きくな
る節炭器4よりあと、空気予熱器6の前までの煙道5内
に、脱硫剤であるCaCO3 粉末を添加して排ガス中の
SO3 等と反応させる脱硫剤とSO3 等との反応領域1
9及びその後流に集塵装置11を設け、脱硫剤の添加、
未反応脱硫剤の回収、回収した脱硫剤の循環使用を行う
SO3 等除去手段を設置した点である。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a system diagram of an exhaust gas treatment system to which a method for removing SO 3 or the like according to a first embodiment of the present invention is applied. In FIG. 1, the point different from the conventional example shown in FIG. 7 is that the desulfurizing agent CaCO 3 is provided in the flue 5 after the economizer 4 where the concentration of SO 3 or the like becomes large and before the air preheater 6. Reaction zone 1 between desulfurizing agent that reacts with SO 3 etc. in exhaust gas by adding 3 powders and SO 3 etc.
9 and a dust collector 11 are provided in the subsequent stream, and a desulfurizing agent is added,
The point is that a removing means such as SO 3 for recovering the unreacted desulfurizing agent and circulating the recovered desulfurizing agent is provided.

【0015】図1のSO3 等除去手段において、節炭器
4のあと空気予熱器6の前までの煙道5内に設けた反応
領域19に、脱硫用のCaCO3 を数10〜数100μ
mの粉末状の形で加圧空気を用いた噴霧ノズルから導入
する。導入された脱硫剤は空気予器6の手前に設置され
た集塵装置11(重力、慣性力、遠心力等を用いた集塵
装置)に回収されるまで燃焼ガス中のSO3 等と反応
し、脱硫除去する。集塵装置11にて選択的に回収され
た脱硫剤粉末は回収ホッパ12に重力供給方式により導
入され、そのうち一部をSO2 脱硫用の湿式脱硫装置9
の脱硫剤として使用する。回収ホッパ12の残りの脱硫
剤は供給ホッパ13へ空気力又は推力を用いた方式で搬
送され、供給ホッパ13にて新規に供給された脱硫剤と
混合される。供給ホッパ13の脱硫剤は高圧空気を用い
た搬送方式の脱硫剤供給装置14により、図示していな
い加圧空気を用いた噴霧ノズルから再び煙道5内へ導入
され、SO3 等の除去に使用される。
In the means for removing SO 3 and the like in FIG. 1, CaCO 3 for desulfurization is added to the reaction area 19 provided in the flue 5 after the economizer 4 and before the air preheater 6 by several tens to several hundreds of μm.
m in the form of a powder from a spray nozzle with pressurized air. The introduced desulfurizing agent reacts with SO 3 and the like in the combustion gas until it is collected by a dust collector 11 (a dust collector using gravity, inertia, centrifugal force, etc.) installed in front of the air cooler 6. And desulfurization removal. The desulfurizing agent powder selectively collected by the dust collecting device 11 is introduced into a collecting hopper 12 by a gravity feed method, and a part of the desulfurizing agent powder is a wet desulfurizing device 9 for SO 2 desulfurization.
Used as a desulfurizing agent. The remaining desulfurizing agent in the recovery hopper 12 is conveyed to the supply hopper 13 by a method using pneumatic force or thrust, and mixed with the desulfurizing agent newly supplied in the supply hopper 13. The desulfurizing agent in the supply hopper 13 is again introduced into the flue 5 from a spray nozzle using pressurized air (not shown) by a desulfurizing agent supply device 14 of a transport system using high-pressure air, and is used to remove SO 3 and the like. used.

【0016】図2は本発明の第2の実施形態に係るSO
3 等の除去方法を適用した排ガス処理システムの系統図
であり、SO3 等除去手段を、気流搬送中に脱硫を行
い、集塵装置11として慣性集塵装置を用いるように構
成した例である。節炭器4のあと空気予熱器6の前まで
の煙道5内に反応領域19を設け、内部に集塵を行うた
めの邪魔板17を備えた集塵装置(慣性集塵装置)11
を反応領域19の大部分を内包する形で設置している。
なお、この集塵装置(慣性集塵装置)11内部では集塵
とともに一部脱硫が行われている。
FIG. 2 shows an SO according to a second embodiment of the present invention.
FIG. 2 is a system diagram of an exhaust gas treatment system to which a removal method such as 3 is applied, in which an SO 3 or other removal unit is configured to perform desulfurization during airflow conveyance and use an inertial dust collector as the dust collector 11. . A dust collector (inertial dust collector) 11 having a reaction area 19 in the flue 5 after the economizer 4 and before the air preheater 6 and having a baffle plate 17 for collecting dust therein.
Is installed so as to include most of the reaction region 19.
In the dust collector (inertial dust collector) 11, desulfurization is partially performed together with dust collection.

【0017】図3は本発明の第3の実施形態に係るSO
3 等の除去方法を適用した排ガス処理システムの系統図
であり、SO3 等除去手段を、気流搬送中に脱硫を行
い、集塵装置11として遠心力集塵であるサイクロンを
用いるように構成した例である。この例では節炭器4の
あと空気予熱器6の前までの煙道5内に、煙道5の断面
積を大きくした領域を設けて反応領域19とすることで
気流搬送される脱硫剤の滞留時間を大きくし、反応効率
を向上させている。
FIG. 3 shows a SO 3 according to a third embodiment of the present invention.
FIG. 2 is a system diagram of an exhaust gas treatment system to which a removal method such as 3 is applied, wherein SO 3 and other removal means are configured to perform desulfurization during airflow conveyance, and to use a cyclone that is centrifugal dust collection as a dust collection device 11. It is an example. In this example, in the flue 5 after the economizer 4 and before the air preheater 6, a region having a larger cross-sectional area of the flue 5 is provided to form a reaction region 19, so that the desulfurizing agent conveyed by airflow is formed. The residence time is increased and the reaction efficiency is improved.

【0018】図4は本発明の第4の実施形態に係るSO
3 等の除去方法を適用した排ガス処理システムの系統図
であり、SO3 等除去手段を、反応方式として流動層内
反応、集塵装置11としてサイクロンを用いるように構
成した例である。この例では節炭器4のあと空気予熱器
6の前までの煙道5内に流動層型反応器15を設け、反
応器内で脱硫反応を行っている。投入粒子のサイズや、
反応器内のガス流速を決定する流動層型反応器15の大
きさは、反応器内で流動層が形成できるように条件を調
整する。また、流動層内粒子とガスの混合状態を向上さ
せ、脱硫の効率を上げるために、流動層底部にはガス分
散板18を設けている。
FIG. 4 shows an SO according to a fourth embodiment of the present invention.
FIG. 2 is a system diagram of an exhaust gas treatment system to which a removal method such as 3 is applied, in which SO 3 or other removal means is configured to use a reaction in a fluidized bed as a reaction system and a cyclone as a dust collector 11. In this example, a fluidized bed reactor 15 is provided in the flue 5 after the economizer 4 and before the air preheater 6, and a desulfurization reaction is performed in the reactor. The size of the input particles,
The size of the fluidized bed reactor 15 that determines the gas flow rate in the reactor is adjusted so that a fluidized bed can be formed in the reactor. Further, a gas dispersion plate 18 is provided at the bottom of the fluidized bed in order to improve the mixing state of the particles in the fluidized bed and the gas and increase the efficiency of desulfurization.

【0019】[0019]

【実施例】以下、実施例により本発明の方法の効果を実
証する。 (実施例)図5に示す構成の小型脱硫試験装置を使用し
て脱硫試験(SO3 等の除去試験)を行った。試験手順
は次のとおりである。燃焼炉21においてバーナ30か
ら空気予熱器31で予熱した燃焼用空気とともに灯油を
供給して燃焼させ、燃焼排ガスを30Nm3 /hrで発
生させる。図中の32は電気ヒータである。燃焼炉21
を出た排ガスにSO2 ガスを添加し、V2 5 系のSO
2 →SO3 反応触媒を充填した、空気冷却方式の温度調
節器を兼ねた反応触媒層22を通すことによりガスの温
度を400〜700℃に調整し、ガス中にSO3 を発生
させ、空気冷却方式の温度調節器23によりガスの温度
を400℃に調整して反応器24に供給する。
EXAMPLES The effects of the method of the present invention are demonstrated below by way of examples. (Example) A desulfurization test (removal test of SO 3 and the like) was performed using a small-sized desulfurization test apparatus having the configuration shown in FIG. The test procedure is as follows. In the combustion furnace 21, kerosene is supplied from the burner 30 together with the combustion air preheated by the air preheater 31 and burned, and the combustion exhaust gas is generated at 30 Nm 3 / hr. 32 in the figure is an electric heater. Combustion furnace 21
Was added SO 2 gas in the exhaust gas exiting the, V 2 O 5 system SO
2 → The temperature of the gas is adjusted to 400 to 700 ° C. by passing through the reaction catalyst layer 22 which is also filled with an SO 3 reaction catalyst and also serves as an air-cooling type temperature controller, to generate SO 3 in the gas, The temperature of the gas is adjusted to 400 ° C. by the cooling type temperature controller 23 and supplied to the reactor 24.

【0020】反応器24には温度400℃、ガス線速度
2m/sにてSO3 を含んだ排ガスが導入される。脱硫
剤CaCO3 粉末は供給ホッパ26から反応器24の直
前で排ガスに混入され、反応器24内を気流搬送されて
通過する間にガス中のSO3等を吸収する。反応器24
底部に設置した集塵装置25は反応器24内においてS
3 等と反応した脱硫剤を回収し、回収した脱硫剤は回
収ホッパ27に送られる。
An exhaust gas containing SO 3 is introduced into the reactor 24 at a temperature of 400 ° C. and a gas linear velocity of 2 m / s. The desulfurizing agent CaCO 3 powder is mixed into the exhaust gas from the supply hopper 26 just before the reactor 24 and absorbs SO 3 and the like in the gas while passing through the reactor 24 by air flow. Reactor 24
The dust collector 25 installed at the bottom is
The desulfurizing agent that has reacted with O 3 or the like is collected, and the collected desulfurizing agent is sent to the collection hopper 27.

【0021】回収ホッパ27に貯蔵された脱硫剤CaC
3 の一部は、供給ホッパ26に戻され、新規に投入さ
れるCaCO3 と混合され、脱硫剤として再使用され
る。反応前後のガス中SO3 濃度(ガス中のSO3 等の
合計濃度、以下単にSO3濃度と記載)を測定し、反応
器24内でのCaCO3 粉末によるSO3 脱硫反応率を
下式により求めた。 脱硫反応率(%)=〔(C1 −C2 )/C1 〕×100 C1 :反応器入口でのSO3 濃度(SO3 濃度測定点2
8での濃度) C2 :反応器出口でのSO3 濃度(SO3 濃度測定点2
9での濃度) 従来法では、脱硫剤の循環使用を行わないため、投入し
たCaCO3 の利用率が小さく無駄が多くなり、脱硫効
率も低くなる。
The desulfurizing agent CaC stored in the recovery hopper 27
A part of O 3 is returned to the supply hopper 26, mixed with newly charged CaCO 3, and reused as a desulfurizing agent. The SO 3 concentration in the gas before and after the reaction (total concentration of SO 3 and the like in the gas, hereinafter simply referred to as SO 3 concentration) was measured, and the SO 3 desulfurization reaction rate by CaCO 3 powder in the reactor 24 was calculated by the following formula. I asked. Desulfurization reaction rate (%) = [(C 1 -C 2 ) / C 1 ] × 100 C 1 : SO 3 concentration at reactor inlet (SO 3 concentration measurement point 2
8) C 2 : SO 3 concentration at reactor outlet (SO 3 concentration measurement point 2)
(Concentration at 9) In the conventional method, since the desulfurizing agent is not circulated, the utilization rate of the introduced CaCO 3 is small, waste is increased, and the desulfurization efficiency is reduced.

【0022】上記の内容を確認するために、反応器24
入口でのSO3 濃度を100ppm、投入するCaCO
3 を排ガス中のSO3 の3倍当量にした条件(CaCO
3 投入速度32g/h、脱硫剤粒径50〜150μm)
で、循環使用する場合としない場合について試験を行
い、脱硫反応率を比較した。CaCO3 を循環使用する
場合は、反応器24内に導入した脱硫剤の80%を回収
することで、反応器24内の脱硫剤CaCO3 濃度は循
環させないときのおよそ5倍となる。
In order to confirm the above, the reactor 24
100 ppm of SO 3 concentration at the inlet
3 was set to three times the equivalent of SO 3 in the exhaust gas (CaCO 3
(3) Injection rate 32g / h, desulfurizing agent particle size 50-150μm)
Then, a test was conducted for a case where the product was used cyclically and a case where the product was not used cyclically, and the desulfurization reaction rates were compared. When CaCO 3 is used in a circulating manner, by recovering 80% of the desulfurizing agent introduced into the reactor 24, the concentration of the desulfurizing agent CaCO 3 in the reactor 24 becomes approximately five times that when not circulating.

【0023】図6に脱硫試験結果を示す。図中のプロッ
ト(○)は、脱硫剤を循環させないときの、プロット
(□)は脱硫剤を循環使用したときの反応器24前後の
SO3濃度の測定結果を示す。脱硫剤CaCO3 を循環
使用しない場合は、脱硫反応率は80%であるが、循環
使用することにより93%まで上昇した。
FIG. 6 shows the results of the desulfurization test. The plot (○) in the figure indicates the measurement result of the SO 3 concentration before and after the reactor 24 when the desulfurizing agent was not circulated, and the plot (□) indicates the result when the desulfurizing agent was circulated. When the desulfurizing agent CaCO 3 was not used in circulation, the desulfurization reaction rate was 80%, but it increased to 93% by using the desulfurization agent in circulation.

【0024】[0024]

【発明の効果】本発明の方法によれば、重油、オリマル
ジョン、石炭などの化石燃料を燃料とする火力発電プラ
ントなどの燃焼設備からの燃焼排ガス中に含まれるSO
3 等(SO3 及びH2 SO4 )の濃度を低減し酸露点を
低下させることができ、それによって空気予熱器以降の
煙道内設備における腐食を防止することができる。これ
により腐食の心配がなくなり、空気予熱器の出口ガス温
度を低く設定することができるため、より低温まで熱回
収が可能になり、火力発電プラントなどにおける総合エ
ネルギー効率を上げることが可能になる。また、大気へ
のSO3 の放出量が大幅に低減することから紫煙発生も
防止できる。
According to the method of the present invention, SO2 contained in combustion exhaust gas from a combustion facility such as a thermal power plant using fossil fuel such as heavy oil, orimulsion, or coal as fuel is used.
The concentration of 3 etc. (SO 3 and H 2 SO 4 ) can be reduced and the acid dew point can be lowered, thereby preventing corrosion in the flue equipment after the air preheater. As a result, there is no fear of corrosion, and the temperature of the outlet gas of the air preheater can be set low, so that heat can be recovered to a lower temperature and the overall energy efficiency in a thermal power plant or the like can be increased. Further, since the amount of SO 3 released into the atmosphere is significantly reduced, generation of purple smoke can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係るSO3 等の除去
方法を適用した排ガス処理システムの系統図。
FIG. 1 is a system diagram of an exhaust gas treatment system to which a method for removing SO 3 or the like according to a first embodiment of the present invention is applied.

【図2】本発明の第2の実施形態に係るSO3 等の除去
方法を適用した排ガス処理システムの系統図。
FIG. 2 is a system diagram of an exhaust gas treatment system to which a method for removing SO 3 or the like according to a second embodiment of the present invention is applied.

【図3】本発明の第3の実施形態に係るSO3 等の除去
方法を適用した排ガス処理システムの系統図。
FIG. 3 is a system diagram of an exhaust gas treatment system to which a method for removing SO 3 or the like according to a third embodiment of the present invention is applied.

【図4】本発明の第4の実施形態に係るSO3 等の除去
方法を適用した排ガス処理システムの系統図。
FIG. 4 is a system diagram of an exhaust gas treatment system to which a method for removing SO 3 or the like according to a fourth embodiment of the present invention is applied.

【図5】実施例において使用した小型脱硫試験装置のフ
ロー図。
FIG. 5 is a flowchart of a small-sized desulfurization test apparatus used in the examples.

【図6】実施例における試験結果を示すグラフ。FIG. 6 is a graph showing test results in Examples.

【図7】従来の火力発電プラントにおける燃焼排ガス処
理システムの1例を示す系統図。
FIG. 7 is a system diagram showing one example of a flue gas treatment system in a conventional thermal power plant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一ノ瀬 利光 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 菱田 正志 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 植田 勝征 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 合庭 淳二 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshimitsu Ichinose 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanishi Heavy Industries, Ltd. Nagasaki Research Laboratory (72) Inventor Masashi Hishida 2-5-2, Marunouchi, Chiyoda-ku, Tokyo No. 1 Mitsuhishi Heavy Industries, Ltd. (72) Katsuyuki Ueda, Inventor 1-1, Akunoura-cho, Nagasaki, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Junji Aiba 1-1, Akunoura-cho, Nagasaki, Nagasaki Prefecture No.Mitsubishi Heavy Industries, Ltd.Nagasaki Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硫黄含有燃料を燃焼させた燃焼排ガス
を、燃焼炉からの燃焼排ガス通路に上流側から順に設け
られた脱硝装置、空気予熱器、電気集塵装置及び湿式脱
硫装置に通して処理するに際し、燃焼炉の節炭器出口か
ら空気予熱器までの間の燃焼排ガス通路に、炭酸カルシ
ウムの粉末を添加して排ガス中の硫酸及び無水硫酸と反
応させる反応領域と、該反応領域の後流側で未反応の炭
酸カルシウムを捕集する集塵装置とを設け、前記反応領
域において排ガス中の硫酸及び無水硫酸を炭酸カルシウ
ムと反応させて除去し、集塵装置で捕集した炭酸カルシ
ウムを前記反応領域に添加する炭酸カルシウムの一部と
して循環使用することを特徴とする排ガス中の硫酸及び
無水硫酸の除去方法。
1. A flue gas produced by burning a sulfur-containing fuel is treated by passing it through a denitration device, an air preheater, an electric precipitator, and a wet desulfurization device provided in order from the upstream in a flue gas passage from a combustion furnace. In doing so, a reaction zone in which calcium carbonate powder is added to the flue gas passage between the coal economizer outlet of the combustion furnace and the air preheater to react with sulfuric acid and sulfuric anhydride in the flue gas, and after the reaction zone A dust collector for collecting unreacted calcium carbonate on the flow side is provided, and sulfuric acid and sulfuric anhydride in exhaust gas are removed by reacting with calcium carbonate in the reaction area, and the calcium carbonate collected by the dust collector is removed. A method for removing sulfuric acid and sulfuric anhydride from exhaust gas, wherein the sulfuric acid and sulfuric acid in the exhaust gas are circulated and used as a part of calcium carbonate added to the reaction zone.
【請求項2】 前記集塵装置において捕集した炭酸カル
シウムの一部を、燃焼排ガス通路の下流側に設けられた
湿式脱硫装置で使用する脱硫剤の一部として使用するこ
とを特徴とする請求項1に記載の排ガス中の硫酸及び無
水硫酸の除去方法。
2. A method according to claim 1, wherein a part of the calcium carbonate collected in said dust collecting device is used as a part of a desulfurizing agent used in a wet desulfurizing device provided downstream of a flue gas passage. Item 4. The method for removing sulfuric acid and sulfuric anhydride from exhaust gas according to item 1.
JP9335521A 1997-12-05 1997-12-05 Method for recovering sulfuric acid and sulfur trioxide in waste gas Pending JPH11165030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9335521A JPH11165030A (en) 1997-12-05 1997-12-05 Method for recovering sulfuric acid and sulfur trioxide in waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9335521A JPH11165030A (en) 1997-12-05 1997-12-05 Method for recovering sulfuric acid and sulfur trioxide in waste gas

Publications (1)

Publication Number Publication Date
JPH11165030A true JPH11165030A (en) 1999-06-22

Family

ID=18289509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9335521A Pending JPH11165030A (en) 1997-12-05 1997-12-05 Method for recovering sulfuric acid and sulfur trioxide in waste gas

Country Status (1)

Country Link
JP (1) JPH11165030A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170105A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method of reducing carbon monoxide, and carbon monoxide reducer for coal addition used in method
JP2008170107A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Oxide reducing method and oxide reducer for coal addition used in the same
JP2012042087A (en) * 2010-08-18 2012-03-01 Kyushu Olympia Kogyo Kk Solid fuel burning boiler
CN102371113A (en) * 2010-08-27 2012-03-14 深圳市翔宇环保科技有限公司 Flue gas purifying treatment method and system
WO2015125559A1 (en) * 2014-02-24 2015-08-27 三菱日立パワーシステムズ株式会社 System for discharge gas treatment and method for discharge gas treatment
CN106110872A (en) * 2016-08-23 2016-11-16 华电电力科学研究院 Combine SO in removing SCR denitration device inlet flue gas3and the device of flue dust
CN106110873A (en) * 2016-08-23 2016-11-16 华电电力科学研究院 Combine before and after removing SCR denitration device SO in flue gas3and the device of flue dust
CN107890759A (en) * 2017-11-17 2018-04-10 山东大学 CFBB flue gas CO2、SO2And NOxCooperation-removal system and method
CN110893303A (en) * 2019-12-03 2020-03-20 湖北中颐和环境工程有限公司 Flue gas desulfurization and dust removal process for graphitization furnace
WO2023062988A1 (en) * 2021-10-12 2023-04-20 住友重機械工業株式会社 Boiler and co2 recovery method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170105A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method of reducing carbon monoxide, and carbon monoxide reducer for coal addition used in method
JP2008170107A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Oxide reducing method and oxide reducer for coal addition used in the same
JP2012042087A (en) * 2010-08-18 2012-03-01 Kyushu Olympia Kogyo Kk Solid fuel burning boiler
CN102371113A (en) * 2010-08-27 2012-03-14 深圳市翔宇环保科技有限公司 Flue gas purifying treatment method and system
CN106061584A (en) * 2014-02-24 2016-10-26 三菱日立电力系统株式会社 System for discharge gas treatment and method for discharge gas treatment
JP2015157253A (en) * 2014-02-24 2015-09-03 三菱日立パワーシステムズ株式会社 Exhaust gas treatment system and exhaust gas treatment method
WO2015125559A1 (en) * 2014-02-24 2015-08-27 三菱日立パワーシステムズ株式会社 System for discharge gas treatment and method for discharge gas treatment
US9802151B2 (en) 2014-02-24 2017-10-31 Mitsubishi Hitachi Power Systems, Ltd. Air pollution control system and air pollution control method
CN106110872A (en) * 2016-08-23 2016-11-16 华电电力科学研究院 Combine SO in removing SCR denitration device inlet flue gas3and the device of flue dust
CN106110873A (en) * 2016-08-23 2016-11-16 华电电力科学研究院 Combine before and after removing SCR denitration device SO in flue gas3and the device of flue dust
CN107890759A (en) * 2017-11-17 2018-04-10 山东大学 CFBB flue gas CO2、SO2And NOxCooperation-removal system and method
CN110893303A (en) * 2019-12-03 2020-03-20 湖北中颐和环境工程有限公司 Flue gas desulfurization and dust removal process for graphitization furnace
WO2023062988A1 (en) * 2021-10-12 2023-04-20 住友重機械工業株式会社 Boiler and co2 recovery method

Similar Documents

Publication Publication Date Title
US5171552A (en) Dry processes for treating combustion exhaust gas
CA1236266A (en) Process of removing polluants from exhaust gases
US9192889B2 (en) Bottom ash injection for enhancing spray dryer absorber performance
US4604269A (en) Flue gas desulfurization process
CA2133638C (en) Desulphurization of carbonaceous fuel
US7223375B1 (en) Emission control systems and methods thereof
HU210828B (en) Method and apparatus for removing gaseous sulfur dioxide compounds from flu-gases from surface burning sulfur containing fuels
FI111227B (en) Method for reducing pollutant emissions from circulating fluidized bed incineration plants
JPH11165030A (en) Method for recovering sulfuric acid and sulfur trioxide in waste gas
WO2014103682A1 (en) Exhaust gas processing equipment and gas turbine power generation system using same
JPS61287420A (en) Removal of gaseous sulfur compound from flue gas of furnace
US4670238A (en) Recycled sorbent flue gas desulfurization
JPH10305210A (en) Flue gas treatment and device therefor
US20110308436A1 (en) System and Method for Improved Heat Recovery from Flue Gases with High SO3 Concentrations
ES2695554T3 (en) Procedure for capturing sulfur oxides from the combustion gas of an oxyfuel combustion CFB boiler
US5817283A (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
US6079212A (en) Gasification power generation process and gasification power generation equipment
US4603037A (en) Desulfurization of flue gas from multiple boilers
US3929967A (en) High temperature flue gas treatment
CN1327939C (en) High-efficient catalyzing smoke desulfurizing and denitrifying method and apparatus thereof
EP0862939B1 (en) Flue gas treating process
JPH10118448A (en) Method and apparatus for desulfurization, denitration and dust collection from flue gas
US10197272B2 (en) Process and apparatus for reducing acid plume
JP2000317260A (en) Flue gas treating device
JPH01155936A (en) Apparatus for removing acidic component from waste gas of dust incineration furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040420